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This is a study memo of [1], [3].

1 Integer Programming

1.1 MILP and Branch-and-Bound Method

Definition 1.1 (MILP:Mixed integer linear programming). Let

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ (Z+)
n × (R+)

p|g(x, y) := Ax+Gy ≤ b}

We call the following problem a MILP.

max f(x, y) := ctx+ hty

subject to (x, y) ∈ S

We succeed notations in Definition1.1. And we set

S0 := {(x, y) ∈ (R+)
n × (R+)

p|Ax+Gy ≤ b}

Let us assume the MILP has a opmimal solution (x∗, y∗) and the optimal optimal value z∗. So S0 6= ϕ. Let us fix
(x, y) ∈ S0.

Algorithm Branch-and-Bound Method

Input: S0 6= ϕ
Step 1: Take a (x0, y0) ∈ S0 and (x, y, z)← (x0, y0, f(x

0, y0)) and S ← S0

Step 2: Take j ∈ {1, 2, ..., n}. S00 := {(x, y) ∈ S|xj ≤ bx0
jc} and S01 := {(x, y) ∈ S|xj ≥ dx0

je} and
MILP00 : maxf(S00) and MILP01 : maxf(S01).
Delete S0 from S and add S00 and S01 to S.

Step 3: for Sα ∈ S do
Solve LPα : maxf(Sα).
if LPα is not feasible then

Delete Sα from S.
else

We set (xα, yα) which is a optimal solution and zα which is its optimal value.
Delete Sα from S.
if xα ∈ Zn

+ then
if zα > z then

(x, y, z)← (xα, yα, f(xα, yα)).
end if

elsezα > z
Take j ∈ {1, 2, ..., n}. Sα0 := {(x, y) ∈ Sα|xj ≤ bxα

j c} and Sα1 := {(x, y) ∈ Sα|xj ≥ dxα
j e}.

Add Sα0 and Sα1 to S.
end if

end if
end for

Output: (x, y, z).

1.2 Meyer’s Fundamental Theorem

1.2.1 Main result

The propositions shown in this subsection will not be presented with proofs in this subsection, but will be presented with
proofs in the subsections that follow.

Definition 1.2 (Polyhedron). Let A ∈M(m,n,R), b ∈ Rm. We call

P := {x ∈ Rn|Ax ≤ b}

a Polyhedron in Rn. If A ∈M(m,n,Q), b ∈ Qm then P is a rational polyhedron.
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Definition 1.3 (Recession cone). Let P be a nonempty polyhedron. We call

rec(P ) := {r ∈ Rn|x+ λr ∈ P, λ ∈ R+}

the recession cone of P .

Notation 1.1. Let

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

We set
P (A,G, b) := {(x, y) ∈ (R+)

n × (R+)
p|g(x, y) := Ax+Gy ≤ b}

Definition 1.4 (Convex, Convex combination). Let A ⊂ Rn. We say A is convex if
∑n

i=1 λiai ∈ A for a1, ..., an ∈ A and
λ1, ..., λn ⊂ [0, 1] such that

∑n
i=1 λi = 1. We call the sum

n∑
i=1

λiai

convex combination of a1, ..., an.

Proposition 1.1. Let

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ (Z+)
n × (R+)

p|g(x, y) := Ax+Gy ≤ b}

Then

(i)

sup{ctx+ hty|(x, y) ∈ S} = sup{ctx+ hty|(x, y) ∈ conv(S)}

Furthermore, there is (x, y) ∈ S such that ctx + hty = sup{ctx + hty|(x, y) ∈ S} ⇐⇒ there is (x, y) ∈
conv(S) such that ctx+ hty = sup{ctx+ hty|(x, y) ∈ S}

(ii) ex(conv(S)) ⊂ S

Theorem 1.1 (Meyer(1974)[2] Fundamental Theorem). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ (Z+)
n}.

Then there are A′ ∈M(m,n,Q), G′ ∈M(m, p,Q), b′ ∈ Qm such that

conv(S) = P (A′, G′, b′)

By Proposition1.1 and Theorem1.1, MILP

max f(x, y) := ctx+ hty

subject to (x, y) ∈ S

is equal to a pure LP

max f(x, y) := ctx+ hty

subject to (x, y) ∈ P (A′, G′, b′)

We set

Ã :=

(
A
A′

)
, G̃ :=

(
G
G′

)
, b̃ :=

(
b
b′

)
,

Then clearly
S = {(x, y) ∈ Rn × Rp|(x, y) ∈ P (Ã, G̃, b̃), x ∈ Zn}

and MILP

max f(x, y) := ctx+ hty

subject to (x, y) ∈ S
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has a continuous ralaxation

max f(x, y) := ctx+ hty

subject to (x, y) ∈ P (Ã, G̃, b̃)

whose optimal value is equal to the one of the original MILP. And we can effectively find an optimal solution of this
continuas ralaxation which is contained in S.

From the above discussion, the following can be shown.

Proposition 1.2. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ (Z+)
n}.

Then there is M ∈ N and are Ã ∈M(M,n,Q), G̃ ∈M(M,p,Q), b̃ ∈ QM such that

S = P (Ã, G̃, b̃) ∩ Zn
+ × Rp

+

and
conv(S) = P (Ã, G̃, b̃)

1.2.2 Fourier elimination and Farkas Lemma

Definition 1.5 (Conic combination). Let v1, ..., vm ∈ Rn. For every λ1, ..., λm ≥ 0, we call
∑m

i=1 λivi a conic combination
of v1, ..., vm.

Theorem 1.2 (Fourier Elimination). Let

(S1) A ∈M(m,n,R), b ∈ Rm.

(S2) I+ := {i|ai,n > 0}, I− := {i|ai,n < 0}, I0 := {i|ai,n = 0}.

(S3) a′i,k :=
ai,k
|ai,n|

(i ∈ I+ ∪ I−, k ∈ {1, 2, ..., n− 1}), b′i :=
bi
|ai,n|

(i ∈ I+ ∪ I−).

(S4) Ã := (A, b) ∈M(m,n+ 1,R).

(S5) We set Ãn−1 ∈M(#I+ ∗#I− +#I0, n,R) and b′ ∈ R(#I+∗#I−+#I0) by

(kq-th row of Ãn−1) =
1

|ak,n|
(k-th row of Ã) +

1

|aq,n|
(q-th row of Ã) (∀k ∈ I+, ∀q ∈ I−)

and
((#I+ ∗#I− + j)-th row of Ã′) = (j-th row of Ã) (j = 1, 2, ...,#I0)

(S6) xi := (x1, ..., xi) (x ∈ Rn)

Then

(i) Ax ≤ b, x ∈ Rn is feasible if and only if

n−1∑
i=1

(a′k,i + a′q,i)xi ≤ b′k + b′q (∀k ∈ I+, ∀q ∈ I−),

n−1∑
i=1

ap,ixi ≤ bp (∀p ∈ I0)

(ii) If A ∈M(m,n,Q) and b ∈ Qm, then a′k,i, a
′
q,i, b

′
k, b

′
q ∈ Q (∀k ∈ I+, ∀i ∈ {1, 2, ..., n− 1}, ∀q ∈ I−).

(iii) {x ∈ Rn|Ax ≤ b} 6= ϕ ⇐⇒ {x ∈ Rn+1|Ã(xt,−1)t ≤ 0} 6= ϕ ⇐⇒ {x ∈ Rn|Ãn−1((x
n−1)t,−1)t ≤ 0} 6= ϕ.

(iv) For each i ∈ {0, 1, ..., n−1}, there is mi ∈ N and Ãi ∈M(mi, i+1,R such that every row of Ãi is a conic
combination of rows of Ã and

{x ∈ Rn|Ax ≤ b} 6= ϕ ⇐⇒ {x ∈ Ri|Ãi((x
i)t,−1)t ≤ 0}

(v) If Ã ∈M(m,n+ 1,Q) then Ãi ∈M(mi, i+ 1,Q) i ∈ {0, 1, ..., n− 1}.
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(vi) {x ∈ Rn|Ax ≤ b} 6= ϕ ⇐⇒ Ã0 ≤ 0.

Proof of the ‘only if‘ part in (i). Let us assume x ∈ Rn such that Ax ≤ b. Then

n−1∑
i=1

a′k,ixi + xn ≤ b′k (∀k ∈ I+)

and
n−1∑
i=1

a′q,ixi − xn ≤ b′q (∀q ∈ I−)

So, by adding the left and right sides of these two inequalities, respectively, the following holds.

n−1∑
i=1

(a′k,i + a′q,i)xi ≤ b′k + b′q (∀k ∈ I+, ∀q ∈ I−),

n−1∑
i=1

ap,ixi ≤ bp (∀p ∈ I0)

Proof of the ‘if‘ part in (i). Let us assume

n−1∑
i=1

(a′k,i + a′q,i)xi ≤ b′k + b′q (∀k ∈ I+, ∀q ∈ I−),

n−1∑
i=1

ap,ixi ≤ bp (∀p ∈ I0)

Then

n−1∑
i=1

a′k,ixi − b′k ≤ −(
n−1∑
i=1

a′q,i − b′q) (∀k ∈ I+, ∀q ∈ I−)

We set

xn := min{−(
n−1∑
i=1

a′k,i − b′k)|k ∈ I+}

Then

xn ≥ max{(
n−1∑
i=1

a′q,i − b′q)|q ∈ I−}

So, Ax ≤ b.

Proof of (ii)-(iv). These are followed by (i).

Theorem 1.3 (Farkas Lemma I). Let

(S1) A ∈M(m,n,R), b ∈ Rm.

Then
{x ∈ Rn|Ax ≤ b} = ϕ ⇐⇒ {v ∈ Rm|Atv = 0, btv < 0, v ≥ 0} 6= ϕ

Proof of ‘only if‘ part. By Fourier elimination method (iv), there are m0 ∈ N and U ∈M(m0, n,R) such that U ≥ 0 and
UÃ = (Omi,n−1, b

0) and b0 6≥ 0. Then there is u ∈ Rm0 such that utb0 < 0. We set

v := (utU)t

Then v ≥ 0 and Av = 0 and vtb < 0.
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Proof of ‘if‘ part. Let us assume ∃v ∈ Rm such that vtA = 0 and vtb < 0 and v ≥ 0. For any x ∈ Rn, vtAx = 0. So,
Ax 6≤ b.

Theorem 1.4 (Farkas Lemma II). Let

(S1) A ∈M(m,n,R), b ∈ Rm.

Then
{x ∈ Rn|Ax = b, x ≥ 0} 6= ϕ ⇐⇒ {u ∈ Rm|Atu ≤ 0} ⊂ {u ∈ Rm|utb ≤ 0}

Proof of ‘ =⇒ ‘. Let us fix x ∈ {x ∈ Rn|Ax = b, x ≥ 0}. Let us fix any u ∈ {u ∈ Rm|Atu ≤ 0}. So, btu ≤ 0.

Proof of ‘⇐= ‘. Let us assume
{x ∈ Rn|Ax = b, x ≥ 0} = ϕ

Then
{x ∈ Rn|Ax ≤ b,−Ax ≤ −b, x ≥ 0} = {x ∈ Rn|Bx ≤ c} = ϕ

Here,

B :=

 A
−A
−In

 , c :=

 b
−b
On,1


and In is the n-th unit matrix. By Farkas Lemma I, there are v ∈ Rm

+ and v′ ∈ Rm
+ and w ∈ Rn

+ such that

Bt

v
v′

w

 = 0,

v
v′

w

t

c < 0

This implies
A(−(v − v′)) = −w,−(v − v′)tb > 0

We set u := −(v − v′). Then
u ∈ {u ∈ Rm|Atu ≤ 0} \ {u ∈ Rm|utb ≤ 0}

1.2.3 Polyhedron and Minkowski Weyl Theorem

Definition 1.6 (Polytope). We say A ⊂ Rn is a polytope if there are finite vectors v1, ..., vm ∈ Rn such that A =
conv(v1, ..., vm). We call v1, ..., vm vertices of A. If v1, ..., vm ∈ Qn, we call A is a rational polytope.

Definition 1.7 (Cone). We say C ⊂ Rn is a cone if 0 ∈ C and for every x ∈ C and λ ∈ R+ λx ∈ C.

By the definition of cone, the following holds.

Proposition 1.3. Any cone containing nonzero vector is not bounded.

Definition 1.8 (Convex Cone). We say C ⊂ Rn is a convex cone if C is cone and every conic combination of finite
vectors of C is contained in C.

Because every intersection of convex cones is also convex cone, the following holds.

Proposition 1.4 (Convex Cone generated by a set). Let us assume A is any subset of Rn. Then there is the minimum
convex cone containing A. We denote this convex cone by cone(A).

Definition 1.9 (Polyhedral cone). Let

(S1) A ∈M(m,n,Q).

We call
P := {x ∈ Rn|Ax ≤ 0}

a Polyhedral cone.

Theorem 1.5 (Minkowski Weyl Theorem for cones). Let

(S1) C ⊂ Rn.
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Then C is a Polyhedral cone if and only if C is finite generated cone.

STEP1. Proof of ‘if‘ part. Let us assume C is finite generated cone. Then there is r1, ..., rk ∈ R such that C =
cone(r1, ..., rk). We set R = (r1, ..., rk).

By applying Fourier elimination method k times to the the following inequality

−µ ≤ 0, Rµ ≤ x,−Rµ ≤ −x

and Fourier elimination method (vi), there is A ∈M(m,n,R) such that the above inequality is equivalent to

Ax ≤ 0

So, C = {x ∈ Rn|Ax ≤ 0}.

STEP2. Proof of ‘only if‘ part. Let us assume C is a Polyhedral cone. So, there is A ∈ M(m,n,R) such that C = {x ∈
Rn|Ax ≤ 0}. We set C∗ := {y ∈ Rn|∃ν ∈ Rm

+ such that Atv = y}. Then

C∗ = cone(a1, ..., am)

Here, ai ∈ Rn is the i-th row vector of A (i = 1, 2, ...,m). By STEP1, there is R ∈M(n, k,R) such that

C∗ = {y ∈ Rn|Rty ≤ 0}

We denote the i-th column vector of R by ri (i = 1, 2, ..., k). We will show

C = cone(r1, ..., rk)

Let us fix any x ∈ cone(r1, ..., rk). Then there are ν1, ..., νk ∈ R+ such that x = Rν. Because ai = Atei (i = 1, 2, ...,m),
ai ∈ C∗ (i = 1, 2, ...,m). So, AR ≤ 0. This implies Ax = ARν ≤ 0. This means x ∈ C. We have shown cone(r1, ..., rk) ⊂ C.

Let us fix any x̄ ∈ cone(r1, ..., rk)
c. So, {ν ∈ Rk|Rν = x̄, ν ≥ 0} = ϕ. By Farkas Lemma II, there is y ∈ Rn such that

Rty ≤ 0 and ytx̄ > 0. So, y ∈ C∗. Then there are ν ∈ Rm
+ such that y = Atν. So, νtAx̄ > 0. Because ν ∈ Rm

+ , this implies
Ax̄ 6≤ 0. This means x̄ ∈ Cc. Consequently C ⊂ cone(r1, ..., rk).

Definition 1.10 (Minkowski sum). Let A,B ⊂ Rn. We call

A+B

the Minkowski sum of A and B.

Proposition 1.5. Let

(i) Minkowski sum of any two convex set is convex.

(ii) For any two subset A,B ⊂ Rn,

conv(A+B) = conv(A) + conv(B)

Proof of (i). Let A,B ⊂ Rn be convex. For any a1, ..., am ∈ A and b1, ..., bm ∈ B and λ1, ..., λm ⊂ [0, 1] such that∑m
i=1 λi = 1,

m∑
i=1

λi(ai + bi) =

m∑
i=1

λiai +

m∑
i=1

λibi ∈ A+B

So, A+B is convex.

Proof of (ii). By (i), conv(A)+conv(B) is convex. And A+B ⊂ conv(A)+conv(B). So, conv(A+B) ⊂ conv(A)+conv(B).

Let us fix any a1, .., ak ∈ A and ba, ..., bl ∈ B and λ1, ..., λk, µ1, ..., µl ∈ [0, 1] such that
∑k

i=1 λi = 1 and
∑l

i=1 µi = 1.
Then

k∑
i=1

λiai +

l∑
j=1

µjbj =

l∑
j=1

µj(

k∑
i=1

λiai + bj) =

l∑
j=1

µj(

k∑
i=1

λi(ai + bj)) =
∑
i,j

λiµj(ai + bj) ∈ conv(A+B)
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Theorem 1.6 (Minkowski-Weyl Theorem). A subset P ⊂ Rn is a Polyhedron if and only if there is a polytope Q a finite
generated cone C such that

P = Q+ C

Proof of ‘only if‘ part. Let us fix A ∈M(m,n,R) and b ∈ Rm such that P = {x ∈ Rn|Ax ≤ b}. We set

CP := {(x, y) ∈ Rn × R|Ax− yb ≤ 0, y ≤ 0}

Then clearly
P = {x ∈ Rn|(x, 1) ∈ CP }

By Minkowski Weyl Theorem for cones, there are r1, r2, ..., rKRn+1 such that

CP := cone(r1, r2, ..., rK)

Because CP is a cone, we can assume rin+1 = 0 or 1 (∀i). So, there are u1, ..., uk ∈ Rn and v1, ..., vl ∈ Rn such that

CP = cone(

(
u1

1

)
, ...

(
uk

1

)
,

(
v1
0

)
, ...,

(
vl
0

)
)

So,
P = conv(u1, ..., uk) + cone(v1, ..., vl)

Proof of ‘if‘ part. We assume we can get

P = conv(u1, ..., uk) + cone(v1, ..., vl)

Then

P = cone(

(
u1

1

)
, ...,

(
uk

1

)
,

(
v1

0

)
, ...,

(
vl

0

)
) ∩ Rn × {1}

Because cone(

(
u1

1

)
, ...,

(
uk

1

)
,

(
v1

0

)
, ...,

(
vl

0

)
) is a Polyhedral cone, P is a Polyhedron.

Proposition 1.6. Let

(i) Bounden Polyhedron is polytone.

(ii) If A ∈M(m,n,Q) and b ∈ Qm, then there are v1, ..., vk ∈ Qn and r1, ..., rl ∈ Zn such that

P := {x ∈ Rn|Ax ≤ b} = conv(v1, ..., vk) + cone(r1, ..., rl)

If P is bounded, P is a rational polytope.

(iii) P ⊂ Rn is a rational polyhedron if and only if P is a minkowski sum of a rational polytope and a convex
cone generated by finite rational vectors.

Proof of (i). By Proposition1.3, (i) holds.

Proof of (ii). By the proof of Theorem1.5, (ii) holds.

Proof of (iii). By the proof of Theorem1.5, (iii) holds.

1.2.4 Perfect formulation and Meyer’s Foundamental theorem

Proposition 1.7. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ (Z+)
n × (R+)

p|g(x, y) := Ax+Gy ≤ b}

Then

(i)

sup{ctx+ hty|(x, y) ∈ S} = sup{ctx+ hty|(x, y) ∈ conv(S)}

Furthermore, there is (x, y) ∈ S such that ctx + hty = sup{ctx + hty|(x, y) ∈ S} ⇐⇒ there is (x, y) ∈
conv(S) such that ctx+ hty = sup{ctx+ hty|(x, y) ∈ S}
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(ii) ex(conv(S)) ⊂ S

Proof of the first part of (i). Because S ⊂ conv(S),

sup{ctx+ hty|(x, y) ∈ S} ≤ sup{ctx+ hty|(x, y) ∈ conv(S)}

We can assume z∗ = sup{ctx + hty|(x, y) ∈ S} < ∞. Let us set H := {(x, y) ∈ Rn+p|ctx + hty ≤ z∗}. Because H is
convex and S ⊂ H, conv(S) ⊂ H. So,

sup{ctx+ hty|(x, y) ∈ S} ≥ sup{ctx+ hty|(x, y) ∈ conv(S)}

Proof of the last part of (i). The part of =⇒ is clear. We set d := (c, h). Let us assume there is z̄ = (x̄, ȳ) such that

dtz̄ = sup{ctx + hty|(x, y) ∈ conv(S)}. Then there are λ1, ..., λk > 0 and z1, ..., zk ∈ S such that z̄ =
∑k

i=1 λizi. Clearly

dtzi ≤ dtz̄ (∀i). Because dtz̄ =
∑k

i=1 d
tλizi, there is i such that dtzi ≥ dtz̄. So, dtzi = sup{ctx+hty|(x, y) ∈ conv(S)}.

Proof of (ii). Let us fix any v ∈ ex(conv(S)). Because ex(conv(S)) ⊂ conv(S), there are λ1, ..., λm ∈ (0, 1] and v1, ..., vm ∈

S such that v =
∑

i=1 λiv
i. We can assume m > 1. We set v′ :=

∑m
i=2

λi

1− λ1
vi. Then v′ ∈ conv(S). Because

v = λ1v1 + (1− λ1)v
′ and v ∈ ex(conv(S)), v = v1 ∈ S.

Proposition 1.8. Let r1, ..., rK ∈ Rn. Then

conv(

K∑
i=1

Z+r
i) = cone(r1, ..., r

K)

Proof. We will show this by Mathematical induction. If K = 1, then this proposition holds. Let us fix any k ∈ N and
assume this proposition holds for every K ≤ k.

We set C := conv(
∑k+1

i=1 Z+r
i). Clearly C ⊂ cone(r1, ..., rk+1). Let us fix x ∈ cone(r1, ..., rk+1). Then there are

µ1, ..., µk+1 ∈ R+ such that x =
∑k+1

i=1 µir
i. We can assume µk+1 > 0. We set λ :=

2µk+1

d2µk+1e
. Because 0 ∈ C,

2µk+1r
k+1 = (1− λ)0 + λd2µk+1erk+1 ∈ C. By Mathematical induction assumption,

∑k
i=1 2µir

i ∈ C. So,

k+1∑
i=1

µir
i =

1

2
(2µk+1r

k+1 +

k∑
i=1

2µir
i) ∈ C

So, cone(r1, ..., rk+1) ⊂ C.

Theorem 1.7 (Meyer(1974)[2] Fundamental Theorem). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ Zn}.

Then there are A′ ∈M(m,n,Q), G′ ∈M(m, p,Q), b′ ∈ Qm, c ∈ Rn, h ∈ Rp such that

conv(S) = P (A′, G′, b′)

STEP1. Decomposition of S. We can assume S 6= ϕ. Then by Proposition1.6, there are v1, ..., vt ⊂ Qn+p and r1, ..., rq ⊂
Zn+p such that

P := P (A,G, b) = conv(v1, ..., vt) + cone(r1, ..., rq)

We set

T := {
s∑

i=1

λiv
i +

q∑
j=1

µjr
j |0 ≤ λi, µj ≤ 1 (∀i, j),

s∑
i=1

λi = 1} = conv(v1, ..., vt) +

q∑
j=1

[0, 1]rj

Then T is bounded. There is M ∈ N and D ∈M(M,n+ p,Q) such that

T = {z ∈ Rn+p|∃λ ∈ Rn
+, ∃µ ∈ Rp

+ s.t. D

(
λ
µ

)
≤ z,

s∑
i=1

λi ≤ 1,−
s∑

i=1

λi ≤ −1, µ ≤ 1}

By Fourier elimination method, there are C ∈ M(M,n,R) and d ∈ Qn such that T = {x ∈ Rn|Cx ≤ d}. So, by
Proposition1.6, T is a rational polytope.
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Let

TI := {(x, y) ∈ Zn × Rp|(x, y) ∈ T}, RI := {
q∑

j=1

µjr
j |µj ∈ Z+ (∀j)}

We will show
S = TI +RI

Because TI +RI ⊂ T and i-th component of TI +RI is integer for every i ∈ {1, 2, ..., s}, TI +RI ⊂ S.
Let us fix any (x, y) ∈ Zn × Rp such that (x, y) ∈ S. Then there are λ1, ..., λs, µ1, ..., µq ∈ [0, 1] such that

∑s
i=1 λi = 1

and

(x, y) =

s∑
i=1

λiv
i +

q∑
j=1

µjr
j

We set

(x′, y′) :=

s∑
i=1

λiv
i +

q∑
j=1

(µj − bµjc)rj , r :=

q∑
j=1

bµjcrj

Then (x′, y′) ∈ TI and r ∈ RI . So, (x, y) ∈ TI +RI . Consequently, S = TI +RI .

STEP2. Proof that conv(S) is a rational polyhedron. By Proposition1.5 and STEP1,

conv(S) = conv(TI) + conv(RI)

Because conv(RI) = conv(r1, ..., rq), by Proposition1.8, conv(RI) is a rational polyhedral cone. So, it is enough to show

conv(TI) is a rational polytope

Since T is bounded, X := {x ∈ Zn|∃y ∈ Rp such that (x, y) ∈ TI} is bounded and so is a finite set.
For each x ∈ X, we set Tx := {(x, y)|∃y ∈ Rp such that (x, y) ∈ TI}. For any x̄ ∈ X,

Tx̄ = {(x, y) ∈ Rn × Rp|x = x̄ and (x, y) ∈ T}

Because T is a rational polytope, Tx̄ is a rational polytope. We denote th set of all vertices of Tx̄ by Vx̄ for any x̄ ∈ X.
We set V := ∪x∈XVx. V is a finite set. We will show

conv(TI) = conv(V )

Because TI = ∪x∈XTx = ∪x∈Xconv(Vx) ⊂ conv(V ), conv(TI) ⊂ conv(V ). Because V = ∪x∈XVx ⊂ ∪x∈Xconv(Vx) =
∪x∈XTx = conv(TI), conv(V ) ⊂ conv(TI). So, conv(TI) = conv(V ). Consequently, conv(TI) is a rational polytope.

1.2.5 Sharp MILP Formulation

Definition 1.11 (MILP Formulation). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), B ∈M(m, t,Q), b ∈ Qm.

(S2) S ⊂ Qn.

(S3) T (A,G,B, b) := {(x, y, z) ∈ Qn ×Qp × Zt|Ax+Gy +Bz ≤ b}.

We say (A,G,B, b) is a MILP formulation for S if and only if S is equal to the image of

pn : T (A,G,B, b) 3 (x, y, z) 7→ x ∈ Qn

Clearly the following holds.

Proposition 1.9. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ (Z+)
n}.

(S3) We set

Ã :=


A
En

Op,n

On,n

 , G̃ :=


G

On,p

−Ep

On,p

 , B̃ :=


B
−En

Op,n

−En

 , b̃ :=


b
0n
0p
0n


10



Then (Ã, G̃, B̃, b̃) is a MILP formultation for S.

Definition 1.12 (Sharp MILP Formulation). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), B ∈M(m, t,Q), b ∈ Qm.

(S2) S ⊂ Qn.

(Aq) (A,G,B, b) is a MILP formulation for S.

We say (A,G,B, b) is sharp MILP formulation for S if and only if conv(S) is equal to the image of

pn : T̃ (A,G,B, b) 3 (x, y, z) 7→ x ∈ Qn

Here, T̃ (A,G,B, b) is a LP relaxation of T (A,G,B, b).

Theorem 1.8. Here are the settings and assumptions.

(S1) S ⊂ Qn.

(A1) There are A ∈ M(m,n,Q), G ∈ M(m, p,Q), B ∈ M(m, t,Q), b ∈ Qm such that (A,G,B, b) is a MILP
formulation for S.

Then there there are M ∈ N and Ã ∈ M(M,n,Q), G̃ ∈ M(M,p,Q), B̃ ∈ M(M, t,Q), b̃ ∈ QM such that (Ã, G̃, B̃, b̃) is a
sharp MILP formulation for S.

Proof. We set
TI := {(x, y, z) ∈ Qn ×Qp × Zt|Ax+Gy +Bz ≤ b}

and p1 : TI 3 (x, y, z) 7→ x ∈ Qn. Because (A,G,B, b) is a MILP formulation for S,

p1(TI) = S

By Theorem1.2.4, there are M ∈ N and Ã ∈M(M,n,Q), G̃ ∈M(M,p,Q), B̃ ∈M(M, t,Q), b̃ ∈ QM such that

TI = {(x, y, z) ∈ Qn ×Qp × Zt|Ãx+ G̃y + B̃z ≤ b̃}

conv(TI) = {(x, y, z) ∈ Qn ×Qp ×Qt|Ãx+ G̃y + B̃z ≤ b̃}

Because conv(S) = conv(p1(TI)) = p1(conv(TI)),

conv(S) = p1(conv(TI))

So, (Ã, G̃, B̃, b̃) is a sharp MILP formulation for S.

1.2.6 Review

Meyer theorem states that the convex hull of the feasible region of MILP is a rational polyhedron. So, the feasibility and
the optimal value of MILP are equivalent to the feasibility and the optimal value of some LP, respectively. By methods
such as simplex method, we can find this LP solution in extreme points of feasible reasion. By Proposition1.7, this extreme
point is a solution of original MILP problem.

I think there are the following three ideas that are important in the proof of Meyer theorem.

1. Fourier elimination method

2. Expressing the feasible region of MILP or LP in terms of the Minkowski sum of bounded and unbounded
parts

3. Going back and forth between integer and continuous parts of a polyhedron

Fourier elimination method plays an important role throughout this section. Fourier elimination method is a method
of solving linear inequalities

Ax ≤ b (1.2.1)

focusing on the sign of the coefficients of a certain variable and using only non-negative multipliers to eliminate the variable.
(1.2.1) corresponds to another two linear inequalities. If there is a solution of (1.2.1), then there is U ∈M(m0, n,R) such
that U ≥ 0 and UA = 0 and

0 ≤ Ub (1.2.2)

11



By focusing on row vectors of U , if there is no solutions of (1.2.1), then there is u ∈ Rn
+ such that

Atu = 0, utb < 0, u ≥ 0 (1.2.3)

Correspondance between (1.2.1) and (1.2.3) is stated by Farkas Lemma.
For idea2 on LP feasible reasion P , we state this idea as Minkowski Weyl Theorem.

P = conv(v1, ..., vs) + cone(r1, ..., rq) (1.2.4)

By increasing the dimension of the solution space of the simultaneous inequalities by one as follows, Minkowski Weyl
Theorem is boil down to the case in P is a polyhedral cone.

P = P̃ ∩ Rn × {1}, P̃ := {(x, y) ∈ Rn × R|(A,−b)
(
x
y

)
≤ 0} (1.2.5)

By Fourier elimination method and Farkas Lemma, any polyhedral cone is equivalent to finite generated convex cone.
Meyer theorem is the following.

Theorem 1.9. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ Zn}.

Then conv(S) is a rational polyhedron.

In the proof of Meyer theorem, we focus on Polyhedron P := P (A,G, b) which is containing S. By Minkowski Weyl
Theorem, we get

P = conv(v1, ..., vs) + cone(r1, ..., rq)

We focus a bounded part of P

T = conv(v1, ..., vs) +

q∑
j=1

[0, 1]rj

We denote a integer part of T by TI and denote a integer part of cone(r1, ..., rq) by RI . Then we get

S = TI +RI

So,
conv(S) = conv(TI) + conv(RI)

Because conv(TI) is a rational polytope and conv(RI) is a rational polyhedral cone, conv(S) is a rational polyhedron.

1.3 MILP formulation

1.3.1 Locally ideal formulation

Proposition 1.10 (Standard equity form for LP). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qm.

(S2) S := {x ∈ Qn|Ax ≤ b}.
(S3) We set for x ∈ S,

Φ(x) := (y+, y−, z)

Here,
y+i := max{xi, 0} (i = 1, 2, ..., n)

y−i := max{−xi, 0} (i = 1, 2, ..., n)

zj := (aj , x)− bj (j = 1, 2, ...,m)

(S4) S̃ := {(y+, y−, z) ∈ Qn
+|A(y+ − y−) + z ≤ b}.

Then Φ is a bijective from S to S̃. We call S̃ the standard equity form of S. We call each zj a slack variable.

Definition 1.13 (Basic feasible solution for LP .). Here are the settings and assumptions.
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(S1) A ∈M(m,n,Q), b ∈ Qm.

Then

(i) For x ∈ Qn, we say x̄ is a basic solution of Ax = b if and only if {ai|ai is the i-th column of A and x̄i > 0}
are linear independent.

(ii) For x ∈ Qn
+, we say x̄ is a basic feasible solution of

Ax = b, x ≥ 0

if and only if x is a basic solution of Ax = b.

Proposition 1.11. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qm.

(S2) x is a solution of Ax ≤ b, x ≥ 0.

(S3) z = (z1, .., zm) are nonzero slack variables for Ax+ z = b, x, z ≥ 0.

(S4) I := {i ∈ {1, 2, ...,m}|aTi x = bi}. Here ai is the i-th row vector of A.

(S5) J := {j ∈ {1, 2, ..., n}|xj 6= 0}.

Then (x, z) is a basic feasible solution iff {{ai,j}i∈I}j∈J are linear independent.

Proof. We set I ′ := {i ∈ {1, 2, ...,m}|aTi x < bi}. (x, z) is a basic feasible solution iff {aj}j∈J ∪ {ei}i∈I′ are linear
independent. Here aj is the j-th column of A. This is equivalent to {aj−

∑
i∈I′ ai,jei}j∈J ∪{ei}i∈I′ are linear independent.

So, (x, z) is a basic feasible solution iff {{ai,j}i∈I}j∈J are linear independent.

Definition 1.14 (Locally ideal). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), B ∈M(m, t,Q), b ∈ Qm.

(S2) S ⊂ Qn.

(S3) T (A,G,B, b) := {(x, y, z) ∈ Qn ×Qp × Zt|Ax+Gy +Bz ≤ b}.
(S4) S̃ := {w ∈ QM |Cw = c, w ≥ 0} is a standard equity form of S and Φ is the bijection from S to S̃ in

Proposition1.10.

We say (A,G,B, b) is a locally ideal MILP formulation for S if and only if S̃ has at most one basic feasible solution and
for any basic feasible solution of S̃ w, Φ−1(w) ∈ Qn+p × Zt.

We will show an example of MILP formulation which is not locally ideal but sharp.

Example 1.1. Here are the settings and assumptions.

(S1) S = ∪ni=1Pi. Pi := {x ∈ Qn||xi| ≤ 1, xj = 0 (j 6= i)} (i = 1, 2, ..., n).

Then

(i) The following is a MILP formulation for S.

yj − 1 ≤ xi ≤ 1− yj (i = 1, 2, .., n, j 6= i), (1.3.1)

yi ≥ 0, (i = 1, 2, .., n), (1.3.2)
n∑

i=1

yi = 1 (1.3.3)

y ∈ Zn

(ii) conv(S) = {x ∈ Qn|
∑n

i=1 |xi| ≤ 1}
(iii) Equalities and Inequalities in (i) and the following is a sharp MILP formulation for S.

n∑
i=1

rixi ≤ 1 (r ∈ {−1, 1}n) (1.3.4)

(iv) If n = 3, the formulation in (iii) is not locally ideal.
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(v) The following is a sharp and locally ideal MILP formulation for S.

−yi ≤ xi ≤ yi (i = 1, 2, .., n), (1.3.5)

yi ≥ 0, (i = 1, 2, .., n), (1.3.6)
n∑

i=1

yi = 1 (1.3.7)

y ∈ Zn

Proof of (i). It is clear.

Proof of (ii). The part of ⊂ is clear. Let us fix any x in the right side. We take s ≥ 1 such that
∑n

i=1 s|xi| = 1. Then

x =

n∑
i=1

r|xi|
sign(xi)

r
ei

So, x ∈ conv(S).

Proof of (iii). We set T := {(x, y) ∈ Qn × Qn|(x, y) satisfies equalities and inequalities of (i)}. Clearly p1(T ) ⊂ conv(S).
Clearly T is convex. Because Pi × {ei} ⊂ T (∀i), S ⊂ p1(T ). So, conv(S) ⊂ T .

Proof of (iv). Clearly x1 = x2 = y1 = y2 =
1

2
, x3 = y3 = 0 is a feasible solution. We will show this is a basic feasible

solution. By Proposition1.11, it is enough to show the column vectors of

x1 x2 y1 y2
x1 ≤ 1− y1 1 0 0 1
x2 ≤ 1− y2 0 1 1 0
y1 + y2 = 1 0 0 1 1
x1 + x2 = 1 1 1 0 0

are linear independent. Because this matrix is nonsingular, the column vectors of this matrix are linear independent.

Proof of (v). By the same argument as the proof of (iii), we can show this formulation is sharp. For locally ideal property,
it is enough to show for any basic feasible solution (x+, x−, y, z) there is #{i|yi 6= 0} = 1. Because

∑n
i=1 yi = 1,

#{i|yi 6= 0} ≥ 1. For aiming contradiction, let us assume #{i|yi 6= 0} > 1. So, there are i1 6= i2 such that yi1 , yi2 > 0.
We can assume i1 =, i2 = 2. We will show in each case of the followings.

case1 |x1| < y1 or |x2| < y2.

case2 |x1| = y1 and |x2| = y2.

In case1, we can assume |x1| < y1. If |x2| < y2, then By Proposition1.11, the clumns vectors of the following matrix are
linear independent.

y1 y2
∗ 0 0
... ... ....
∗ 0 0∑

i yi = 1 1 1

This is contradiction. So, |xi2 | = yi2 . By Proposition1.11, the clumns vectors of the following matrix are linear independent.

y1 y2 x∗
2

∗ 0 0 0
... ... ... 0
∗ 0 0 0

q2y2 + r2x2 ≤ 0 0 q2 r2∑
i yi = 1 1 1 0

Here, q2r2 6= 0. So, the clumns vectors of the following matrix are linear independent.

y1 y2 x∗
2

∗ 0 0 0
... ... ... 0
∗ 0 0 0

q2y2 + r2x2 ≤ 0 0 0 r2∑
i yi = 1 1 0 0
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This is contradiction.
In case2, By Proposition1.11, the clumns vectors of the following matrix are linear independent.

y1 y2 x∗
1 x∗

2

∗ 0 0 0 0
... ... ... ... ...
∗ 0 0 0 0

q1y1 + r1x1 ≤ 0 q1 0 r1 0
q2y2 + r2x2 ≤ 0 0 q2 0 r2∑

i yi = 1 1 1 0 0

Here, q1r1q2r2 6= 0. So, the clumns vectors of the following matrix are linear independent.

y1 y2 x∗
1 x∗

2

∗ 0 0 0 0
... ... ... ... ...
∗ 0 0 0 0

q1y1 + r1x1 ≤ 0 0 0 r1 0
q2y2 + r2x2 ≤ 0 0 0 0 r2∑

i yi = 1 1 1 0 0

This is contradiction.
Consequently, #{i|yi 6= 0} ≤ 1.

2 Event graph analysis

2.1 Max-plus algebra

Definition 2.1 (Semi-ring). Here are the settings.

(S1) R is a set.

(S2) ⊕,⊗ are binomial operators on R.

We say (R,⊕,⊗) is a semi ring if

(i) For any x, y, z ∈ R,
(x⊕ y)⊕ z = x⊕ (y ⊕ z)

(x⊗ y)⊗ z = x⊗ (y ⊗ z)

(ii) For any x, y, z ∈ R,
x⊕ y = y ⊕ x

(iii) For any x, y, z ∈ R,
x⊗ (y ⊕ z) = x⊗ y ⊕ x⊗ z

(iv) R has the unit element ϵ with respect to ⊕.
(v) R has the unit element e with respect to ⊕.
(vi) ϵ⊗ x = x⊗ ϵ = ϵ.

We say R is commutative if ⊗ is commutative. We say R is idempotent if ⊗ is idempotent.

Definition 2.2 (Rmax). Here are the settings.

(S1) Rmax := R ∪ {−∞}. We set ϵ := −∞ and e := 0.

(S2) For x, y ∈ Rmax

x⊕ y := max{x, y}

x⊗ y := x+ y

We call Rmax := (Rmax,⊕,⊗) the max-plus algebra.

Clearly the following holds.

Proposition 2.1. Rmax is a commutative and idempotent semi ring.
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2.2 Petri net and Event graph

Definition 2.3 (Petri net, place, transition). Here are the settings.

(S1) (N ,A) is a directed graph.

We say (N ,A) is a petri net if there is (P,Q) which is a pair of disjoint subsets of N satisfying the following two
conditions.

(i) N = P ∪Q,P ∩Q = ϕ.

(ii) A ⊂ P ×Q ∪Q× P.

We denote this petri net by (N ,P,Q,A).
We call each element of P a place and call each element of Q a transistion. Let us fix p ∈ P and q ∈ Q. We say p is

the input place of the transition q and q is the output place of the transition p if (p, q) ∈ A. We say p is the output place
of the transition q and q is the input place of the transition p if (p, q) ∈ A.

We denote the set of all input place of q by π(q) and denote the set of all input transition of p by π(p).
We denote the set of all output place of q by σ(q) and denote the set of all output transition of p by σ(p).

Definition 2.4 (Event graph). Here are the settings.

(S1) (N ,P,Q,A) is a petri net.

We say this petri net is an event graph if for each p ∈ P there is the unique q1 ∈ Q such that (p, q1) ∈ A and there is the
unique q2 ∈ Q such that (q2, p) ∈ A.

Definition 2.5 (Enability and Firing in petri net). Here are the settings.

(S1) (N ,P,Q,A) is a petri net.

(S2) w : A → N≥1. We call w(a) is the weight of a ∈ A.
(S3) M1 : P → Z≥0. For each p ∈ P, we say p is marked with M1(p) tokens.

(S4) q ∈ Q.

Then

(i) We say q is enable if each input place p of q is marked with at least w(p, q) tokens.

(ii) Let us assume q is enable. We set for each p ∈ P

M1(p) := M0(p) + χσ(q)(p)w(q, p)− χπ(q)(p)w(p, q)

We call M1 the firing of M0 with respect to q.

Definition 2.6 (Liveness, Autonomous, Time event graph). Here are the settings.

(S1) G := (N ,P,Q,A, w,M0) is an event graph with weight and token.

Then

(i) We say G is liveness if for any cycle c of G there is p ∈ P whose output transition is enable.

(ii) For each q ∈ Q, q is a supplier transition if π(q) = ϕ.

(iii) We say G is autonomous if G is no supplier transitions.

(iv) Let τ : P → Z≥0 and γ : A ∩ P ×Q → Z≥0 such that

γ(p, q) ≤ τ(p)

Then (G, τ, γ) with time event graph.

Definition 2.7 (Enability and Firing in Time event graph). Here are the settings.

(S1) G := (N ,P,Q,A, w,M0, τ, γ0) is a time event graph.

(A1) For any q1, q2 ∈ Q, there is at most one p ∈ P such that (q, p), (p, q) ∈ A.
(A2) w = 1 on A.
(S2) q ∈ Q.
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Then

(i) We say q is enable if each input place p of q is marked with at least w(p, q) tokens and τ(p) ≤ γ(p, q).
We denote the all enable transitions by E(G).

(ii) Let us assume q is enable. We set for each p ∈ P

M1(p) := M0(p) + χσ(q)(p)w(p, q)− χπ(q)(p)w(p, q), γ1(p) := 0

We call (M1, γ1) the firing of (M0, γ0) with respect to q.

Clearly the following holds.

Proposition 2.2. Here are the settings.

(S1) G0 := (N ,P,Q,A, w,M0, τ, γ0) is a time event graph.

(A1) For any q1, q2 ∈ Q, there is at most one p ∈ P such that (q, p), (p, q) ∈ A.
(A2) w = 1 on A.
(S3) We set

M1(p) := M0(p) + χE(G0)(q1)− χE(G0)(q2)

Here q1 ∈ π(p) and q2 ∈ σ(p). And

γ1(p, q) :=

{
γ0(p, q) + 1 M0(p) > 0 and q is not enable
0 otherwise

(S4) We set G1 := (N ,P,Q,A, w,M1, τ, γ1).

Then G1 is a time event graph.

Definition 2.8 (Firing time). Here are the settings.

(S1) G0 := (N ,P,Q,A, w,M0, τ, γ0) is a time event graph.

(A1) For any q1, q2 ∈ Q, there is at most one p ∈ P such that (q, p), (p, q) ∈ A.
(A2) w = 1 on A.
(S3) We define {Gt}∞t=0 inductively by the procedure defined in Proposition2.2.

Then
xq(k) := {t0 ∈ Z≥0|k = #{t ≤ t0|q ∈ E(Gt)}} (q ∈ Q, k ∈ N≥1)

We call xq(k) the k-th firing time of q. We set

x(k) := (xq1(k), ..., xq#Q)
T (k ∈ N≥1)

Definition 2.9 (System Matrix). Here are the settings.

(S1) {Gt := (N ,P,Q,A, w,Mt, τ, γt)}t∈Z≥0
is a sequence of time event graphs by the procedure defined in

Proposition2.2.

(S2) {x(k)}∞k=1 is the sequence by Definition2.8.

(S3) We denote the maximum number of tokens at any one place in {Gt}t∈Z≥0
by M .

Then for each m ∈ {0, 1, ...,M}

[Am]j,l :=

{
aj,l pj,l exists and pj,l has m tokens in G0

ϵ otherwise
(j, l = 1, 2, ...,#Q)

Here pj,l is the place such that (qj , pj,l), (pj,l, ql) ∈ A.
Proposition 2.3. We succeed notations in Definition2.9. And let us assume any Gt is autonomous. Then

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕ ...⊕AM ⊗ x(k −M) (k = M + 1,M + 2, ...)
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