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This is a study memo of [1], [3].

1 Integer Programming

1.1 MILP and Branch-and-Bound Method
Definition 1.1 (MILP:Mixed integer linear programming). Let
(S1) Ae M(m,n,Q), G€ M(m,p,Q), b€ Q™, ce R", h € RP.
(52) S = {(w,y) € (Z4)" x (R} Plg(ay) := Aw + Gy < b}
We call the following problem a MILP.

maz f(x,y) = c'z + hly
subject to (x,y) € S

We succeed notations in Definitionl.1. And we set

= {(z,y) € (Ry)" x (Ry)?| Az + Gy < b}

Let us assume the MILP has a opmimal solution (z*,3*) and the optimal optimal value z*. So S # ¢. Let us fix
(x,y) € S°.

Algorithm Branch-and-Bound Method

Input: S°# ¢
Step 1: Take a (2°,4°) € S° and (z,v,2) <+ (x0, Y0, f(2°,3°)) and S + S
Step 2: Take j € {1,2,...,n}. Soo == {(z,y) € S|z; < Lx(J)J} and So1 = {(z,y) € S|z; > (m?}} and
MILPgp : maz f(Soo) and MILPg; : max f(So1).-
Delete Sy from S and add Spg and Sg; to S.
Step 3: for S, € S do
Solve LP,, : max f(Sq).
if LP, is not feasible then
Delete S, from S.
else
We set (z%,y*) which is a optimal solution and z* which is its optimal value.
Delete S, from S.
if % € Z' then
if 2% > z then
(@,y,2) < (a9, f(z*,y%)).
end if
elsez® > 2z
Take j € {1,2,...,n}. Sao == {(z,y) € Salz; < [2§]} and Sa1 := {(z,y) € Salz; > [25]}.
Add S, and S, to S.
end if
end if
end for
Output: (z,y,2).

1.2 Meyer’s Fundamental Theorem
1.2.1 Main result

The propositions shown in this subsection will not be presented with proofs in this subsection, but will be presented with
proofs in the subsections that follow.

Definition 1.2 (Polyhedron). Let A € M(m,n,R),b € R™. We call

P :={x e R"|Az < b}

a Polyhedron in R™. If A€ M(m,n,Q),b € Q™ then P is a rational polyhedron.



Definition 1.3 (Recession cone). Let P be a nonempty polyhedron. We call
rec(P):={reR"z+Xr e PAER,}
the recession cone of P.
Notation 1.1. Let
(S1) A€ M(m,n,Q), G € M(m,p,Q), b€ Q™, ce R", h € RP.

We set
P(A,G,b) == {(z,y) € (R+)" x (R4)P|g(z,y) :== Az + Gy < b}

Definition 1.4 (Convex, Convex combination). Let A C R™. We say A is convez if > . Nia; € A for ay,...,a, € A and
Aty ooy A C [0,1] such that Y, Ni = 1. We call the sum

n
g i
i=1

convexr combination of ai, ..., ay.
Proposition 1.1. Let
(S1) Ae M(m,n,Q), Ge€ M(m,p,Q), be Q™, ceR", h € RP.
(52) S :=A{(z,y) € (Z1)" x (Ry)Pg(x,y) := Az + Gy < b}
Then
()
sup{c'z + h'y|(x,y) € S} = sup{c'z + h'y|(z,y) € conv(S)}

Furthermore, there is (z,y) € S such that c'z + hly = sup{ctz + hly|(z,y) € S} <= there is (z,y) €
conv(S) such that ¢tz + h'y = sup{c'z + hly|(x,y) € S}

(i) ex(conv(S)) C S
Theorem 1.1 (Meyer(1974)[2] Fundamental Theorem). Here are the settings and assumptions.

(§1) Ae M(m,n,Q), G € M(m,p,Q), be Q™.
(52) S :={(z,y) € P(A,G,b)|x € (Z+)"}.

Then there are A’ € M(m,n,Q), G' € M(m,p,Q), v’ € Q™ such that
conv(S) = P(A",G",V)
By Propositionl.1 and Theorem1.1, MILP

max f(x,y) := c'x + hly
subject to (z,y) € S

is equal to a pure LP

max f(z,y) := c'x + hly
subject to (z,y) € P(A",G', V)

(1) =) )

S ={(z,y) e R" x RP|(x,y) € P(A,é,i)),x ez}

We set

Then clearly

and MILP

max f(x,y) := c'x + hly
subject to (z,y) € S



has a continuous ralaxation
max f(x,y) := c'x + hly
subject to (z,y) € P(A,G,b)

whose optimal value is equal to the one of the original MILP. And we can effectively find an optimal solution of this
continuas ralaxation which is contained in S.
From the above discussion, the following can be shown.

Proposition 1.2. Here are the settings and assumptions.

(S1) Ae M(m,n,Q), Ge€ M(m,p,Q),be Q™, ceR", h € RP.
(52) S :={(z,y) € P(A,G,b)|z € (Z4+)"}.

Then there is M € N and are A € M(M,n,Q), G € M(M,p,Q), be QM such that
S =P(A,G,b)NZ x RY,
and o
conv(S) = P(A,G,b)
1.2.2 Fourier elimination and Farkas Lemma

Definition 1.5 (Conic combination). Let vy, ..., v, € R™. For every A1, ..., Ay > 0, we call 2111 \iv; a conic combination
of V1, ..ey Upy.-

Theorem 1.2 (Fourier Elimination). Let
(S1) Ae M(m,n,R), b e R™.
(S2) It :={ila;, >0}, I~ = {ila;, <0}, I°:= {ila;, = 0}.

i . b . _
(53) d) = =k (i€ [ UT~ k€ {1,2,.on—1}), b} := (ieltul-).

B |ai,n ‘ai,n|
(84) A:=(A,b) € M(m,n+1,R).
(S5) We set An_y € M(#IT « #I~ + #1°, n,R) and b/ € R +#I+#1°) py,

~ 1 ~
2 (k-th row of A) + ——(q-th row of A) (Vk € IT,¥qe€ I7)
k.n

|ag,nl

(kq-th row of A,_1) =

and
(I % #1~ + 5)-th row offl’) = (j-th row of fl) (j=1,2,...,#I°

(S6) 2t := (z1,...,z;) (x € R")
Then
(i) Az <b,x € R"™ is feasible if and only if

n—1
Z(a;i‘,i + ai],i)xi S b;g + b; (Vk € I+an S 17)7
i=1

n—1

Z apit; < b, (Vp € 1°%

i=1

(i) If A€ M(m,n,Q) and b € Q™, then ajgma;’i?b;wb; €EQ (Vkelt Vie{l,2,...n—1},Vqge I).
(iii) {x € R*"|Az < b} # ¢ <= {z e R"A(z!,-1)! <0} # ¢ <= {x e R"A,_1((z" 1), —1)t <0} # ¢.
(iv) For eachi € {0,1,...,n—1}, there is m; € N and A; € M(m;,i+1,R such that every row of A; is a conic
combination of rows of A and
{z e R"Az < b} # ¢ <= {z € RYA;((z")!,-1)! <0}

(v) If A€ M(m,n+1,Q) then A; € M(m;,i+1,Q) i€ {0,1,...,n — 1}.



(vi) {x € R*| Az <b} # ¢ <= Ay <O0.
Proof of the ‘only if* part in (i). Let us assume x € R™ such that Az <b. Then

n—1

> aj wi +an < by (ke TT)
i=1

and
n—1

Z ag i — T < b, (VgeI™)

=1

So, by adding the left and right sides of these two inequalities, respectively, the following holds.

n—1

> (ah; +al ) < b+ b, (Vke It Vge ),
=1

n—1

Z ap,iz; < by (Vp € 1°)

i=1

Proof of the ‘if part in (i). Let us assume

n—1
> (ah; +al ) < b+ b, (Vke It Vg eI),
=1
n—1

Z apizi < b, (Vp € I°)
i=1
Then
n—1 n—1
> ap i — b < =D ah;,—by) (VEeIt,\Vgel)
i=1 i=1
We set
n—1
Ty 1= min{f(z ap; — bk eI}
i=1
Then
n—1
Ty > max{(Z a:“- - b;)|q el }
i=1
So, Ax < b.

Proof of (ii)-(iv). These are followed by (i).
Theorem 1.3 (Farkas Lemma I). Let
(S1) Ae M(m,n,R), b € R™.

Then
{z eR"Az <b} = ¢ < {veR"Aw=0,bv<0,0>0}+#¢

Proof of ‘only if* part. By Fourier elimination method (iv), there are mo € N and U € M (mg, n,R) such that U > 0 and
UA = (Om,; n-1,b) and b° # 0. Then there is u € R™ such that u’b? < 0. We set

vi= (u'U)

Then v > 0 and Av =0 and v*b < 0. O



Proof of “if* part. Let us assume Jv € R™ such that v*A = 0 and v < 0 and v > 0. For any 2 € R™, v’ Az = 0. So,
Ax Lb. O

Theorem 1.4 (Farkas Lemma II). Let
(S1) Ae M(m,n,R), b e R™.

Then
{r e R"|Ax = b,x > 0} # ¢ < {u e R"™|A'u <0} C {u € R"|u'b <0}

Proof of ‘= . Let us fix x € {x € R"|Ax = b,z > 0}. Let us fix any u € {u € R™|A'u < 0}. So, b'u < 0. O

Proof of ‘<= ‘. Let us assume
{r eR"Azx =b,x >0} =¢

Then
{z eR"Azx <b,—Ax < —b,z >0} ={z e R"|Bx <c} =¢
Here,
A b
B=|-A]|,c.=| —b
_In On,l

and I, is the n-th unit matrix. By Farkas Lemma I, there are v € R and v" € R7* and w € R such that

t

v v
Bt v | =0,|v] ¢c<0
w w

This implies
A(—=(v =) = —w, —(v —0")'b >0

We set u := —(v —v’). Then
u € {u € R™ AW <0}\ {ueR™u'b <0}

1.2.3 Polyhedron and Minkowski Weyl Theorem

Definition 1.6 (Polytope). We say A C R"™ is a polytope if there are finite vectors vy, ...,v,, € R™ such that A =
conv(V1, ..., V). We call vy, ..., vy, vertices of A. If vy, ..., v, € Q", we call A is a rational polytope.

Definition 1.7 (Cone). We say C C R™ is a cone if 0 € C and for every x € C and A € Ry Az € C.
By the definition of cone, the following holds.
Proposition 1.3. Any cone containing nonzero vector is not bounded.

Definition 1.8 (Convex Cone). We say C C R™ is a convex cone if C is cone and every conic combination of finite
vectors of C' is contained in C.

Because every intersection of convex cones is also convex cone, the following holds.

Proposition 1.4 (Convex Cone generated by a set). Let us assume A is any subset of R™. Then there is the minimum
convex cone containing A. We denote this convex cone by cone(A).

Definition 1.9 (Polyhedral cone). Let
(S1) Ae M(m,n,Q).

We call
P :={x e R"|Ax <0}

a Polyhedral cone.
Theorem 1.5 (Minkowski Weyl Theorem for cones). Let
(S1) C C R™.



Then C' is a Polyhedral cone if and only if C is finite generated cone.

STEPI1. Proof of ‘if* part. Let us assume C' is finite generated cone. Then there is 71,...,7x € R such that C =
cone(ry, ...,mg). We set R = (r1,...,7g).
By applying Fourier elimination method k times to the the following inequality

and Fourier elimination method (vi), there is A € M (m,n,R) such that the above inequality is equivalent to
Az <0

So, C'= {z € R"|Az < 0}.
O

STEP2. Proof of ‘only if* part. Let us assume C' is a Polyhedral cone. So, there is A € M(m,n,R) such that C = {x €
R™[Az < 0}. We set C* := {y € R"|Jv € R such that A’v =y}. Then

C* = cone(a',...,a™)
Here, a* € R™ is the i-th row vector of A (i = 1,2,...,m). By STEP1, there is R € M(n, k,R) such that
C* ={y eR"|R'y <0}
We denote the i-th column vector of R by r® (i = 1,2, ..., k). We will show
C = cone(ry, ..., Tx)

Let us fix any x € cone(ry, ..., 7). Then there are v4, ..., v € Ry such that z = Rv. Because a; = Ale; (i =1,2,...,m),
a; € C*(i=1,2,...,m). So, AR < 0. This implies Ax = ARv < 0. This means 2z € C. We have shown cone(ry, ...,r;) C C.
Let us fix any Z € cone(r1, ...,7,)¢. So, {v € RF|Rv = z,v > 0} = ¢. By Farkas Lemma II, there is y € R™ such that
R'y <0and y'z > 0. So, y € C*. Then there are v € R such that y = A'v. So, v Az > 0. Because v € R, this implies
AZ £ 0. This means T € C°. Consequently C C cone(ry, ..., rg). O

Definition 1.10 (Minkowski sum). Let A,B C R*. We call
A+ B

the Minkowski sum of A and B.
Proposition 1.5. Let

(i) Minkowski sum of any two convex set is conver.

(i) For any two subset A, B C R,

conv(A + B) = conv(A) + conv(B)

Proof of (i). Let A,B C R™ be convex. For any aj,...,a, € A and by,...,b,, € B and Ay,..., A\, C [0,1] such that
Z;il Ai =1,

m

=1 =1

i=1
So, A+ B is convex. O
Proof of (i). By (i), conv(A)+conv(B) is convex. And A+ B C conv(A)+conv(B). So, conv(A+B) C conv(A)+conv(B).

Let us fix any a;,..,ax € A and by, ...,b; € B and Ay, ..., A, fi1, - jr € [0,1] such that S5 A = T and Y, i = 1.
Then

k

k l l k l
DoNai+ D by = (O Nai+by) =Y (O Nilai +b5)) = D N (ai +b;) € conv(A + B)
i=1 j=1 =1 =1 j=1

i=1 %,J



Theorem 1.6 (Minkowski-Weyl Theorem). A subset P C R™ is a Polyhedron if and only if there is a polytope Q a finite
generated cone C such that
P=Q+C

Proof of ‘only if* part. Let us fix A € M(m,n,R) and b € R™ such that P = {& € R"|Ax < b}. We set
Cp:={(z,y) e R" xR|Az —yb <0,y < 0}

Then clearly
P ={z eR"(z,1) € Cp}

By Minkowski Weyl Theorem for cones, there are 1,72, ..., rKR™*! such that
Cp := cone(r',r?,...,r)

Because C'p is a cone, we can assume er_l =0or 1 (Vi). So, there are uq,...,ux, € R™ and vy, ...,v; € R™ such that

e = conel (") e () () o ()

So,
P = conv(u?, ..., u") + cone(v?, ..., v")
O
Proof of ‘if* part. We assume we can get
P = conv(ul, ...,u*) + cone(v?!, ..., v")
Then ) . ) l
U U v v n
P—cone(<1> sy < 1) 7(()) s (0))ﬂR x {1}
ut uk vl !
Because cone(( 1 ) ey ( 1 ) , (0> N (0)) is a Polyhedral cone, P is a Polyhedron. O
Proposition 1.6. Let
(i) Bounden Polyhedron is polytone.
(ii) If A€ M(m,n,Q) and b € Q™, then there are vy, ...,vp € Q™ and r1,...,7; € Z™ such that
P :={x € R"|Ax < b} = conv(vy, ..., vg) + cone(ry, ..., ;)
If P is bounded, P is a rational polytope.
(i1i)) P C R™ is a rational polyhedron if and only if P is a minkowski sum of a rational polytope and a convex
cone generated by finite rational vectors.
Proof of (i). By Propositionl.3, (i) holds. O

Proof of (ii). By the proof of Theorem1.5, (ii) holds.
Proof of (). By the proof of Theorem1.5, (iii) holds.

1.2.4 Perfect formulation and Meyer’s Foundamental theorem
Proposition 1.7. Here are the settings and assumptions.
(S1) Ae M(m,n,Q), G M(m,p,Q), be Q™, ce R", h € RP.
(52) S :={(x,y) € (Z4)" x (Ry)?|g(z,y) := Az + Gy < b}
Then
(i)
sup{c'z + h'y|(z,y) € S} = sup{c'z + h'y|(x,y) € conv(S)}

Furthermore, there is (z,y) € S such that c'z + h'y = sup{ctz + hly|(z,y) € S} <= there is (z,y) €
conv(S) such that ¢tz + h'y = sup{c'z + h'y|(x,y) € S}



(i) ex(conv(S)) C S
Proof of the first part of (i). Because S C conv(S),
suplc'a + Wyl(x,) € 8} < suplc'a + Wyl(z, ) € conv(S))

We can assume z* = sup{c'z + h'y|(z,y) € S} < oo. Let us set H := {(z,y) € R"*P|c'z + hly < 2*}. Because H is
convex and S C H, conv(S) C H. So,

sup{c'z + h'y|(z,y) € S} > sup{c'z + h'y|(z,y) € conv(S)}
O

Proof of the last part of (i). The part of — is clear. We set d := (¢, h). Let us assume there is Z = (Z, ) such that
d'z = sup{c'z + h'y|(z,y) € conv(S)}. Then there are A1,...,\p > 0 and z1, ...,z € S such that z = Zle Aizi. Clearly
d'z; < d'z (Vi). Because d'z = Y7 d';z;, there is i such that d'z; > d'z. So, d'z; = sup{c'z+h'y|(z,y) € conv(S)}. O

Proof of (ii). Let us fix any v € ex(conv(S)). Because ex(conv(S)) C conv(S), there are Ay, ..., \p, € (0,1] and vy, ..., v, €

4 i
U
v=XAwv; + (1= X)) and v € ex(conv(S)),v=v1 € S. O

S such that v = >,_, \iv'. We can assume m > 1. We set v/ := > ", Then v’ € conv(S). Because

Proposition 1.8. Let r!,....r € R*. Then

K
conv(z Z 1) = cone(ry, ..., r
i=1

)

Proof. We will show this by Mathematical induction. If K = 1, then this proposition holds. Let us fix any k¥ € N and
assume this proposition holds for every K < k.
We set C = conv(XF 2, ). Clearly C C cone(rt,...,rk*1). Let us fix * € cone(r!,...,r**1). Then there are

2
U1y ooy k1 € Ry such that z = Zerll wir'. We can assume pi+; > 0. We set A := % Because 0 € C,
Hk+1
2517 = (1 — X\)0 + A\[2up41]7**! € C. By Mathematical induction assumption, Zle 2u;r" € C. So,
k1 k
Zﬂﬂ“ = 2#k+17” kol +22uz eC
=1
So, cone(r!,...,r*1) c C. O

Theorem 1.7 (Meyer(1974)[2] Fundamental Theorem). Here are the settings and assumptions.
(S1) Ae M(m,n,Q), G M(m,p,Q), b€ Q™, ce R", h € RP.
(52) S :={(x,y) € P(A,G,b)|x € Z"}.
Then there are A’ € M(m,n,Q), G' € M(m,p,Q), b € Q™, c € R*, h € RP such that
conv(S) = P(A',G',b)

STEP1. Decomposition of S. We can assume S # ¢. Then by Propositionl.6, there are v!,...,v* C Q"*? and r!,...,r? C
Z™*P such that
P := P(A,G,b) = conv(v',...,v") + cone(r', ..., %)

We set

S

s q q
T:= {ZAWWZMMO < Aiyp; <1 (Vi,j),Z)\ =1} = conv(v +ZO 1]r
Jj=1

i=1 j=1 i=1
Then T is bounded. There is M € Nand D € M(M,n + p,Q) such that

. . )\ S S
T={zeR"™P[IA e R}, Ju e RY sit. D(M) gz,ZAigl,—Z/\ig—l,ugu

By Fourier elimination method, there are C € M(M,n,R) and d € Q™ such that T = {x € R"|Cz < d}. So, by
Propositionl.6, T is a rational polytope.



Let .
Tr:={(x,y) € Z" x R?|(z,y) € T}, Ry :={D>_ ;v |u; € Zy (V4)}
=1
We will show
S=Tr+ Ry

Because Ty + Ry C T and i-th component of Tt + R; is integer for every i € {1,2,...,s}, T+ Ry C S.
Let us fix any (z,y) € Z"™ x RP such that (z,y) € S. Then there are Aq, ..., Xg, ft1, ..., fig € [0,1] such that >°7_ A, =1

and .
(z,y) = Z vt + Z ujrj
i=1 j=1
We set
s . q . q .
@) =Y A+ (= L rd,r = Ll
i=1 j=1 j=1

Then (2',y') € T and r € Ry. So, (z,y) € Tr + R;. Consequently, S =T + R;. O

STEP2. Proof that conv(S) is a rational polyhedron. By Propositionl.5 and STEP1,
conv(S) = conv(Tr) + conv(Ry)

Because conv(Rr) = conv(rt,...,r9), by Propositionl.8, conv(R;) is a rational polyhedral cone. So, it is enough to show
conv(Ty) is a rational polytope

Since T is bounded, X := {x € Z™|Jy € R? such that (z,y) € T} is bounded and so is a finite set.
For each = € X, we set T, := {(z,y)|Jy € RP such that (z,y) € T;}. For any Z € X,

T: ={(z,y) e R" xRP|z =z and (x,y) € T'}

Because T is a rational polytope, T; is a rational polytope. We denote th set of all vertices of T3 by Vz for any = € X.
We set V' := U,exV,. V is a finite set. We will show

conv(Tr) = conv(V)

Because T7 = Uzex Ty = Uzexconv(V,) C conv(V), conv(Ty) C conv(V). Because V = UzexVy C Uzexconv(V,) =
Uzex Ty = conv(Tr), conv(V) C conv(Tr). So, conv(Tr) = conv(V). Consequently, conv(Ty) is a rational polytope. O

1.2.5 Sharp MILP Formulation
Definition 1.11 (MILP Formulation). Here are the settings and assumptions.

(S1) Ae M(m,n,Q), Ge€ M(m,p,Q), Be€ M(m,t,Q), b€ Q™.
(52) S Cc Q.
(S3) T(A,G,B,b) :={(z,y,2) € Q" x QP x Z'|Az + Gy + Bz < b}.

We say (A,G, B,b) is a MILP formulation for S if and only if S is equal to the image of
pn:T(A,G,B,b) 3 (z,y,2) »x € Q"
Clearly the following holds.

Proposition 1.9. Here are the settings and assumptions.

(S1) Ae M(m,n,Q), G€ M(m,p,Q), be Q™, ccR", h € RP.
(52) S = {(2,9) € P(A, G, bl € (Z,)"}.

(58) We set
A G B b
o K, N On,p R . —En b On
A = Op,n 7G - *Ep 7B L OP,TL ab A Op
On,n On,p _En O’n



Then (fl, G, B, l~)) is a MILP formultation for S.
Definition 1.12 (Sharp MILP Formulation). Here are the settings and assumptions.
(S1) A€ M(m,n,Q), G € M(m,p,Q), B M(m,t,Q), b€ Q™.
(52) S C Q™.
(Ag) (A, G, B,b) is a MILP formulation for S.
We say (A, G, B,b) is sharp MILP formulation for S if and only if conv(S) is equal to the image of
pn:T(A,G,B,b) 3 (2,y,2) — z € Q"
Here, T(A, G, B,b) is a LP relazation of T(A, G, B,b).
Theorem 1.8. Here are the settings and assumptions.

(S1) S c Qn.

(A1) There are A € M(m,n,Q), G € M(m,p,Q), B € M(m,t,Q), b € Q™ such that (A,G, B,b) is a MILP
formulation for S.

Then there there are M € N and A € M(M,n,Q), Ge M(M,p,Q), Be M(M,t,Q), be QM such that (A,G,E,I;) s a
sharp MILP formulation for S.

Proof. We set
Tr = {(z,y,2) € Q" x QP x Z'|Ax + Gy + Bz < b}

and p1 : T7 3 (z,y,2) — x € Q™. Because (A, G, B,b) is a MILP formulation for S,
pi(Ty) =S
By Theorem1.2.4, there are M € N and A € M(M,n,Q), Ge M(M,p,Q), Be M(M,t,Q), b € QM such that
Ty = {(z,y,2) € Q" x Q? x Z'|Azx + Gy + Bz < b}

conv(Tr) = {(z,y,2) € Q" x QP x QY|Az + Gy + Bz < I;}
Because conv(S) = conv(p1(Tr)) = p1(conv(TT)),

conv(S) = pi(conv(Tt))

So, (fl, G, B, 5) is a sharp MILP formulation for S. O

1.2.6 Review

Meyer theorem states that the convex hull of the feasible region of MILP is a rational polyhedron. So, the feasibility and
the optimal value of MILP are equivalent to the feasibility and the optimal value of some LP, respectively. By methods
such as simplex method, we can find this LP solution in extreme points of feasible reasion. By Propositionl.7, this extreme
point is a solution of original MILP problem.

I think there are the following three ideas that are important in the proof of Meyer theorem.

1. Fourier elimination method

2. Expressing the feasible region of MILP or LP in terms of the Minkowski sum of bounded and unbounded
parts

3. Going back and forth between integer and continuous parts of a polyhedron

Fourier elimination method plays an important role throughout this section. Fourier elimination method is a method
of solving linear inequalities
Ax <b (1.2.1)

focusing on the sign of the coefficients of a certain variable and using only non-negative multipliers to eliminate the variable.
(1.2.1) corresponds to another two linear inequalities. If there is a solution of (1.2.1), then there is U € M (mg, n, R) such
that U > 0 and UA = 0 and

0<Ub (1.2.2)
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By focusing on row vectors of U, if there is no solutions of (1.2.1), then there is v € R’} such that
Alu=0,u'b < 0,u >0 (1.2.3)

Correspondance between (1.2.1) and (1.2.3) is stated by Farkas Lemma.
For idea2 on LP feasible reasion P, we state this idea as Minkowski Weyl Theorem.

P = conv(v',...,v%) + cone(r', ..., r9) (1.2.4)

By increasing the dimension of the solution space of the simultaneous inequalities by one as follows, Minkowski Weyl
Theorem is boil down to the case in P is a polyhedral cone.

P=PNR" x {1}, P :={(z,y) € R" x R|(A, —b) (5) <0} (1.2.5)

By Fourier elimination method and Farkas Lemma, any polyhedral cone is equivalent to finite generated convex cone.
Meyer theorem is the following.

Theorem 1.9. Here are the settings and assumptions.
(S1) Ae M(m,n,Q), G€ M(m,p,Q), be Q™, ceR", h € RP.
(52) S :=A{(x,y) € P(A,G,b)|lx € Z"}.

Then conv(S) is a rational polyhedron.

In the proof of Meyer theorem, we focus on Polyhedron P := P(A, G, b) which is containing S. By Minkowski Weyl

Theorem, we get

1

P = conv(v',...,v%) + cone(r', ..., r9)

We focus a bounded part of P
q
T = conv(v',...,v°) + Z[O, 1r;

j=1

We denote a integer part of 7' by 77 and denote a integer part of cone(r?,...,r%) by Rr. Then we get
S =T+ Ry

So,
conv(S) = conv(Tr) + conv(Ry)

Because conv(T7y) is a rational polytope and conv(Ry) is a rational polyhedral cone, conv(S) is a rational polyhedron.

1.3 MILP formulation
1.3.1 Locally ideal formulation
Proposition 1.10 (Standard equity form for LP). Here are the settings and assumptions.
(S1) Ae M(m,n,Q), be Q™.
(52) S :={x € Q"Az < b}.
(S3) We set for x € S,
O(z) = (y".y %)

Here,
y; = max{z;,0} (i =1,2,...,n)

y; =max{—z;,0} (i=1,2,..,n)

(84) S:={(y",y™,2) € Qt|A(y" —y~) + 2 <b}.
Then ® is a bijective from S to S. We call S the standard equity form of S. We call each zj a slack variable.

Definition 1.13 (Basic feasible solution for LP.). Here are the settings and assumptions.
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(S1) A€ M(m,n,Q), b€ Q™.
Then

(i) Forxz € Q", we say T is a basic solution of Ax = b if and only if {a;|a; is the i-th column of A and ; > 0}
are linear independent.
(ii) For x € Q'}, we say T is a basic feasible solution of

Ar=b,x >0
if and only if x is a basic solution of Ax = b.

Proposition 1.11. Here are the settings and assumptions.

(S1) A e M(m,n,Q), b Q™.
(S2) x is a solution of Ax < b,z > 0.
(S3) z = (21, .., 2m) are nonzero slack variables for Az + z = b,z,z > 0.
(S4) I:=1{ic{1,2,...m}aFz =b;}. Here a; is the i-th row vector of A.
(S5) J:={j€{1,2,...,n}|z; #0}.

Then (x,z) is a basic feasible solution iff {{ai ;}ier}jes are linear independent.

Proof. We set I' := {i € {1,2,...,m}lalz < b;}. (x,2) is a basic feasible solution iff {a’};c; U {e;}icrr are linear
independent. Here a” is the j-th column of A. This is equivalent to {a’ = ier @ijeitjesU{eitier are linear independent.
So, (z, z) is a basic feasible solution iff {{a; ;}icr}jes are linear independent. O

Definition 1.14 (Locally ideal). Here are the settings and assumptions.
(§1) Ae M(m,n,Q), G € M(m,p,Q), B M(m,t,Q), be Q™.
(S2) S Cc Q™.
(S3) T(A,G,B,b) :={(z,y,2) € Q" x QP x Z'|Az + Gy + Bz < b}.

(84) S == {w € QM|Cw = ¢,w > 0} is a standard equity form of S and ® is the bijection from S to S in
Proposition1.10.

We say (A, G, B,b) is a locally ideal MILP formulation for S if and only if S has at most one basic feasible solution and
for any basic feasible solution of S w, ®~(w) € QP x Zt.

We will show an example of MILP formulation which is not locally ideal but sharp.
Example 1.1. Here are the settings and assumptions.
(S1) S=VU P P:={zcQ"||lz;| <l,z; =0 (j #9)} (i =1,2,...,n).
Then
(i) The following is a MILP formulation for S.

yy—1<z;<1-y; (i=1,2,..,n,j #1i), (1.3.1)
yi >0, (i=1,2,.,n), (1.3.2)
dowi=1 (1.3.3)
i=1
yezr

(i) conu(8) = {x € QY| S, fou] < 1)
(iii) Equalities and Inequalities in (i) and the following is a sharp MILP formulation for S.

n
> rwi <1 (re{-1,1}") (1.3.4)
i=1
(iv) If n =3, the formulation in (iii) is not locally ideal.
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(v) The following is a sharp and locally ideal MILP formulation for S.

—yi <z <y (i=12,.,n), (1.3.5)
Yi Z 07 (Z = 1,27..7’)7,)7

zn:yi =1 (1.3.7)
i=1

yGZ’n

Proof of (i). It is clear. O
Proof of (ii). The part of C is clear. Let us fix any z in the right side. We take s > 1 such that Y., s|lz;| = 1. Then

B - _ sign(z;) _

x = ;ﬂ:mir €;

So, x € conv(S). O
Proof of (iii). We set T := {(x,y) € Q" x Q"|(z,y) satisfies equalities and inequalities of (i)}. Clearly p1(T") C conv(S).
Clearly T is convex. Because P; x {e;} C T (¥i), S C p1(T). So, conv(S) C T. O

1
Proof of (). Clearly 1 = x93 = y1 = y2 = —,x3 = y3 = 0 is a feasible solution. We will show this is a basic feasible

solution. By Propositionl.11, it is enough to show the column vectors of

r1 T2 Y1 Y2

$1§1—y1 1 0 0 1
1’2§1ny 0 1 1 0
pH+y=1 0 0 1 1
1 +areo=1 1 1 0 0

are linear independent. Because this matrix is nonsingular, the column vectors of this matrix are linear independent. [

Proof of (v). By the same argument as the proof of (iii), we can show this formulation is sharp. For locally ideal property,
it is enough to show for any basic feasible solution (z¥,z7,y,2) there is #{ily; # 0} = 1. Because Y . ,y; = 1,
#{i|y; # 0} > 1. For aiming contradiction, let us assume #{i|y; # 0} > 1. So, there are i; # is such that y;,,y;, > 0.
We can assume i; =, 12 = 2. We will show in each case of the followings.

casel |z1] <y or |z2] < yo.

case2 |x1| = y1 and |z2| = yo.
In casel, we can assume |z1| < y1. If |z2| < y2, then By Propositionl.11, the clumns vectors of the following matrix are
linear independent.

Yy Y2
* 0 0
* 0 O

>uyi=1 1 1
This is contradiction. So, |z;,| = v;,. By Propositionl.11, the clumns vectors of the following matrix are linear independent.

Y1 Y2 T
* 0O 0 O
* 0O 0 O

QYo+ 1222 <0 0 qo 1o
Syi=1 1 1 0

Here, gar2 # 0. So, the clumns vectors of the following matrix are linear independent.

Y1 Y2 T3
* 0o 0 O
T |
* 0O 0 O

Goy2 +1222 <0 0 0 7o
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This is contradiction.
In case2, By Propositionl.11, the clumns vectors of the following matrix are linear independent.

Y1 Y2 T] T3
* 0O 0 O 0

o

* 0O 0 O
gy t+rizr <0 ¢ 0 0
Gy2 +1222 <0 0 g 0 7o

Here, q171g2r2 # 0. So, the clumns vectors of the following matrix are linear independent.

Y1 Y2 T T
0 0

*
q1y1 +7r171 <0
q2y2 + 1212 <0

Ziyizl

— o oo
_—o oo
=
o

This is contradiction.
Consequently, #{i|ly; # 0} < 1.

2 Event graph analysis

2.1 Max-plus algebra
Definition 2.1 (Semi-ring). Here are the settings.

(S1) R is a set.
(S2) ®,® are binomial operators on R.

We say (R, ®,®) is a semi ring if
(i) For any x,y,z € R,

(i) For any x,y,z € R,
rTdy=ydbx

(iii) For any x,y,z € R,
2R (YPz)=zQRQYydrz

(iv) R has the unit element e with respect to @.
(v) R has the unit element e with respect to &.
(vi) eQr=xR¢€=c¢.
We say R is commutative if ® is commutative. We say R is idempotent if ® is idempotent.
Definition 2.2 (R,,,;). Here are the settings.
(51) Rppaz := RU{—00}. We set e:= —oc0 and e := 0.

(S2) For z,y € Ryae
x @y = max{z,y}

rTRY:=r+Y

We call Rimaz := (Riaz, ®, ®) the maz-plus algebra.
Clearly the following holds.

Proposition 2.1. R4, is a commutative and idempotent semi ring.
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2.2 Petri net and Event graph
Definition 2.3 (Petri net, place, transition). Here are the settings.
(S1) (N, A) is a directed graph.

We say (N, A) is a petri net if there is (P, Q) which is a pair of disjoint subsets of N satisfying the following two
conditions.

(i) N=PUQ,PNQ=4¢.
(ii) ACPxQUQXP.

We denote this petri net by (N, P, Q, A).

We call each element of P a place and call each element of Q a transistion. Let us fit p € P and ¢ € Q. We say p is
the input place of the transition q and q is the output place of the transition p if (p,q) € A. We say p is the output place
of the transition q and q is the input place of the transition p if (p,q) € A.

We denote the set of all input place of q by m(q) and denote the set of all input transition of p by m(p).

We denote the set of all output place of g by o(q) and denote the set of all output transition of p by o(p).

Definition 2.4 (Event graph). Here are the settings.
(S1) (N,P,Q,A) is a petri net.

We say this petri net is an event graph if for each p € P there is the unique ¢1 € Q such that (p,q1) € A and there is the
unique qa € Q such that (ga,p) € A.

Definition 2.5 (Enability and Firing in petri net). Here are the settings.

(S1) (N,P,Q,A) is a petri net.
(S2) w: A— Nxi. We call w(a) is the weight of a € A.
(S3) My : P — Z>q. For each p € P, we say p is marked with M (p) tokens.
(54) q € Q.
Then
(i) We say q is enable if each input place p of q is marked with at least w(p,q) tokens.
(i) Let us assume q is enable. We set for each p € P

My (p) := Mo(p) + Xo(q)(P)w (4, P) — Xr(q) (P)w(D; q)

We call My the firing of My with respect to q.

Definition 2.6 (Liveness, Autonomous, Time event graph). Here are the settings.
(S1) G := (N, P,Q, A, w, My) is an event graph with weight and token.

Then

(i) We say G is liveness if for any cycle ¢ of G there is p € P whose output transition is enable.
(ii) For each q € Q, q is a supplier transition if w(q) = ¢.
(ii) We say G is autonomous if G is no supplier transitions.
(iv) Let 7:P = Z>o and v : ANP x Q = Z>¢ such that

v(p,q) < 7(p)
Then (G, T,7) with time event graph.

Definition 2.7 (Enability and Firing in Time event graph). Here are the settings.

(S1) G := (N, P,Q, A, w, My, T,7v) is a time event graph.

(A1) For any q1,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.
(A2) w=1 on A.

(S2) q € Q.
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Then

(i) We say q is enable if each input place p of q is marked with at least w(p,q) tokens and T(p) < v(p,q).
We denote the all enable transitions by E(G).

(i) Let us assume q is enable. We set for each p € P
M (p) := Mo(p) + Xo(q)(P)w(P; @) = X (q) (P)w(p:q), 11(p) := 0
We call (My,v1) the firing of (Mg, o) with respect to q.
Clearly the following holds.
Proposition 2.2. Here are the settings.

(S1) Go := (N, P,Q, A, w, My, T,70) is a time event graph.

(A1) For any qi1,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.

(A2) w=1 on A.

(58) We set

Mi(p) == Mo(p) + XE(Go) (1) — XE(Go) (q2)

Here ¢1 € 7(p) and q2 € o(p). And

Y(p,q) +1 Moy(p) >0 and q is not enable
71(p,q) = { 0 otherwise
(S4) We set Gy := (N, P,Q, A, w, My, 7,71).
Then G is a time event graph.
Definition 2.8 (Firing time). Here are the settings.
(S1) Go := (N, P,Q, A, w, My, T,70) is a time event graph.
(A1) For any qi1,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.
(A2) w=1 on A.
(S3) We define {G+}32, inductively by the procedure defined in Proposition2.2.
Then
zq(k) == {to € Z>olk = #{t <tolg € E(Gy)}} (¢ € Q,k € N>q)
We call z4(k) the k-th firing time of q. We set
z(k) == (xq (k), ...,xq#Q)T (k € N>q)
Definition 2.9 (System Matrix). Here are the settings.

(S1) {Gy == (N, P,Q, A, w, My,, V) }tezs, 15 a sequence of time event graphs by the procedure defined in
Proposition2.2.

(52) {x(k)}32, is the sequence by Definition2.8.

(§3) We denote the mazimum number of tokens at any one place in {Gi}iez-., by M.

Then for each m € {0,1,..., M}

~_ | aju pji exists and p;; has m tokens in Go .,
[AW]JJ T { € otherwz'se (]?l - 1527 7#Q>

Here pj; is the place such that (qj,p;5,1), (pj1, @) € A.
Proposition 2.3. We succeed notations in Definition2.9. And let us assume any Gy is autonomous. Then

2(k)=Ag@a(k)® A @a(k—1)@..0 Ay @a(k— M) (k=M+1,M+2,..)
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