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This is a study memo of [8], [12].

1 Preliminaries

1.1 Basic Notations

Notation 1.1 (The set of all probability measures on (R)). Denote the set of all borel sets on R by B(R). Denote the
set of all probability measures on B(R) by P(R).

Notation 1.2 (order relation in Rn). Let x, y ∈ Rn. Denote x ≤ y (x < y) if xi ≤ yi (xi < yi) (∀i).

Definition 1.3 (A distribution of random variables). Let (Ω,F ,P) be a probability space and let X = (X1, X2, ..., Xn)
be random variables on Ω. We define PX : B(Rn) 3 A 7→ P (X−1(A)) ∈ [0, 1]. We denote the distribution of X by PX .

Definition 1.4 (A distribution function of a probability measure). Let µ ∈ R(Rn). We define Fµ : Rn 3 x 7→ µ((−∞, x1]×
(−∞, x2]...× (−∞, xn]) ∈ R and we call Fµ the destribution function of µ.

Notation 1.5 (Fourier transform). Let f ∈ L1(Rn). Denote fourier transformation of f by F (f) and denote fourier
inverse transformation of f by F−1(f).

Definition 1.6 (Weakly convergence of probability measures). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ∈ P(RN ).

(S3) Let µ ∈ P(RN ).

{µn}∞n=1 is weakly converges to µ if limn→∞ Fµn(x) = Fµ(x) for any point x at which Fµ is continuous. Denote this by
µn =⇒ µ (n→∞)

Definition 1.7 (Characteristic function of probability measure). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let µ ∈ P(Rn).

then call φµ : Rn 3 t 7→
∫
Rn exp(itx)dµ(x) ∈ C is the characteristic function of µ. Bellow, assume the characteristic

function of µ denotes φµ unless otherwise noted.

Definition 1.8 (Characteristic function of random variables). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let X = (X1, X2, ..., Xn) be a vector of random variables on (Ω,F ,P).

then call φX : R 3 t 7→
∫
Ω
exp(itX)dP ∈ C is the characteristic function of X. Bellow, assume the characteristic function

of X denotes φX unless otherwise noted.

Definition 1.9 (Tightness of probability measures). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ∈ P(RN ).

{µn}∞n=1 is tight if for any ϵ > 0 there is a M > 0 such that

µn({x ∈ RN ||x| ≤M}) ≥ 1− ϵ (1.1.1)

Definition 1.10 (Weakly compactness of probability measures). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(RN ).

{µn}∞n=1 is weakly compact if for any subsequence {µα(n)}∞n=1 of {µn}∞n=1 there is a subsequence of {µα(n)}∞n=1 which
weakly comverges to a probability measure.

Definition 1.11 (Outer measure). Let

(S1) X is a set.

Γ : 2X → [0,∞] is an outer measure on X if the followings hold.

(i) Γ(ϕ) = 0

(ii) If A ⊂ B then Γ(A) ≤ Γ(B)

(iii) If {Ai}∞i=1 ⊂ 2X then Γ(∪∞i=1Ai) ≤ Σ∞
i=1Γ(Ai)

3



1.2 Finite measures on metric space

We introduce several definitions and propositions for only Section2.2.2.

1.3 several facts on metric space

The following three definitions are from [2].

Definition 1.12 (Elementary function family). Let

(S1) (X, d) is a metric space.

E ⊂Map(X, [0,∞)) is called a family of elementary functions if the followings holds.

(i) if f, g ∈ E then f + g ∈ E .

(ii) if f, g ∈ E and f ≥ g then f − g ∈ E .

(iii) if f, g ∈ E then min{f, g} ∈ E .

Definition 1.13 (Elementary integral). Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

l : E 7→ [0,∞] is an elementary integral on E if the followings hold.

(i) if f, g ∈ E then l(f + g) = l(f) + l(g)

(ii) if f, g ∈ E and f ≤ g then l(f) ≤ (g)

Definition 1.14 (Complete elementary integral). Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

l is a complete elementary integral if for any {fn}∞{n=1} such that limn→∞ fn = f (pointwise convergence) and fn ≤ fn+1

(∀n ∈ R) satisfies limn→∞ l(fn) = l(f)

Definition 1.15 (Functional from elementary integral). Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

We define
L : {φ : X → [0,∞)} 3 φ 7→ inf{Σ∞

i=1l(φi)|φi ∈ E (∀i), φ ≤ Σ∞
i=1φi} ∈ [0,∞] (1.3.1)

Proposition 1.16. Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

(A1) [0,∞)E ⊂ E .

For any α > 0 and f ∈ E
l(αf) = αl(f) (1.3.2)

Proof. Let us fix q1 ∈ (α,∞) ∩Q and q2 ∈ (0, α) ∩Q. q2l(f) = l(q2f) ≤ l(αf) ≤ l(q1f) = q1l(f). So l(αf) = αl(f)

Proposition 1.17 (Outer measure from elementary integral). Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.
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(S4) L is the functional in Definition1.15.

(S5) We set Γ : 2X 3 A 7→ L(χA).

then Γ is outer measure on X.

Proof. It is easy to show terms except (iii) in Definition1.11. So we will show only (iii) in Definition1.11. Let us fix
Ai

∞
i=1 ⊂ 2X .
Let us fix ϵ > 0.
For each i ∈ N, there are {φi,j}∞j=1 ⊂ E such that χAi

≤ Σ∞
j=1φi,j and Σ∞

j=1l(φi,j) ≤ Γ(Ai) +
ϵ
2i

So χ∪∞
i=1Ai ≤ Σ∞

i=1,j=1φi,j .
Γ(∪∞i=1Ai) ≤ Σ∞

i=1,j=1l(φi,j) ≤ Σ∞
i=1Γ(Ai) + ϵ

Consequently, (iii) holds.

Proposition 1.18. Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

(S4) L is the functional in Definition1.15.

(S5) Γ is the outer measure in Proposition1.17.

(S6) MΓ is the σ-algebra in Proposition2.9.

(A1) C+(X) ⊂ E .

(A2) If A,B are borel sets and d(A,B) > 0 then µ(A) + µ(B) = µ(A ∪B).

then B(X) ⊂MΓ.

Proof. Because MΓ is σ-algebra, it is enough to show that all closed sets are contained in MΓ.
Let us fix closed set A. Let us subset B and C such that A ⊂ B and C ⊂ Ac.
Because A is closed set, C ⊂ {x|d(x,A) > 0}.
For each n ∈ N we set Cn := {x ∈ C|d(x,A) > 1

n} and Dn := {x ∈ C| 1
n−1 ≥ d(x,A) >

1
n}.

The followings holds.
C = ∪∞n=1Dn (1.3.3)

CN = ∪Nn=1Dn (∀N) (1.3.4)

We assume Σ∞
n=1Γ(Dn) <∞. Let us fix ϵ > 0.

There is n0 such that Σ∞
n=n0

Γ(Dn) < ϵ.
Because d(A,Cn0

) > 0,

Γ(A) + Γ(C) = Γ(A) + Γ(Cn0 ∪ ∪∞n=n0
Dn)

≤ Γ(A) + Γ(Cn0) + ϵ

≤ Γ(A) + Γ(Cn0) + ϵ

= Γ(A ∪ Cn0) + ϵ

≤ Γ(A ∪ C) + ϵ (1.3.5)

So if Σ∞
n=1Γ(Dn) <∞ then Γ(A) + Γ(C) = Γ(A ∪ C).

We assume Σ∞
n=1Γ(Dn) =∞. Then Σ∞

n=1Γ(D2n) =∞ or Σ∞
n=1Γ(D2n−1) =∞. We assume Σ∞

n=1Γ(D2n) =∞.
If n1 6= n2 then d(Dn1 , Dn2) > 0. So Γ(C) ≥ Γ(∪∞n=1D2n) ≥ Σ∞

n=1Γ(D2n) = ∞. So if Σ∞
n=1Γ(D2n) = ∞ then

Γ(B) + Γ(C) = Γ(A ∪ C) =∞.
Similary, if Σ∞

n=1Γ(D2n−1) =∞ then Γ(B) + Γ(C) = Γ(A ∪ C) =∞.

Proposition 1.19. Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

(S4) {fn}∞n=1 ⊂ E and fn ≥ fn+1 on X (∀n).

(A1) There is f ∈ E such that limn→∞ ||fn − f ||∞ = 0
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(A2) RE ⊂ E

then
lim
n→∞

l(fn) = l(f) (1.3.6)

Proof. |l(f)− l(fn)| = l(f − fn) ≤ ||f − fn||∞l(1)→ 0 (n→∞)

Proposition 1.20. Let

(S1) (X, d) is a metric space.

(S2) l : E 7→ [0,∞] is an elementary integral on E := {f |f is nonnegative borel measurable on X }.
(S3) L is the functional in Definition1.15.

(S4) h1, h2 ∈ E .

(A1) d(supp(h1), supp(h2)) > 0.

then L(h1 + h2) = L(h1) + L(h2)

Proof. Let us fix arbitary ϵ > 0. Let us fix f and g in Proposition??.
Let us fix {φi} ⊂ E such that h1 + h2 ≤ Σ∞

i=1φi and Σ∞
i=1l(φi) ≤ L(h1 + h2) + ϵ.

By definition of f and g,
h1 + h2 ≤ (f + g)Σ∞

i=1φi (1.3.7)

and
h1 ≤ fΣ∞

i=1φi (1.3.8)

and
h2 ≤ gΣ∞

i=1φi (1.3.9)

So

L(h1 + h2) + ϵ ≥ Σ∞
i=1l(φi)

≥ Σ∞
i=1(l(fφi) + Σ∞

i=1l(gφi))

≥ L(h1) + L(h2) (1.3.10)

Consequently
L(h1) + L(h2) ≤ L(h1 + h2) (1.3.11)

Proposition 1.21. Let

(S1) (X, d) is a metric space.

(S2) l : E 7→ [0,∞] is an elementary integral on C+(X).

(S3) L is the functional in Definition1.15.

(S4) Γ is the outer measure in Proposition1.17.

(S5) MΓ is the σ-algebra in Proposition2.9.

then B(X) ⊂MΓ.

Proof. Let us fix arbitary borel sets A,B such that d(A,B) > 0.
By Proposition1.20, Γ(A ∪B) = L(χA∪B) = L(χA + χB) = L(χA) + L(χB) = Γ(A) + Γ(B).
By Proposition1.18, B(X) ⊂MΓ.
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1.4 several facts on compact metric spaces

Proposition 1.22. Let

(S1) (X, d) is a compact metric space.

(S2) l is an elementary integral on C+(X). C+(X) := {f ∈ C(X)|f ≥ 0}

then there is an unique measure µ on (X,B(X)) such that for any f ∈ C+(X)

l(f) =

∫
X

fµ (1.4.1)

Existence. Let us fix f ∈ C+(X).
By replacing f by ||f ||∞ − f , it is enough to show∫

X

fdµl(f) ≤ l(f) (1.4.2)

By an argument similar to one in the proof of Proposition2.17, there are am,i1≤m≤∞,1≤i≤φ(m) ⊂ R such that

0 = am,1 ≤ am,2 ≤ ... ≤ am,φ(m) > ||f ||∞ (∀m ∈ N) (1.4.3)

|am,i − am,i+1| ≤
1

2m
(∀m, ∀i) (1.4.4)

µ({f = am,i}) = 0 (∀m, ∀i) (1.4.5)

We set
hm := Σ

φ(m)
i=1 am,iχ[am,i,am,i+1) (m ∈ N) (1.4.6)

and
hm,n := Σ

φ(m)
i=1 am,iχ(am,i+

1
n ,am,i+1− 1

n ) (m ∈ N, 1 ≤ i ≤ φ(m)) (1.4.7)

Let us fix ϵ > 0.
By Proposition2.10, f ∈ Cu(X).
By (1.4.5), there is m,n such that

|
∫
X

fdµ−
∫
X

hm,ndµ| < ϵ (1.4.8)

Because f ∈ Cu(X), if i 6= j then d(f−1((am,i +
1
n , am,i+1 − 1

n )), f
−1((am,j +

1
n , am,j+1 − 1

n ))) > 0.
So

l(f) ≥ L(hm,n ≥
∫
X

hm,ndµ (1.4.9)

Therefore, ∫
X

fdµ− ϵ ≤ l(f) (1.4.10)

Consequently, ∫
X

fdµ ≤ l(f) (1.4.11)

Uniqueness. Let us fix arbitary µ1 ∈P(X) and arbitary µ2 ∈P(X) such that∫
X

fdµ1 =

∫
X

fdµ2 (∀f ∈ C+(X)) (1.4.12)

We set B := A ∈ B(X)|µ1(A) = µ2(A). Clearly B is σ-algebra.
Let us fix closed set A.
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By Proposition??, there are {fm}∞m=1 ⊂ C+(X) such that

||fm||∞ ≤ 1 (∀m) (1.4.13)

and
limm→∞fm = χA (pointwize convergence) (1.4.14)

By Lebesugue’s convergence theorem, µ1(A) = µ2(A).
So A ∈ B.
Consequently B ⊂ B(X).
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2 Probability

2.1 Some Facts Used Without Proofs

In this note, we use the following propositions without proofs.

Proposition 2.1. Let

(S1) (Ω,F ,P) is a probability space.

(S2) X is a N -dimensional vector of random variables on (Ω,F ).

(S3) Let µX be a probability distribution of X.

(S4) f ∈ L1(Ω) ∪ L∞(Ω)

then ∫
RN

fdµX =

∫
Ω

f ◦XdP (2.1.1)

Proposition 2.2. For any η > 0,

F (exp(−η(·)2) = 1√
2η
exp(− (·)2

4η
). (2.1.2)

Proposition 2.3. Let Σ be a positive definite symmetric matrix.

φN(0,Σ)(t) = exp(−tTΣ2t

2
) (2.1.3)

Proposition 2.4. Let

(S1) Arbitrarily take M > 0 and fix it.

(S2) Let fn : D(0,M) 3 z 7→ (1 + z
n )
n ∈ C, where D(0,M) := {z ∈ C| |z| ≤M}, (n = 1, 2, ...).

then {fn}∞n=1 uniformly converges to exp on D(0,M).

Proposition 2.5. Let

(A1) Let F : R 7→ R is monotone increasing.

then {x | F is not continuous at x} is at most countable.

Proposition 2.6. Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(R).
(A1) Let µ ∈P(R) such that µn =⇒ µ (n→∞).

then for any bounded continuous function f : R 7→ R

limn→∞

∫
R
f(x)dµn(x) =

∫
R
f(x)dµ(x) (2.1.4)

Proposition 2.7. Let

(S1) (Ω,F ,P) is a probability space.

(S2) µ is a probability measure on R.

(A1) E[µ] = 0 and V [µ] = 1.

then φµ(s) = 1− s2

2 + o(s2) (s→ 0)

The following propositions are used for only Section1.2 and Subsection2.2.2.

Proposition 2.8. Let

(S1) (X, d) is a metric space.

then there is a complete metric space (X̃, d̃) and an isometry mapping i : (X, d) → (X̃, d̃) such that i(X) is dense in X̃.
We call (X̃, d̃) is a completion of (X, d).
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Proposition 2.9. Let

(S1) X is a set.

(S2) Γ is an outer measure on X.

(S3) MΓ := {A ⊂ X| if B ⊂ A and C ⊂ Ac then µ(B) + µ(C) = µ(B ∪ C)}.

then the followings holds.

(i) MΓ is a σ-algebra.

(ii) Γ is a measure on MΓ.

Proposition 2.10. Let

(S1) (X, d) is a compact metric space.

then C(X) ⊂ Cu(X).

Proposition 2.11. Let

(S1) (X, d1) is a compact metric space.

(S2) (Y, d2) is a compact metric space.

(A1) f ∈ C(X,Y ).

then f(X) is compact in Y .

Proposition 2.12. Cc(Rn) is dense in L1(Rn).

2.2 Weak convergence of probability distributions

2.2.1 The Case of Single Variable

Proposition 2.13 (Helly’s selection theorem). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(R) and denote Fµn
by Fn (n = 1, 2, 3, ...).

Then there is a subsequence {Fα(n)}∞n=1 and F : R → [0,∞) such that F is monotone increasing and right continuous,
and Fα(n)(x)→ F (x) for any point x at which F is continuous.

Proof. There is {xn}∞n=1 ⊂ R such that {xn}∞n=1 = R. Let fix such {xn}∞n=1. Because 0 ≤ Fn(xm) ≤ 1 (for any m,n
in N), there is a subsequence {α(n)}∞n=1 ⊂ N and {F (xn)}∞n=1 ⊂ [0, 1] such that Fα(m)(xn) → F (xn) (m → ∞). We fix
such {α(n)}∞n=1 and F (xn)

∞
n= We define F (x) := infm∈{k|x≤xk}F (xm). By the definition of F , F is right continuous and

monotone increasing. Arbitrarily take x ∈ R at which F is continuous and fix it. Arbitrarily take ϵ > 0 and fix it. Let
pick xα(m1) and xα(m2) such that xα(m1) ≤ x ≤ xα(m2) and (F (xα(m2)) − F (xα(m1))) ≤ ϵ

8 . There is a n0 ∈ N such that
|Fn(xα(m1)) − F (xα(m1))| ≤ ϵ

8 and |Fn(xα(m2)) − F (xα(m2))| ≤ ϵ
8 for any n ≥ n0. Let fix such n0 and m1 and m2. For

any n ≥ n0

|Fn(xα(m1))− F (x)| ≤ |Fn(xα(m1))− F (xα(m1))|+ |F (xα(m1))− F (x)|

≤ ϵ

4
(2.2.1)

and

|Fn(xα(m2))− F (x)| ≤ |Fn(xα(m1))− F (xα(m1))|+ |F (xα(m1))− F (x)|

≤ ϵ

4
(2.2.2)

So for any n ≥ n0
|Fn(xα(m1))− Fn(xα(m2))| ≤

ϵ

2
(2.2.3)

Arbitrarily take n ≥ n0 and fix it. Because Fn(xm1) ≤ Fn(x) ≤ Fn(xm2),

max{|Fn(xα(m1))− Fn(x)|, |Fn(xα(m2))− Fn(x)|} ≤
ϵ

2
(2.2.4)

By (2.2.1) and (2.2.2) and (2.2.4),
|Fn(x)− F (x)| ≤ ϵ (2.2.5)
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Proposition 2.14. Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(R).

If {µn}∞n=1 is tight then {µn}∞n=1 is weakly compact.

Proof. By Proposition2.13, there is F : R→ [0,∞) such that F is monotone increasing and right continuous, and for any
point x at which F is continuous

Fα(n)(x)→ F (x) (n→∞) (2.2.6)

Here we denote Fµn
by Fn. Because of tightness of {µn}∞n=1, limitx→∞(F (x) − F (−x)) = 1. So there is a probability

measure µ such that F is a distribution function of µ. By (2.2.6), µn =⇒ µ (n→∞).

Proposition 2.15. Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(R). and µ ∈ P(R)
(A1) µn =⇒ µ (n→∞).

(A2) Let f be an arbitary bouded continuous function on R.

then

lim
n→∞

∫
fdµn(x) =

∫
fdµ(x) (2.2.7)

Proof. Let us fix arbitary f ∈ Cb(R) and ϵ > 0.
Because µ(R) = 1 and R = ∪a∈Ra, for each n ∈ N {a ∈ R|µ(a) > 1

n} is finite. So {a ∈ R|µ(a) > 0} is at most coutable.
So there is r1 > 0 and r2 > 0 such that

1− µ((−r1, r2)) <
ϵ

3(||f ||∞ + 1)
(2.2.8)

and µ(−r1) = 0 and µ(−r2) = 0.
Because f is uniformly continuous on X,
So there are am,i1≤m≤∞,1≤i≤φ(m) ⊂ R such that

−r1 = am,1 ≤ am,2 ≤ ... ≤ am,φ(m) = r2 (∀m ∈ N) (2.2.9)

and

|am,i − am,i+1| ≤
1

2m
(∀m, ∀i) (2.2.10)

and
µ({am,i}) = 0 (∀m, ∀i) (2.2.11)

For each m ∈ N, set fm := Σ
φ(m)
i=1 f(ai)χ[ai,ai+1).

Because limm→∞ fm = f (pointwize convergence), by Lebesugue’s convergence theorem there is m ∈ N such that

|
∫ r2

−r1
fmµ−

∫ r2

−r1
fµ| < ϵ

3
(2.2.12)

Because ∫ r2

−r1
fmµ = Σ

φ(m)
i=1 f(ai)µ([ai, ai+1)) (2.2.13)

and ∫ r2

−r1
fmµn = Σ

φ(m)
i=1 f(ai)µn([ai, ai+1)) (∀n) (2.2.14)

So there is n0 such that

|
∫ r2

−r1
fmµn −

∫ r2

−r1
fmµ| <

ϵ

3
(∀n ≥ n0) (2.2.15)

By (2.2.8) and (2.2.12) and (2.2.15),

|
∫
R
fµn −

∫
R
fµ| < ϵ (∀n ≥ n0) (2.2.16)
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2.2.2 The Case of Multi Variables

Definition 2.16 (Weak convergence(in general metric space)). Let

(S1) (X, d) is a metric space.

(S2) {µn}∞n=1 ⊂P(X).

(S3) µ ∈P(X).

We say {µn}∞n=1 weakly converges to µ if for any borel set A such that µ(∂(A)) = 0 limn→∞ µn(A) = µ(A) Denote
µn =⇒ µ by weak convergence.

The following proposition gives the equivalent definition of weak convergence.

Proposition 2.17. Let

(S1) (X, d) is a metric space.

(S2) {µn}∞n=1 ⊂P(X).

(S3) µ ∈P(X).

then the followings are equivalent.

(i) µn =⇒ µ.

(ii) Set Cb(X) := {f ∈ C(X)|||f ||∞ <∞}. For any f ∈ Cb(X)

lim
n→∞

∫
fdµn =

∫
fdµ (2.2.17)

(iii) Set Cu(X) := {f ∈ C(X)| f is uniformly continuous on X}. For any f ∈ Cb(X) ∩ Cu(X)

lim
n→∞

∫
fdµn =

∫
fdµ (2.2.18)

(iv) For any closed set A
lim
n→∞

µn(A) ≤ µ(A) (2.2.19)

(v) For any closed set U
lim
n→∞

µn(U) ≥ µ(U) (2.2.20)

(i) =⇒ (ii): Let fix arbitary f ∈ Cb(X). Because ∪a∈R{f = a} = X and µ(X) = 1, for any n ∈ N {a ∈ R|µ({f = a}) > 1
n}

is a finite set. So {a ∈ R|µ({f = a}) > 0} = ∪∞n=1{a ∈ R|µ({f = a}) > 1
n} is at most countable.

So there are am,i1≤m≤∞,1≤i≤φ(m) ⊂ R such that

−||f ||∞ > am,1 ≤ am,2 ≤ ... ≤ am,φ(m) > ||f ||∞ (∀m ∈ N) (2.2.21)

|am,i − am,i+1| ≤
1

2m
(∀m, ∀i) (2.2.22)

µ({f = am,i}) = 0 (∀m, ∀i) (2.2.23)

For m ∈ N set
gm := Σ

φ(m)
i=1 am,i+1χ{am,i≤f≤am,i+1} (2.2.24)

and
hm := Σ

φ(m)
i=1 am,iχ{am,i≤f≤am,i+1} (2.2.25)

Because for any m and i ∂{am,i ≤ f ≤ am,i+1} ⊂ {f = am,i} ∪ {f = am,i+1}, for any m and i

µ(∂{am,i ≤ f ≤ am,i+1}) = 0 (2.2.26)

Let fix arbitary ϵ > 0.
By Lebesugue’s convergence theorem, there is m ∈ N such that

∫
gmdµ−

∫
hmdµ ≤ ϵ.
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By (i), ∫
fdµ− ϵ ≤

∫
hmdµ

= lim
n→∞

∫
hmdµn

≤ lim
n→∞

∫
fdµn

(2.2.27)

and ∫
fdµ+ ϵ ≥

∫
gmdµ

= lim
n→∞

∫
gmdµn

≥ lim
n→∞

∫
fdµn

(2.2.28)

Consequently,
∫
fdµ = limn→∞

∫
fdµn.

(ii) =⇒ (iii): It’s trivial.

(iii) =⇒ (iv): Let fix arbitary closed set A. We set

fn(x) := |1−min(1, d(x,A))|n (n ∈ N, x ∈ x) (2.2.29)

fn ∈ Cb(X) ∩ Cu(X) (∀n) and limn→∞ fn → χA (pointwiseconvergence) and∫
fmdµn ≥ µn(A) (2.2.30)

By Lebesugue’s convergence theorem,
µ(A) ≥ lim

n→∞
µn(A) (2.2.31)

(iv)⇐⇒ (v): It’s trivial.

(iv) and (v) =⇒ (i): Let A ∈ B(X) and µ(∂A) = 0. By (iv),

lim
n→∞

µn(A) ≤ lim
n→∞

µn(A)

≤ µ(A)

= µ(A \A) + µ(A)

≤ µ(∂) + µ(A)

= µ(A) (2.2.32)

In the same way as above we obtain

lim
n→∞

µn(A) ≥ µ(A) (2.2.33)

Consequently

lim
n→∞

µn(A) = µ(A) (2.2.34)

The following is the definition of a metric of P(R).

Proposition 2.18. Let
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(S1) (X, d) is a compact metric space.

(S2) {fn}∞n=1 is a dense subset of (X, d). By Proposition??, such subsets always exist.

(S3) τ(µ1, µ2) := Σ∞
n=1|

∫
fndµ1 −

∫
fndµ2| (µ1, µ2 ∈P(R)).

then the followings hold.

(i) τ is a metric on P(R).
(ii) for any {µn}∞n=1 ⊂P(R) and µ ∈P(R), µn =⇒ µ (n→∞) is equivalent to τ(µn, µ)→ 0 (n→∞).

(i): Let fix µ1 ∈P(X) and µ2 ∈P(X) such that τ(µ1, µ2) = 0. It is enough to show µ1 = µ2 for showing (i). By (S2),
for any f ∈ C+(X)

∫
fdµ1 =

∫
fdµ2. By uniqueness in Proposition1.22, µ1 = µ2.

(ii): Let us assume τ(µn, µ)→ 0 (n→∞). Let us fix arbitary ϵ > 0. There is m ∈ N such that ||f − fm||∞ < ϵ
3 . There

is n0 ∈ N such that for any n ≥ n0
|
∫
X

fmdµn −
∫
X

fmdµ| <
ϵ

3
. (2.2.35)

For any n ≥ n0

|
∫
X

fdµn −
∫
X

fdµ| < |
∫
X

fdµn −
∫
X

fmdµn|

+|
∫
X

fmdµn −
∫
X

fmdµ|+ |
∫
X

fmdµ−
∫
X

fmdµ|

< ϵ (2.2.36)

Consequently, µn =⇒ µ (n→∞).
The inverse is clear.

Proposition 2.19. (P(X), τ) is a compact metric space.

Proof. By Proposition??, it is enough to show (P(X), τ) is sequencially compact.
Let us fix arbitary µn

∞
n=1 ⊂P(X).

For any m ∈ N, {
∫
fmµn}∞n=1 is bounded.

For each m ∈ N, there is {φ(m,n)}∞n=1 such that l(fm) := limn→∞
∫
fmdµφ(m,n) exists and |l(fm)−

∫
fmdµφ(m,n)| <

1
m (∀n ≥ m).

We set ψ(m) := φ(m,m) (m ∈ N).
By the definition of ψ, for any m ∈ N l(fm) = limn→∞

∫
fmdµψ(n).

Let us fix arbitary f ∈ Cb(X) and ϵ > 0. There is k ∈ N such that ||f − fk|| < ϵ
3 .

There is n0 ∈ N such that for any m ≥ n0 and any n ≥ n0 |
∫
fkdµψ(m) −

∫
fkdµψ(m)| < ϵ

3
So for any m ≥ n0 and any n ≥ n0 |

∫
fdµψ(m) −

∫
fdµψ(m)| < ϵ.

So l(f) := limm→∞
∫
fdµψ(m) exists.

Clearly l is an elementary integral on C+(X).
So by Proposition1.22, there is µ ∈P(X) such that

l(f) =

∫
X

fdµ (∀f ∈ C+(X)) (2.2.37)

Clearly µψ(n) =⇒ µ (n→∞).

Proposition 2.20. Let

(S1) (X, d) is a separable metric space.

(A1) {µn}∞n=1 ⊂P(X) is tight.

There is a subsequence µφ(n)
∞
{n=1} and µ ∈P(X) such that µφ(n) =⇒ µ (n→∞).

Proof. Let (X̃, d̃) be a compact metric space in Proposition?? and i : X → X̃ in Proposition??. By Proposition1.22, for
each n ∈ N there is a measure µ̃n such that for any g ∈ C+(X̃) and n ∈ N∫

X

g ◦ idµn =

∫
X̃

gdµ̃n (2.2.38)
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There is an increasing sequence of compact sets {Kn}∞n=1 such that

µm(Kn) > 1− 1

n
(2.2.39)

(∀m ∈ N, ∀n ∈ N)
Let K := ∪∞n=1Kn. By (2.2.39), for any m ∈ N

µm(K) = µ̃m(i(K)) = 1 (2.2.40)

For n ∈ N and x ∈ X̃, gm,n(x) := (1 − min1, d(x,Km))n.
∫
X̃
gm,ndµ̃l ≥ µ̃m(Km) ≥ 1 − 1

m . By reaching n → ∞,

µm(Km) = µ̃(i(Km)) ≥ 1− 1
m . By reaching m→∞,

µ̃(i(K)) = 1 (2.2.41)

By Proposition, there is a subsequence {µ̃φ(n)}∞n=1 and µ̃ ∈P(X̃) such that µ̃n =⇒ µ̃ (n→∞).

Because for any n ∈ N i(Kn) is compact, i(Kn) ∈ B(X̃). So i(K) ∈ B(X̃).
We will show

B(X) ⊂ B := {A ⊂ X|i(A ∩K)B(X̃)} (2.2.42)

Because i is injective, if {An}∞n=1 ⊂ B then ∪∞n=1An ∈ B. And if AB then i(Ac ∩K) = i(K) ∩ i(A ∩K)c ∈ B So B is a
σ-algebra. For any closed set A, A ∈ B. So (2.2.42) holds.

For A ∈ B(X), we define
µ(A) := µ̃(i(A ∪K)) (2.2.43)

By (2.2.41),
µ(K) = 1 (2.2.44)

Let me fix arbitary f ∈ Cb(X) ∩ Cu(X). Because f ∈ Cu(X) and i(X)isdenseinX̃, there is f̃ ∈ Cb(X̃) ∩ Cu(X̃) such
that f̃ |i(X) = f ◦ i−1.

By the definition of {µn}∞n=1 and µ,

lim
n→∞

∫
X

fdµn = lim
n→∞

∫
X

f̃ ◦ idµn

= lim
n→∞

∫
X̃

f̃dµ̃n

=

∫
X̃

f̃dµ̃

=

∫
i(K)

f̃dµ̃

=

∫
i(K)

f ◦ i−1dµ̃

=

∫
K

fdµ

=

∫
X

fdµ (2.2.45)

2.3 Characteristic functions of probability distribution

2.3.1 The Case of Single Variable

By Fubini’s theorem, the following holds.

Proposition 2.21. Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let µ ∈ P(R).
(S3) Let f ∈ L1(R).
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then ∫
R
f(t)φµ(t)dt =

∫
R

F−1(f)(x)dµ(x) (2.3.1)

Proposition 2.22 (Uniqueness of Characteristic Function). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let µ ∈ P(R) and µ′ ∈ P(R).

If φµ = φµ′ then µ = µ′.

Proof. Let us arbitary f ∈ C∞
c (Rn). By Proposition??, F (f) ∈ L1(Rn). By Proposition??,

∫
R f(x)dµ(x) =

∫
R f(x)dµ

′(x).
By Proposition??, µ = µ′.

This proposition states that convergence of distributions in law is derived from each point convergence of the charac-
teristic function.

Proposition 2.23 (Levy’s Continuity Theorem(Single Variable Case)). Let

(S1) {µn}∞n=1 ⊂ P(R)
(S2) φn is the characteristic function of µn (n = 1, 2, ...)

(A1) {µn}∞n=1 ⊂ P(R) then the followings are equivalent.

(i) There is a φ s.t φ is a measurable function on R and φ is continuous at 0 and φ(0) = 1 and φn −−−−→
n→∞

φ

(converge pointwise). Below, we fix such φ.

(ii) Then there is a µ ∈ P(R) such that φ is the characteristic function of µ and µn =⇒ µ (n→∞).

(i) =⇒ (ii). The followings are strategy of the proof.
–Memo

(STEP1) Showing {µn}∞n=1 is tight.

(STEP2) Getting µ of the subject.

–
(STEP1)

For each m ∈ N, there is a measurable function fm such that fm continuous at 0 and fm(0) = 1 and supp(f) ⊂ [−1
m , −1

m ]
is compact and fm ≤ 1 in R and F−1fm ≤ 1 in R. {χ[− 1

m , 1
m ]}∞m=1 sutisfies the above conditions. Fix such {fm}∞m=1.

We get ∫
R
fm(x)φn(x)dx =

∫
R
F−1fm(x)dµn(x) (2.3.2)

So

1− m

2

∫
R
fm(x)φn(x)dx = 1− m

2

∫
R
F−1fm(x)dµn(x) (2.3.3)

Call the left side of the above (2.3.3) Im,n and call the right side of the above (2.3.3) Jm,n. Fix any ε > 0.

(STEP1-1)
–Memo
We will show that Im,n < ε for sufficient large m,n. We will show this statement using the dominated convergence theorem
and continuity of φ at 0
–
(STEP1-2)
–Memo
We will show that Jm,n > µn({x ∈ R| |x| ≥ m}) for sufficient large m,n. We will show this statement using the dominated
convergence theorem and continuity of φ at 0
–

The following holds.

F−1fm(x) =
1

m
F−1fm(

x

m
) (2.3.4)
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So

Jm,n = 1− 1

2

∫
R
F−1fm(

x

m
)dµn(x)

=

∫
R
1− 1

2
F−1fm(

x

m
)dµn(x)

=

∫
{x∈R| |x|≥m}

1− 1

2
F−1fm(

x

m
)dµn(x) (2.3.5)

In (2.3.5), we use statement F−1fm ≤ 1 in R (∀m ∈ N).

1− 1

2
F−1fm(

x

m
) ≥ 1− 1

2
maxy∈supp(|fm|)|fm(y)|m

|x|

≥ 1

2
(2.3.6)

So

Jm,n ≥
1

2
µn({x ∈ R| |x| ≥ m}) (2.3.7)

By (STEP1-1) and (2.3.7) for sufficient large m and n we get

2ϵ ≥ µn({x ∈ R| |x| ≥ m}) (2.3.8)

So We have shown {µn}∞n=1 is tight.
(STEP2)

By (STEP1), there is a subsequence {µψ(n)}∞n=1 which converges to a µ in law. It is enough to show for any subse-
quence of {µn}∞n=1 the subsequence has some subsequnece of the subsequence which converges to µ in law. Let fix any
subsequence {µω(n)}∞n=1. There is a subsequence {µω(α(n))}∞n=1 which converges to µ′. By increasing n to ∞ in (2.3.3)
and Proposition2.15, ϕµ = ϕ and ϕµ′ = ϕ. By uniqueness of characteristic function, µ = µ′.

(ii) =⇒ (i). φµ : R 3 t 7→
∫
Ω
exp(itx)dµ. It is easy to show φµ is continuous at 0.

By Proposition2.15, ∫
R
exp(itx)dµ(x) = lim

n→∞

∫
R
exp(itx)dµn (∀t) (2.3.9)

2.3.2 The Case of Multi variables

Proposition 2.24 (Levy’s continuity theorem(multi variate case)). Let

(S1) {µn}∞n=1 ⊂ P(RN )

(S2) φn is the characteristic function of µn (n = 1, 2, ...)

(A1) {µn}∞n=1 ⊂ P(RN )

(A1) There is a φ s.t φ is a measurable function on RN and φ is continuous at 0 and φ(0) = 1 and φn −−−−→
n→∞

φ

(converge pointwise). Below, we fix such φ.

Then there is a µ ∈ P(RN ) such that φ is the characteristic function of µ and µn =⇒ µ (n→∞).

Proof. By an argument which is similar to the proof of Proposition2.23, we can show that {µn}∞n=1 is tight.
By Proposition2.20 and uniqueness of fourier transformation in RN and Proposition2.17, there is µ ∈ P(R)N such

that µn =⇒ µ (n→∞) and φµ = φ.
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2.4 Central limit theorem

2.4.1 The Case of Single Variable

Theorem 2.25 (Central limit theorem). Let

(S1) (Ω,F ,P) is a probability space.

(S2) {Xi}∞i=1 is a sequence of random variables on (Ω,F ,P).

(A1) ∃µ such that Xi ∼ µ (∀i). Bellow, we fix such µ.

(A2) {Xi}Ni=1 are independent for any N ∈ N.

(A3) E[µ] = ν and V [µ] = σ2 and σ > 0.

then P√
n(X̄−ν) weakly converges to N(0, σ).

Proof. We can assume ν = 0 and σ = 1. Bellow, we assume that.
Let Yi,n := Xi√

n
(i = 1, 2, ..., n) and Yn :=

∑n
i=1 Yi,n (n = 1, 2, ...). By (A1), φYi,n

= φY1,n
(∀i, ∀n). Let φn := φYn

and

ψn := φY1,n
(n = 1, 2, ...). And let ψµ : R 3 s 7→

∫
R exp(isx)dµ(x). Then φn = (ψn)

n and ψn(t) = ψµ(
t√
n
) and (∀t ∈ R).

We will show the following equation. By Proposition2.7,

φY1,n(t) = 1− t2

2n
+ o(

1

n
)(n→∞) (2.4.1)

By the above equation and Proposition2.4,

φn(t) = (1− t2

2n
+ o(

1

n
))n → exp(− t

2

2
) (n→∞) (2.4.2)

By Proposition2.23, there is a µ0 ∈ P(R) such that P√
nX̄ converges to µ0 in law and φµ0

= exp(− (·)2
2 ). Because

φN(0,1) = exp(− (·)2
2 ) and uniqueness of characteristic function, P√

nX̄ converges to N(0, 1)

2.4.2 The Case of Multi Variables

Theorem 2.26 (Central Limit Theorem(Multi Variables Case)). Let

(S1) (Ω,F ,P) is a probability space.

(S2) {Xi}∞i=1 is a sequence of N -dimensional vectors of random variables on (Ω,F ,P).

(A1) ∃µ such that Xi ∼ µ (∀i). Bellow, we fix such µ.

(A2) {Xi}ni=1 are independent for any n ∈ N.

(A3) E[µ] = ν and cov[µ] = σ2 and σ is N -by-N positive definite symmetric matrix.

then P√
n(X̄−ν) weakly converges to N(0,Σ).

Proof. Let us fix arbitary t ∈ RN and s ∈ R. Let us set Yn := stT (Xn − ν).
The following holds.

φ√
n(X̄−ν)(st) = E(exp(

√
nistT (X̄ − ν))) = φ√

n(Ȳ−ν)(s) (2.4.3)

By Theorem2.25 and Proposition2.23 and Proposition2.3,

lim
n→∞

φ√
n(Ȳ−ν)(s) = exp(−s

2tTΣ2t

2
) (2.4.4)

By setting s = 1,

lim
n→∞

φ√
n(X̄−ν)(st) = exp(−tTΣ2t

2
) (2.4.5)

By Proposition2.24 and Proposition2.3, P√
n(X̄−ν) weakly converges to N(0,Σ).
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2.5 Law of large numbers

Proposition 2.27 (Weak law of large numbers). Let

(S1) (Ω,F ,P) is a probability space.

(A1) {Xi}∞i=1 is a sequence of independent random variables on (Ω,F ,P).

(A2) There is a µ ∈P(R) such that Xi ∼ µ(∀i).
(A3) E[µ] = ν and V [µ] = σ2 exist.

then the followings hold.

(i) {Xi}∞i=1 stochastic converges to µ, i.e., for any ϵ > 0

lim
n→∞

µ(|X̄ − µ| ≥ ϵ) = 0 (2.5.1)

Hereafter we denote stochastic convergence by
p−−−−→

N→∞
or plim.

(ii) For any ϵ > 0,

µ(|X̄ − µ| ≥ ϵ) ≤ σ2

nϵ2
(2.5.2)

A proof using Chebyshev’s inequality. For any n ∈ N,

µ(|X̄ − µ| ≥ ϵ) =
ϵ2µ(|X̄ − µ|2 ≥ ϵ2)

ϵ2

≤ 1

ϵ2

∫
{|X̄−µ|2≥ϵ2}

ϵ2dP

≤ 1

ϵ2
V [X̄] =

σ2

nϵ2

(2.5.3)

This implies the above equation.

A proof using Central limit theorem. By resetting Xi →
Xi − µ
σ

, we can assume µ = 0 and σ = 1. Let us fix arbitary

ϵ > 0 and δ > 0. There is a > 0 such that

N(0, 1)((−∞,−a) ∪ (a,∞)) < δ (2.5.4)

By Central limit theorem, there is n0 ∈ N such that

a
√
n0

< δ (2.5.5)

and for any n ≥ n0
|µ(|
√
nX̄| ≥ a)−N(0, 1)((−∞,−a) ∪ (a,∞))| < δ (2.5.6)

So for any n ≥ n0

µ(|X̄| ≥ ϵ) ≤ µ(|X̄| ≥ a√
n
) = µ(

√
n|X̄| ≥ a)

≤ 2δ (2.5.7)

So lim
n→∞

µ(|X̄| ≥ ϵ) ≤ 2δ. Consequently, lim
n→∞

µ(|X̄| ≥ ϵ) = 0.

2.6 Multivariate normal distribution

Remark 2.28. Let

(S1) (Ω,F , P ) is a probability space.

(S2) X := (X1, ..., Xn) is a vector of random variables.

(S3) A is a (m,n) matrix.
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(A1) (X1, ..., Xn) ∼ N(0, En).

then cov(AX) = AAT .

The following Proposition3.6.4 is used to prove the Proposition3.42 discussed later.

Proposition 2.29. Let

(A1) X := (X1, X2, ..., Xp)
T ∼ N(γ,BBT ), where B is a (p, q) matrix.

(S1) Let s ∈ [1, p− 1] ∩ N and X(1) := (X1, ..., Xs) and X(2) := (Xs+1, ..., Xp).

(A2) cov(X(1), X(2)) = 0.

then X(1) and X(2) are independent.

Proof. The following proof consists of two steps.
STEP1. General case

In this step, we will show that it is enough to show the Proposition when r := rank(B) = p ≤ q. For each i ∈ N∩ [1, p],
let bi be the i-th row vector of B. Let V1 be the vector space generated from b1, b2, ..., bs and let V2 be the vector space
generated from bs+1, bs+2, ..., bp. We can take {bσ(i)}r1i=1 is a basis of V1 and {bτ(i)}r2i=1 is a basis of V2. Since V1 ⊥ V2,
{bσ(i)}r1i=1 ∩ {bτ(i)}

r2
i=1 = ϕ and {bσ(i)}r1i=1 ∪ {bτ(i)}

r2
i=1 are linear independent. So it is enough to show {bσ(i)}r1i=1 and

{bτ(i)}r2i=1 are independent when rank(B) is the number of rows of B.

STEP2. Case when rank(B) = p ≤ q
Let W be the orthogonal complement of the vector space generated from b1, b2, ..., bp. We can take c1, ..., c(q−p) which

is an orthonormal basis of W and let

C :=


c1
c2
...

c(q−p)

, and let D :=

[
B
C

]
. By (A1), there are random variables {ϵ}pi=1 on (Ω,F ) and random variables { Y }q−pi=1

on (Ω,F ) such that ϵ := {ϵ}qi=1 are i.i.d and ϵi ∼ N(0, 1) (∀i)

and Z :=

[
X
Y

]
= Dϵ+ γ and cov(Z) = DDT .

The distribution of Z has the density function fq : Rq 3 x 7→ c · exp(xTDDTx) ∈ R, where c is a constant. By (A2)
and the definition of C,

DDT =

Σ1 0 0
0 Σ2 0
0 0 E(q−p)

, where Σ1 and Σ2 are symmetric positive definite matrixies. So the distribution of X has

the density function fp : Rp 3 x 7→ d ·exp(x(1)TΣ1x
(1)) ·exp(x(2)TΣ1x

(2)) ∈ R, where d is a constant and x(1) = (x1, ..., xs)
and x(2) = (xs+1, ..., xp). By the format of fp, X

(1) and X(2) are independent.
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3 Statistics

3.1 Popular Probability Distributions

3.1.1 General Topics on Random Variables

By the definition of independence, the following clearly holds.

Proposition 3.1. Let

(S1) (§i,S, Pi) (i = 1, 2, ..., N) is a sequence of probability spaces.

(S2) (Ω,F , P ) is the probability spaces which is direct product of (§i,S, Pi) (i = 1, 2, ..., N)

(S3) Xi is a random variable on Si (i = 1, 2, ..., N).

(S3) We set Yi := Xi ◦ πi (i = 1, 2, ..., N).

then Y1, ..., YN is a sequence of independent random variables.

The following clearly holds.

Proposition 3.2. Let P is probability measure on (Ω := N ∪ {0}, 2Ω). Then idΩ is random variable on Ω and idΩ ∼ P .

By Fubini’s theorem(see [5]), the following two propositions clearly holds.

Proposition 3.3 (Marginal distribution). Let

(S1) (Ωi,Fi, Pi) is a probability spaces (i = 1, 2).

(A1) P1 × P2 has a density function fP1,P2 .

Then for almost everywhere x ∈ R, fP1,P2
(x, ·) is measurable and

fP1
(x) :=

∫
R
fP1,P2

(x, y)dP2(y)

exists and fP1 is measurable and ∫
R
fP1

(x)dP1(x) = 1

Proposition 3.4 (Conditional probability density function). Let

(S1) (Ωi,Fi, Pi) is a probability spaces (i = 1, 2).

(A1) P1 × P2 has a density function fX,Y .

(S2) x ∈ R such that fX,Y (x, ·) is measurable and fX(x) > 0.

(S3) Set

fP2|P1(x)(y) :=
fP1,P2

(x, y)

fP1(x)
(y ∈ R)

We call fP2|P1(x) the conditional probability density function of P2 given the occurrence of the value x of
P1.

Then ∫
R
fP2|P1(x)(y)dP2(y) = 1

The following definitions are based on [6].

Definition 3.5 (Probability model, True distribution, Prior probability). The followings are settings and assumptions.

(A1) Q is a probability borel measure on RN and Q has the density function q. We call q a true distribution.

(S1) W is a Borel set of Rd.

(A2) Φ is a probability borel measure on W that has the density function ϕ. We call ϕ a prior probability.

(A3) Q× Φ has the densition function p.

(S2) We set p(·1|·2) by for w ∈W such that ϕ(w) > 0

p(x|w) := pQ|Φ(w)(x) (x ∈ RN )

We call p(·1|·2) the a probability model. Or, we denote p(·1|·2) by p(x|w).
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Definition 3.6 (Exponential family). The followings are settings and assumptions.

(S1) (Q, q,W,Φ, ϕ, p) is a pair of true distribution, prior probability, probability model.

We say p is in exponential family if there are v, g, f such that f is a borel measurable map from W to RJ and g are borel
measurable maps from RN to RJ and v is a borel measurable function on W and for any x ∈ RN and any w ∈ W such
that ϕ(w) > 0

p(x|w) = v(x)exp(f(w) · g(x))

Definition 3.7 (Conjugate prior distribution). The followings are settings and assumptions.

(S1) (Q, q,W,Φ, ϕ, p, v, g, f) is in exponential family.

(S2) v ∈ RJ .

Then, we set

φ(u, v) := φ(u|v) := exp(v · f(u))∫
W
exp(v · f(w))dΦ(w)

(u ∈W ), z(v) :=

∫
W

exp(v · f(w))dΦ(w)

We call φ(·1|·2) the conjugate prior distribution of the exponential family (Q, q,W,Φ, ϕ, p, v, g, f).

The following is clear.

Proposition 3.8 (Posterior Probability Distribution). The followings are settings and assumptions.

(S1) (Q, q,W,Φ, ϕ, p) is a probability model.

(A2) q is continuous.

(S2) Xn := {Xi}ni=1 is a sequence of RN -valued random variables such that Xi ∼ Q.

(A3) p is continuous and for any x1, ..., xn ∈ q−1((0,∞)) there is w ∈W such that p(xi, w) > 0 (∀i ∈ N).
(A4) ϕ is continuous and ϕ > 0 in W .

(S3) β > 0.

Then,

Zn(β) :=

∫
W

ϕ(w)Πni=1p(Xi|w)βdΦ(w) > 0

We set

r(w,Xn) := r(w|Xn) := ϕ(w)Πni=1p(Xi|w)β
1

Zn(β)
(w ∈W )

We call r(·|Xn) is the posterior distribution of p. And we call β an inverse temperature and Zn(β) the partition function,
respectively.

Proposition 3.9. The followings are settings and assumptions.

(S1) (Q, q,W,Φ, ϕ, p, v, g, f) is an exponential family.

(A2) q is continuous.

(S2) Xn := {Xi}ni=1 is a sequence of RN -valued random variables such that Xi ∼ Q.

(A3) p is continuous and for any x1, ..., xn ∈ q−1((0,∞)) there is w ∈W such that p(xi, w) > 0 (∀i ∈ N).
(A4) ϕ is continuous and ϕ > 0 in W .

(S3) β > 0 is an inverse temperature.

(S4) v ∈ RJ .

(S5) v̂ := v +
∑n
i=1 βg(Xi).

Then

(i) The partiation function is represented as below.

Zn(β) = (Πni=1v(Xi)
β)
z(v̂)

z(v)

(ii) The posterior probability distribution is represented as below.

r(w|Xn) := φ(w|v̂)
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Proof of (i).

Zn(β) :=

∫
W

ϕ(w)Πni=1p(Xi|w)βdΦ(w) =
∫
W

φ(w|v)Πni=1p(Xi|w)βdΦ(w)

=

∫
W

φ(w|v)Πni=1(v(Xi) exp(f(w) · g(Xi))))
βdΦ(w) =

1

z(v)

∫
W

exp(v · f(w))Πni=1(v(Xi) exp(f(w) · g(Xi))))
βdΦ(w)

=
1

z(v)

∫
W

Πni=1v(Xi)
β exp((v + β

n∑
i=1

g(Xi)) · f(w))dΦ(w) =
z(v̂)

z(v)
Πni=1v(Xi)

β

Proof of (ii).

r(w|Xn) := ϕ(w)Πni=1p(Xi|w)β
1

Zn(β)
= φ(w|v)Πni=1p(Xi|w)β

z(v)

z(v̂)Πni=1v(Xi)β

=
exp(v · f(w))

z(v)
(Πni=1(v(Xi) exp(f(w) · g(Xi))))

β)
z(v)

z(v̂)Πni=1v(Xi)β
=

exp(v̂ · f(w))
z(v̂)

= φ(w|v̂)

3.1.2 Probability Generating Function

Definition 3.10 (Probability Generating Function). Let

(S1) (Ω = N ∪ 0, 2Ω, P ) is a probability space.

then we set

GP (z) :=

∞∑
i=0

P (i)zi (z ∈ C) (3.1.1)

Proposition 3.11. The followings hold.

(i) Radius of convergence of GP (z) is not less than 1.

(ii) If GP = GP ′ then P = P ′.

(iii) If Y is a random variable on any probability space such that Y ∼ P then GP (z) = E(zY ) for any
z ∈ D(0, 1) .

(iii) If Y1, Y2 is a random variable on any probability space such that Y1, Y2 are independent then GPY1+Y2
=

GPY1
GPY2

.

proof of (i). Because 0 ≤ P ≤ 1, (i) holds.

proof of (ii). By (i) and definition of GP and G′
P , (ii) holds.

proof of (iii). Let us fix any z ∈ D(0, 1). For any N ∈ N,

E(zY ) =

N∑
i=0

∫
{Y=i}

zY dQ+

∫
{Y >N}

zY dQ

=

N∑
i=0

P (i)zi +

∫
{Y >N}

zY dQ (3.1.2)

So

|E(zY )−
N∑
i=0

P (i)zi| ≤ |
∫
Y >N

zY dQ| ≤ Q({Y > N}) (3.1.3)

Consequently (iii) holds.

proof of (iv). It is enough to show (iv) by (iii).
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3.1.3 Bernoulli distribution

Definition 3.12 (Bernoulli distribution). We call a probability distribution P on {0, 1} the Bernoulli distribution if for
some p ∈ [0, 1] P ({1}) = p and P ({0}) = 1− p.

Proposition 3.13 (Expectation and Variance of Bernoulli distribution). Let us assumel a probability distribution P on
{0, 1} is the Bernoulli distribution with P ({1}) = p.

(i) E(P ) = p

(ii) V (P ) = p(1− p),

(i). It is trivial.

(i). V (P ) =
∫
{0,1} x

2dP − E(P )2 =
∫
{0,1} xdP − p

2 = p− p2 = p(1− p)

3.1.4 Binomial distribution

Definition 3.14 (Binomial distribution). For some p ∈ [0, 1] and n ∈ N we call a probability distribution B(n, p) on
{0, 1, ..., n} the Binomial distribution if B(n, p)({i}) = nCip

i(1− p)(n− i) (i = 0, 1, ..., n).

Clearly the following holds.

Proposition 3.15. Let

(S1) (Ω,F , P ) is a probability space.

(S2) {Xi}ni=1 be independent random variables.

(A1) The distribution of Xi is the Bernoulli distribution B with B({1}) = p (∀i).

then the distribution of Σni=1Xi is B(n, p).

By Proposition Proposition3.2 and Proposition3.1, Random variables like the one above exist.
E(B(2, p)) = 1 · 2C1p(1− p) + 2 · 2C2p

2 = 2p+ 0 · p2 = 2p. EB(2,p)(x
2) = 2p+ 22p2 − 2p2. E(B(3, p)) = 1 · 3C1p(1−

p)2 +2 · 3C2p
2(1− p) + 3p3 = 3p+0 · p2 +0 · p3 = 3p. EB(3,p)(x

2) = 3p+33p2 − 3p2 +0 ◦ p3. We can extend these fact to
the following lemma and the following proposition.

Lemma 3.16.

(i) Σlk=1klCk(−1)k = 0 (∀l ≥ 2).

(ii) Σlk=1k
2
lCk(−1)k = 0 (∀l ≥ 3).

(i). L(x) := (1− x)l = Σlk=1lCk(−1)k(−1)kxk.
L′(x) = l(1− x)l−1 = Σlk=1klCk(−1)k(−1)kxk−1.

So, if l ≥ 2, then

0 = L′(1)

= Σlk=1klCk(−1)k(−1)k (3.1.4)

(ii). L(x) := (1− x)l = Σlk=1lCk(−1)k(−1)kxk.
L′′(x) = l(1− x)l−1 = Σlk=1k(k − 1)lCk(−1)k(−1)kxk−2.

So, if l ≥ 3, then

0 = L′′(1)

= Σlk=1k(k − 1)lCk(−1)k(−1)k

= Σlk=1k
2
lCk(−1)k(−1)k − Σlk=1klCk(−1)k(−1)k (3.1.5)

By (i), Σlk=1klCk(−1)k(−1)k = 0. So Σlk=1k
2
lCk(−1)k(−1)k = 0.

Proposition 3.17 (Expectation and Variance of Binomial distribution).

(i) E(B(n, p)) = np
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(ii) V (B(n, p)) = np(1− p)

proof1 of (i). Let us take {Xi}{i = 1, 2., , , , n} in Proposition3.15. E(B(n, p)) = E(Σni=1Xi) = Σni=1E(Xi) = np

proof1 of (ii). Let us take {Xi}{i = 1, 2., , , , n} in Proposition3.15. V (B(n, p)) = Σni=1V (Xi) = np(1− p)

proof2 of (i).

E(B(n, p)) =

n∑
k=1

knCkp
k(1− p)n−k

=

l∑
k=1

knCkp
k
n−k∑
i=0

n−kCi(−1)ipi

=

n∑
l=1

∑
k=1,2...,l, i=0,1,...,n−k, k+i=l

knCkp
k
n−kCi(−1)ipi

=

n∑
l=1

pl
∑

k=1,2...,l, i=0,1,...,n−k, k+i=l

knCkn−kCi(−1)i

=

n∑
l=1

pl
l∑

k=1

knCk · n−kCl−k(−1)l−k

=

n∑
l=1

(−1)lpl
l∑

k=1

knCk · n−kCl−k(−1)k

=

n∑
l=1

(−1)lpl
l∑

k=1

k
nPl

k!(l − k)!
(−1)k

=

n∑
l=1

(−1)lpl
l∑

k=1

k
nCl · l!
k!(l − k)!

(−1)k

=

n∑
l=1

(−1)lplnCl
l∑

k=1

k
l!

k!(l − k)!
(−1)k

=

n∑
l=1

(−1)lplnCl
l∑

k=1

klCk(−1)k (3.1.6)

By Lemma3.16, for any l ≥ 2,
∑l
k=1 klCk(−1)k = 0. So E(B(n, p)) = np.

proof2 of (ii). By the proof2 of (ii),

EB(n,p)(x
2) =

n∑
l=1

(−1)lplnCl
l∑

k=1

k2lCk(−1)k (3.1.7)

By Lemma3.16, for any l ≥ 3,
∑l
k=1 k

2
lCk(−1)k = 0.

So EB(n,p)(x
2) =

∑2
l=1(−1)lplnCl

∑l
k=1 k

2
lCk(−1)k = np(1−p)+n2p2. By (i), V (B(n, p)) = EB(n,p)(x

2)−E(B(n, p))2 =
np(1− p).

3.1.5 Geometric distribution

Definition 3.18 (Geometric distribution). Let p ∈ (0, 1).

P (k) := (1− p)k−1p (k = 1, 2, ...) (3.1.8)

We call P is Geometric distribution with p

Clearly P is a probability measure on {1, 2, ..., n, ...}.

Proposition 3.19. Let P is Geometric distribution with p. Then

GP (z) =
pz

1− (1− p)z
(3.1.9)

25



Proof.

GP (z) =
∑
k=1

(1− p)k−1pzk

= pz
∑
k=1

(1− p)k−1pzk−1

= pz
1

1− (1− p)z
(3.1.10)

Proposition 3.20. Let P is Geometric distribution with p. Then

E(P ) =
1

p
(3.1.11)

and

V (P ) =
1− p
p2

(3.1.12)

proof1 of (3.1.11).

G′
P (z) =

p(1− (1− p)z) + pz(1− p)
(1− (1− p)z)2

So

E(P ) = G′
P (1) =

p(1− (1− p)1) + p1(1− p)
(1− (1− p)1)2

=
p2 + p− p2)

p2
=

1

p
(3.1.13)

proof2 of (3.1.11).

1

1− x
=

∞∑
k=0

xk (3.1.14)

By calculating the derivative,

1

(1− x)2
=

∞∑
k=1

kxk−1 (3.1.15)

So

E(P ) = p

∞∑
k=1

k(1− (1− p))k−1 = p
1

(1− (1− p))2
=

1

p
(3.1.16)

proof of (3.1.12). By calculating the derivative of (3.1.17),

2

(1− x)3
=

∞∑
k=2

k(k − 1)xk−2 (3.1.17)

So

EP (x(x− 1)) = p

∞∑
k=2

k(k − 1)(1− p)k−1

= p(1− p)
∞∑
k=2

k(k − 1)(1− p)k−2

= p(1− p) 2

(p3
=

2(1− p)
p2

(3.1.18)

V (P ) = EP (x(x− 1)) + EP (x)− EP (x)2 =
2(1− p)
p2

+
p

p2
− 1

p2
=

1− p
p2

(3.1.19)
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3.1.6 Negative binomial distribution

Definition 3.21 (Negative binomial distribution). We call a probability distribution P on {1, 2, ...} the Negative binomial
distribution if for some p ∈ [0, 1] P ({k}) = pr+k−2Cr−1(1− p)k−1pr−1. We denote this distribution by NB(r, p).

Proposition 3.22.

GNB(r,p)(z) =
prz

(1− (1− p)z)r
(3.1.20)

Proof. Because

1

1− z
=

∞∑
i=0

zi (3.1.21)

the following holds by r − 1 times derivative.

(r − 1)!

(1− z)r
=

∞∑
i=r−1

i(i− 1)...(i− r + 2)zi (3.1.22)

Proposition 3.23. Let X1, ..., Xr are independent random variables and for any i PXi is the geometric distribution. Then
the distribution of

∑r
i=1Xi − (r − 1) is N(r, p).

3.2 Descriptive statistics

3.2.1 Skewness

Definition 3.24 (Skewness). Let

(S1) µ ∈P(R).
(A1) ν := E[µ] and σ2 := V [µ] exist.

Let us call E[
(x− ν)3

σ3
] be the skewness of µ.

Proposition 3.25. Let

(S1) f is a probability density function on R.

(A1) f(x) = f(−x) a.e x > 0.

(A2)
∫
R |x|

if(x)dx <∞ (i = 1, 2).

(A3)
∫
R xf(x)dx = 0.

Then the skewness of the distribution from f is zero.

Proof. We denote S by the skewness of the distribution from f .

S =

∫
R
x3f(x)dx

=

∫ ∞

0

x3f(x)dx+

∫ 0

−∞
x3f(x)dx

=

∫ ∞

0

x3f(x)dx+

∫ 0

∞
(−y)3f(−y)(−1)dy

=

∫ ∞

0

x3f(x)dx−
∫ ∞

0

y3f(y)dy

= 0 (3.2.1)

Proposition 3.26. Let

(S1) f is a probability density function on R.

(A1)
∫
R |x|

if(x)dx <∞ (i = 1, 2, 3).
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(S2) d > 0.

(A2) For any ϵ > 0, there is A,B, a, b ∈ R such that 1 < A < B and 0 ≤ a < b and b ≤ A and (b−a) ≤ (B−A)
and 1

b−a
∫ b
a
xf(−x)dx ≤ 1

B−A
∫ B
A
xf(x)dx and (A2 − 1)

∫ B
A
xf(−x)dx − (b2 − 1)

∫ b
a
xf(−x)dx ≥ d and

|
∫∞
0
xif(x)dx−

∫ B
A
xif(x)dx| < ϵ and |

∫∞
0
xif(−x)dx−

∫ b
a
xif(x)dx| < ϵ (i = 1, 3).

(S3) We denote the skewness of the distribution from f by S.

Then S ≥ d.

Proof. ∫ ∞

0

x3f(−x)dx ≤
∫ b

a

x3f(−x)dx+ ϵ

≤
∫ b

a

x3f(−x)dx−
∫ b

a

xf(−x)dx+

∫ b

a

xf(−x)dx+ ϵ

≤
∫ b

a

(x2 − 1)xf(−x)dx+

∫ b

a

xf(−x)dx+ ϵ

≤ (b2 − 1)

∫ b

a

xf(−x)dx+

∫ ∞

0

xf(−x)dx+ 2ϵ

≤ (A2 − 1)

∫ B

A

xf(−x)dx− d+
∫ ∞

0

xf(−x)dx+ 2ϵ

≤ A2

∫ B

A

xf(x)dx− d−
∫ B

A

xf(−x)dx+

∫ ∞

0

xf(x)dx+ 2ϵ

≤ A2

∫ B

A

xf(x)dx− d−
∫ ∞

0

xf(−x)dx+

∫ ∞

0

xf(x)dx+ 3ϵ

≤
∫ B

A

x3f(x)dx− d+ 3ϵ

≤
∫ ∞

0

x3f(x)dx− d+ 4ϵ (3.2.2)

So S ≥ d.

3.2.2 Kurtosis

Definition 3.27 (Kurtosis). Let

(S1) µ ∈P(R).
(A1) ν := E[µ] and σ2 := V [µ] exist.

Let us call E[
(x− ν)4

σ4
]− 3 be the kurtosis of µ and denote it by Kurt(µ).

Proposition 3.28. The kurtosis of N(µ, σ) is 0.

Proof. Let us denote by Cσ :=
1

σ
√
2π

.

EN(µ,σ)[(x− µ)4] = Cσ

∫ ∞

−∞
(x− µ)4exp(−1

2
(
x− µ
σ

)2)dx

= Cσ

∫ ∞

−∞
(x− µ)4exp(−1

2
(
x− µ
σ

)2)dx

= Cσ

∫ ∞

−∞
−σ2(x− µ)3{exp(−1

2
(
x− µ
σ

)2)}′dx

= 3Cσ

∫ ∞

−∞
−σ2(x− µ)2exp(−1

2
(
x− µ
σ

)2)dx

= 3σ4 (3.2.3)
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Proposition 3.29. For τ > 0 let us denote kurtosis of hτ := 1
2τ χ[−τ,τ ] by k(hτ ). Then lim

τ→0
k(hτ ) =∞ and lim

τ→∞
k(hτ ) =

−3.

Proof. Because E[xf ] = 0,

k(hτ ) + 3 =
E[x4hτ ]

(E[x2hτ ])2
(3.2.4)

The followings hold.

E[x4hτ ] =
2

5
τ5 (3.2.5)

and

E[x2hτ ] =
2

3
τ3 (3.2.6)

So there is constant C > 0

k(hτ ) + 3 ∼ C τ5

(τ3)2
= C

1

τ
(τ → 0 or τ →∞) (3.2.7)

Proposition 3.30. We set for ϵ > 0 and δ > 0

fϵ,δ(x) =



1

x(5+δ)
if |x| > 1,

1

ϵ
(
1

2
− 1

4 + δ
) if |x| ≤ ϵ

0 otherwise

(3.2.8)

Then fϵ,δ is a probability density function. Let us denote the kurtosis of fϵ,δ by k(fδ). Then the followings hold.

(i) Then for any ϵ > 0 lim
δ→0

k(fϵ,δ) =∞.

(ii) For any δ > 0 lim
ϵ→0

k(fϵ,δ) =∞.

Proof. Because ∫ ∞

1

1

x(5+δ)
dx =

1

4 + δ
(3.2.9)

fϵ,δ is a probability density function.
Because E[xfϵ,δ] = 0,

k(fϵ,δ) + 3 =
E[x4fϵ,δ]

(E[x2fϵ,δ])2
(3.2.10)

The followings holds.

E[x2fϵ,δ] = 2(

∫ ϵ

0

x2fϵ,δ(x)dx+

∫ ∞

1

x2fϵ,δ(x)dx)

= 2(
ϵ3

3
(
1

2
− 1

4 + δ
) +

∫ ∞

1

1

x(3+δ)
dx)

= 2(
ϵ3

3
(
1

2
− 1

4 + δ
) +

1

(2 + δ)
)) (3.2.11)

E[x4fϵ,δ] = 2(

∫ ϵ

0

x4fϵ,δ(x)dx+

∫ ∞

1

x4fϵ,δ(x)dx)

= 2(
ϵ5

3
(
1

2
− 1

4 + δ
) +

∫ ∞

1

1

x(1+δ)
dx)

= 2(
ϵ5

3
(
1

2
− 1

4 + δ
) +

1

δ
)) (3.2.12)

So, if we fix δ then there is constant C > 0

k(fϵ,δ) + 3 ∼ C ϵ5

(ϵ3)2
= C

1

ϵ
(ϵ→ 0) (3.2.13)
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and if we fix ϵ then there is constant C > 0

k(fϵ,δ) + 3 ∼ C 1

δ
(δ → 0) (3.2.14)

Then (i) and (ii) hold.

3.3 Bayes’s theorem

Theorem 3.31.

P (Hi|A) =
P (Hi)P (A|Hi)

Σnj=1P (Hj)P (A|Hj)
(3.3.1)

Proof. By the definition of conditional probability,

P (Hi|A) =
P (Hi)P (A|Hi)

P (A)
(3.3.2)

and
P (A) = Σnj=1P (A ∪Hj) = Σnj=1P (Hj)P (A|Hj) (3.3.3)

So, the above equation holds.

3.4 Crude Monte Carlo method

Proposition 3.32. Let

(S1) (S := {1, 2, ...,M}, 2Ω,H) is a probability space.

(S2) (Ω,F , P ) is a probability space.

(S3) {Xn}∞n=1 is a sequence of independet random variables on Ω such that Xn(Ω) ⊂ S for any n ∈ N.

(A1) Xn ∼ H for any n ∈ N. Xn ∼ H) means that P ({Xn = i}) = H(i)

(S4) g is a function on S.

(S5) {Yn}∞n=1 is a sequence of independet random variables on Ω such that Yn(Ω) ⊂ S for any n ∈ N.

(A2) Yn ∼ C for any n ∈ N. Here, C is the counting measure of S.

then

plim
N→∞

ΣNi=1g(Xi)

N
= Σs∈S g(s)H({s}) = #S plim

N→∞

ΣNi=1g(Yi)H({Yi})
N

(3.4.1)

STEP1. Showing (the left side)=(the middle side) . Clearly {g(Xn)}∞n=1 is a sequence of independet random variables on
Ω. By (A1), ∫

Ω

g(Xn)dP = Σs∈S g(s)H({s}) (3.4.2)

and ∫
Ω

g(Xn)
2dP = Σs∈S g

2(s)H({s}) (3.4.3)

So by weak law of large numbers (3.4.1) holds.

STEP2. Showing (the right side)=(the middle side) . We set

G : S 3 s 7→ g(s)H({s})#S ∈ R (3.4.4)

By applying the method of STEP1 to G and C,

plim
N→∞

ΣNi=1g(Yi)H({Yi})#S
N

= Σs∈S g(s)H({s})#SC({s})

= Σs∈S g(s)H({s}) (3.4.5)
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3.5 Chi-Squared Test for Categorical Data

Proposition 3.33. Let

(S1) (Ω,F ,P) is a probability space.

(S2) {Xi}∞i=1 is a sequence of N -dimensional vectors of random variables on (Ω,F ,P).

(A1) {Xi}∞i=1 distribution converges to N(0, EN ).

then {|Xi|2}∞i=1 distribution converges to χ2(N).

Proof. Let us fix arbitary a > 0.
Let λ be the N -dimensional Lebesugue’s measure. By (A1) and λ(∂B(X,

√
a)) = 0,

µ({|Xi|2 ≤ a}) = µ({Xi ∈ B(X,
√
a)})

→ N(0, EN )(B(X,
√
a)) (i→∞) (3.5.1)

By the definition of chi-squared distribution with degree of free N ,

N(0, EN )(B(X, a)) = χ2(N)([0, a]) (3.5.2)

So {|Xi|2}∞i=1 distribution converges to χ2(N).

Theorem 3.34. Let

(S1) (Ω,F ,P) is a probability space.

(S2) {Xi}∞i=1 is a sequence of K-dimensional vectors of random variables on (Ω,F ,P).

(S3) {πk}Kk=1 ⊂ (0, 1) such that ΣKk=1πk = 1.

(A1) P ({Xi,k = 1}) = 1 (∀i, ∀k).
(A2) For any k, l such that k 6= l, {Xi,k = 1} ∪ {Xi,l = 1} = ϕ (∀i).
(S4) On,k := Σni=1Xi,k (n ∈ N, k ∈ N).
(S5) En,k := nπk (n ∈ N, k ∈ N).

then

Q(n) := ΣKk=1

(On,k − En,k)2

nπi
(3.5.3)

distribution converges to χ2(K − 1).

Proof. We set
Yn,k :=

√
n(X̄k − πk) (n ∈ N, k ∈ N) (3.5.4)

Then
Yn,K := −ΣK−1

k=1 Yn,k (∀n) (3.5.5)

and
On,k − En,k =

√
nYn,k (n ∈ N, k ∈ N) (3.5.6)

Yn := (Yn,1, ..., Yn,K−1)
T (3.5.7)

If we set A := {ai,j}i,j=1,...,K−1 by

ai,j =

{
1
πi

+ 1
πK

if (i = j),
1
πK

if (i 6= j),
(3.5.8)

So
Q(n) = Y Tn AYn (n ∈ N) (3.5.9)

and A is a nonnogetive definite symmetric matrix.
We set (K − 1)-by-(K − 1) matrix Σ := {σi,j}i,j=1,...,K−1 by σi,j = cov(X1,i, X1,j). Then

σi,j =

{
πi(1− πi) if (i = j),

−πiπj if (i 6= j),
(3.5.10)

and
σi,j = cov(Xn,i, Xn,j) (∀n, ∀i, ∀j) (3.5.11)

By Proposition3.35, Σ is positive definite symmetric matrix.
By the central limit theomre(see [?]), Yn

∞
n=1 distribution converges to N(0,Σ).

By Proposition3.33, {Q(n)}∞n=1distribution converges to χ2(K − 1).
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Proposition 3.35. Let A and B be matrixies in the proof oh Theorem3.34. Then A−1 = Σ

Proof. For any i ∈ {1, 2, ...,K − 1}

(AΣ)i,i = ai,iσi,i +Σk ̸=iai,kσk,i

= (
1

πi
+

1

πK
)πi(1− πi) + Σk ̸=i

1

πK
(−πiπj)

= (1− πi) + πi
(1− πi)− Σk ̸=iπk

πK
= 1 (3.5.12)

For any i ∈ {1, 2, ...,K − 1} and any j ∈ {1, 2, ...,K − 1} such that i 6= j,

(AΣ)i,j = ai,iσi,j + ai,jσj,j +Σk ̸=i,jai,kσk,i

= (
1

πi
+

1

πK
)(−πiπj) +

1

πK
πj(1− πj) + Σk ̸=i,j

1

πK
(−πkπj)

= (−πj −
πj
πK

πi) + (
πj
πK
− πj
πK

πj)−
πj
πK

Σk ̸=i,jπk

= −πj +
πj
πK
− πj
πK

(1− πK)

= 0 (3.5.13)

3.6 Linear Regression

3.6.1 Preliminaries for Linear Regression

Throughout this section, we assume the following settings.

Setting 3.36 (Linear regression). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let X := {Xi,j}{1≤i≤N,1≤j≤K} be a (N,K) matrix.

(A1) XTX is a regular matrix of order (K + 1).

(S3) Let ϵ := {ϵi}{1≤i≤N} be N random variables.

(A2) {ϵi}{1≤i≤N}
iid∼ N(0,ΣNi=1σ

2EN ), where σ > 0.

(S4) Let {βi}{1≤i≤K} be a real K-dimension vector.

(S5) Let y := {yi}{1≤i≤N} be N random variables which are defined by the following equation.

y = Xβ + ϵ (3.6.1)

Remark 3.37. By (A1),
rank(X) = K (3.6.2)

Definition 3.38 (Least squares estimate). Let

β̂ := (XTX)−1(XT y) (3.6.3)

We call β̂ the least squares estimate of (3.6.1).
And let

ŷ := Xβ̂ (3.6.4)

We call ŷ the predicted values of (3.6.1).
Lastly let

ê := y − ŷ (3.6.5)

We call ê the residual of (3.6.1).
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Remark 3.39. β̂ is the point which minimize RK 3 z 7→ |y −Xz|2 ∈ [0,∞). And

β̂ := β + (XTX)−1XT ϵ (3.6.6)

and for each i β̂i ∼ N(βi, σ
2ξi) and ξi > 0, where ξi is (i, i) component of (XTX)

−1
.

Definition 3.40 (Multivariate normal distribution). Let Xi be a random variable on (Ω,F ) (i = 1, 2, ..., N). {Xi}Ni=1 ∼
N(γ,Σ) if there is a natural number l and (N, l) matrix A and there are random variables {ϵ}li=1 on (Ω,F ) such that
ϵ := {ϵ}li=1 are i.i.d and ϵi ∼ N(0, 1) (∀i) and X = Aϵ+ γ and Σ = AAT .

3.6.2 Interval estimation of regression coefficients

Proposition 3.41.
|ê|2

σ2
∼ χ2(N −K) (3.6.7)

Proof. The following holds.
ê = (EN −X(XTX)−1XT )ϵ (3.6.8)

Let A := (EN−X(XTX)−1XT ) then A is symmetric and idempotent. So each eigenvalue of A is 0 or 1. And tr(A) = N−
tr(X(XTX)−1XT ) = N−tr((XTX)−1XTX) = N−K so rank(A) = N−K. So by Proposition??, |ê|2

σ2 ∼ χ2(N−K).

Proposition 3.42. β̂ and ê are independent.

Proof. By (3.6.6) and (3.6.8), cov(ê, β̂) = 0. So by Proposition3.42 β̂ and ê are independent.

By Remark and Proposition3.41 and Proposition3.41 and Proposition3.42, the folloing Proposition holds.

Proposition 3.43. For each i ∈ N ∩ [1,K],

(β̂i − βi)
√
(N −K)

|ê|
√
ξi

∼ t(N −K) (3.6.9)

In the above equation, tN−K is the t-distribution whose degrees of freedom is N−K and ξi is (i, i) component of (XTX)
−1

.

The following is a remark.

Proposition 3.44.

E(
|ê|2ξi
N −K

) = V (β̂i) (∀i) (3.6.10)

Proof. By Proposition3.41, E(
|ê|2ξi
N −K

) = σ2ξi. By Remark3.6.2, V (β̂i) = σ2ξi

By the above remak,
|ê|
√
ξi√

N −K
is denoted by se(β̂i).

3.6.3 Decomposition of TSS

Proposition 3.45.
(ŷ, ê) = 0 (3.6.11)

Proof. By (3.6.6),

XT ŷ = XTXβ̂ = XT (Xβ + ϵ) = XT y (3.6.12)

So

(ŷ, ê) = βTXT ê

= βTXT (y − ŷ)
= 0

Proposition 3.46. Let
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(A1) There is a K-by-K matrix B such that the first column of XB is 1N

then
ŷ = y (3.6.13)

Proof. By (3.6.6),

XT ŷ = XTXβ̂ = XT (Xβ + ϵ) = XT y (3.6.14)

So the following holds.
BTXT ê = 0 (3.6.15)

The fitst component of the BTXT ê is ŷ − y. So ŷ = y.

Proposition 3.47. Let

(S1) TSS := |y − y1n|2

(S2) RSS := |ŷ − y1n|2

(S3) ESS := |y − ŷ|2

(A1) (A1) in Proposition3.46

then
TSS = RSS + ESS (3.6.16)

Proof. Because

TSS = yT (E − 1

N
1N,N )y (3.6.17)

and

RSS = yT (XT (XTX)−1X − 1

N
1N,N )y (3.6.18)

and
ESS = yT (E −XT (XTX)−1X)y (3.6.19)

TSS = RSS + ESS.

3.6.4 Cochran’s theorem

Proposition 3.48. Let

(S1) m ∈ N and Ai:N -by-N symmetric matrix (i = 1, 2, ...,m)

(A1) EN = Σmi=1Ai

(A2) N = Σmi=1rank(Ai)

then
AiAj = δi,jAi (∀i, ∀j) (3.6.20)

where δi,j is a Kronecker delta.

Proof. Let Vi := AiRN and ni := rank(Ai) and {vi,j}1≤j≤ni
be a basis of Vi (i = 1, 2, ...,m). By (A1) and (A2),

{vi,j}1≤i≤m,1≤j≤ni
is a basis of RN . and

RN =

m⊕
i=1

Vi (3.6.21)

Let fix arbitary i ∈ {1, 2, ..., N} and fix arbitary x ∈ RN . Aix = (Σmi=1Ai)Aix = (Ai)
2x + (Σj ̸=iAjAix. By (3.6.21),

Aix = Ai
2x and AjAix = 0.

By Proposition3.48 and Proposition?? and Proposition, the following theorem holds.

Proposition 3.49 (Cochran’s theorem).
We take over (S1) and (A1) in Proposition3.48. And let

(S2) (Ω,F , P ) is a probability space.

(A1) ϵ ∼ N(0, EN )

(S3) Qi := ϵTAiϵ (i = 1, 2, ...,m)

then Qi ∼ χ2(rankAi) (∀i) and Qi and Qj are independent for all (i, j) ∈ {(i, j)|i 6= j}
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3.6.5 Testing

Throughout this subsection, we assume
β = (β0, 0, 0, ..., 0)

T (3.6.22)

and

X =


1 x1,1 x1,2 ... x1,L
1 x2,1 x2,2 ... x2,L
... ... ... ...
1 xN,1 xN,2 ... xN,L

 (3.6.23)

Then
Xβ = β01N,1 (3.6.24)

So

ŷ = X(XTX)−1XT y

= X(XTX)−1XT (Xβ + ϵ)

= β01N,1 +X(XTX)−1XT ϵ (3.6.25)

And

ȳ1N,1 = β0
1

N
1N,1 + 1N,N ϵ (3.6.26)

Consequently,

RSS = ϵT (X(XTX)−1XT − 1

N
1N,1)ϵ (3.6.27)

Because X(XTX)−1XT is symmetric, X(XTX)−1XT and
1

N
1N,1 are commutative.

And because X(XTX)−1XT is idempotent and symmetric, (X(XTX)−1XT − 1

N
1N,1) is idempotent and symmetric.

rank(X(XTX)−1XT − 1

N
1N,1) = tr(X(XTX)−1XT − 1

N
1N,1) = L

So by Proposition3.49, RSS and ESS are independent and RSS ∼ χ2(L) and ESS ∼ χ2(N − L− 1).
So,

RSS

L
ESS

N − L− 1

∼ F (L,N − L− 1) (3.6.28)

3.6.6 Simple linear regression

Throughout this subsection, we set

Tx =

n∑
i=1

xi, Ty =

n∑
i=1

yi, Tx,x =

n∑
i=1

x2i , Tx,y =

n∑
i=1

xiyi (3.6.29)

(1) Case1: there is intercept
Throughout this subsection, we assume

X =


1 x1
1 x2
... ...
1 xn

 (3.6.30)
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Then

β̂ =

(
α̂
γ̂

)
= (XTX)−1XT y

= (

(
1 1 ... 1
x1 x2 ... xn

)
1 x1
1 x2
... ...
1 xn

)−1XT y

=

(
n Tx
Tx Tx,x

)−1

XT y

=
1

nTx,x − T 2
x

(
Tx,x −Tx
−Tx n

)(
Ty
Tx,y

)
(3.6.31)

So

γ̂ =
nTx,y − TxTy
nTx,x − T 2

x

=
Tx,y −

1

n
TxTy

Tx,x −
1

n
T 2
x

=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(3.6.32)

Consequently,

γ̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(3.6.33)

(2) Case2: there is no intercept
Throughout this subsection, we assume

X = (x1, x2, ..., xn)
T (3.6.34)

Then

β̂ =
Tx,y
Tx,x

(3.6.35)

3.6.7 Estimation about population mean

Throughout this section, we assume X = 1N is one and we define µ by β = µ11. The followings hold.

XTX = N (3.6.36)

Y := X(XTX)−1XT =
1

N
1N,N (3.6.37)

ê := y − y1N (3.6.38)

|ê|2

σ2
∼ χ2(N − 1) (3.6.39)

(µ− y)
√
N(N − 1)

|y − y|
∼ t(N − 1) (3.6.40)
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3.6.8 Estimation about difference between two population means

Throughout this section, we assume

X =

(
1M 0
0 1N

)
(3.6.41)

and

β =

(
µ11M
µ21N

)
(3.6.42)

(
y1
y2

)
:= y (3.6.43)

(
ϵ1
ϵ2

)
:= ϵ (3.6.44)

Then the followings hold.

XTX =

(
M 0
0 N

)
(3.6.45)

Y :=

(
1
M 1M,M 0

0 1
N 1N,N

)
(3.6.46)

µ1 = (ŷ1)1 = y1 + ϵ1 (3.6.47)

µ2 = (ŷ2)1 = y2 + ϵ2 (3.6.48)

So, by reproductive property of normal distribution,

µ1 − µ2 − (y1 − y2) ∼ N(0, (
1

M
+

1

N
)σ2) (3.6.49)

And the following holds.
|ê|2 = |y1 − µ11M |2 + |y2 − µ21N |2 (3.6.50)

By Proposition3.42, (µ1 − µ2 − (y1 − y2)) and |y1 − µ11M |2 + |y2 − µ21N |2 are independent.
Consequently, the following holds.

(µ1 − µ2 − (y1 − y2))
√
M +N − 2√

(|y1 − µ11M |2 + |y2 − µ21N |2)(
1

M
+

1

N
)

∼ t(M +N − 2) (3.6.51)

3.6.9 One way analysis of variance

Throughout this section we set

y := (y1,1, ..., y1,n1
, y2,1, ..., y2,n2

, ..., yK,1, ..., yK,nK
)T (3.6.52)

β := (µ1, µ2, ..., µK)T (3.6.53)

ȳi,· :=

∑ni

j=1 yi,j

ni
(i = 1, 2, ...,K) (3.6.54)

X :=


1n1

O O O
1n2

1n2
O O

... ... ... ...
1nK

O O 1nK

 (3.6.55)

Then
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Y := X(XTX)−1XT :=


1
n1

1n1,n1
O O O

O 1
n2

1n2,n2
O O

... ... ... ...
O O O 1

nK
1nK ,nK

 (3.6.56)

In this subsection, hereafter, we assume there is a real number µ such that

β = µ1K (3.6.57)

Then the followings holds.

TSS = ϵT (EN −
1

N
1N,N )ϵ (3.6.58)

ESS = ϵT (Y − 1

N
1N,N )ϵ (3.6.59)

rank(Y − 1

N
1N,N ) = K − 1 (3.6.60)

RSS = ϵT (EN − Y )ϵ (3.6.61)

rank(EN − Y ) = N −K (3.6.62)

So, by Cohchran’s theorem, ESS and RSS are independent, and ESS ∼ χ2(K − 1) and RSS ∼ χ2(N −K).
Consequently, the following theoem holds.

Theorem 3.50. Under the setting(3.6.55) and the assumption(3.6.57)

(ESS/(K − 1))/(RSS/(N −K)) ∼ F (K − 1, N −K) (3.6.63)

And the followings hold.

(XTX)−1 =



1

n1
0 ... 0

0
1

n2
... 0

... ... ... ...

0 ... 0
1

nK

 (3.6.64)

β̂ = (ȳ1,·, ȳ2,·, ..., ȳK,·)
T (3.6.65)

So, by Proposition3.43, the following theoem holds.

Theorem 3.51. Under the setting(3.6.55)

(ȳi,· − µi)
√

(N −K)ni
ESS

∼ t(N −K) (3.6.66)

3.7 Principal Component Analysis

3.8 Kernel Method

3.8.1 Motivation

Kernel Method is a method for effectively analyzing high dimensional data which does not fit statistical linear model.

Terminology 3.52 (Feature Space, Feature Map). The followings are settings.

(S1) Ω be a set.

(S2) H be a real inner product space.

(S3) Φ : Ω→ H.

We call Ω a feature space and Φ a feature map, respectively.
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I imagine Ω to be a high dimensional data set like a subset of R10000. And I assume that for a given statistical problem
like regression or principal component analysis or others, Ω does not fit statistical linear model like linear regression or
linear principal component analysis or others. So, I hope Φ(Ω) does fit the linear model. Since Ω is high dimensional, in
many case H is also high dimensional. In general, that impose us highly costed calculation of the inner product. However,
if we find k : Ω× Ω→ R such that

(Φ(X),Φ(Y )) = k(X,Y ) (∀X,Y ∈ Ω)

the inner product is easy to calculate. Here, k is called a kernel function and H is called a reproducing kernel Hilbert
space. Kernel method is the method to solove a given problem using (H, k). In addition, such statistical problems are
often reduced to an optimization problem in H. By the theory of the kernel method, it is shown that a solution of the
optimization problem can be expressed as a linear combination of {Φ(Xi)}ni=1.

m∑
i=1

αiΦ(Xi)

3.8.2 Positive Definite Kernel Function

Definition 3.53 (Real Valued Positive Definite Kernel Function). The followings are settings.

(S1) Ω be a set.

(S2) k be a real valued function on Ω.

We say k is a positive definite kernel function if for any x1, ..., xm ∈ Ω {k(xi, xj)}i,j=1,2,...,m is a positive semi-definite
symmetric matrix.

Definition 3.54 (Complex Valued Positive Definite Kernel Function). The followings are settings.

(S1) Ω be a set.

(S2) k be a complex valued function on Ω.

We say k is a complex valued positive definite kernel function if for any x1, ..., xm ∈ Ω {k(xi, xj)}i,j=1,2,...,m is a positive
semi-definite Hermitian matrix.

Example 3.55. Let G be a topological group and ϕ be a positive definite function on G. Then

k(x, y) := ϕ(xy−1) (x, y ∈ G)

is a positive definite kernel function. For detail, see [14].

3.8.3 Reproducing Kernel Hilbert Space(RKHS)

Definition 3.56 (Reproducing Kernel Hilbert Space). The followings are settings.

(S1) Ω is a set.

(S3) H is a Hilbert space.

We say H is a real reproducing kernel Hilbert space over Ω if

H ⊂Map(Ω,R)

and for each x ∈ Ω there exists kx ∈ H such that

(u, kx) = u(x) (∀u ∈ H)

We call a function
k : Ω2 3 (x, y) 7→ kx(y) ∈ R

reproducing kernel.

Proposition 3.57. The followings are settings.

(S1) H is a real reproducing kernel Hilbert space over Ω.

Then the reproducing kernel is uniquely determined and is a positive definite kernel function.

Proof. See [14].
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The following theorem shows that a positive definite kernel function identify a reproducing Hilbert space.

Theorem 3.58 (Moore-Aronszajn). The followings are settings.

(S1) k is a real positive definite kernel function over Ω.

Then there is a reproducing kernel Hilbert space H over Ω such that

(i) k is a reproducing kernel of H.

(ii) For any x ∈ Ω, k(·, x) ∈ H.

(iii) {k(·, x)}x∈Ω are dense in H.

Proof. See [14].

Moore-Aronzjan Theorem also gives us a good feature map.

Proposition 3.59. The followings are settings.

(S1) Ω is a feature space.

(S2) k is a real positive definite kernel function over Ω.

(S3) H is a reproducing kernel space with k.

(S4) We define a feature map by
Φ : Ω 3 x 7→ k(·, x) ∈ H

Then
(Φ(x),Φ(y)) = k(x, y) (∀x, y ∈ Ω)

Proof. The proposition is clear from the definition of reproducing kernel space.

The following theorem clarify a form of a solution of optimization problems in a reproducing Hilbert space.

Theorem 3.60 (Representer Theorem). The followings are settings.

(S1) Ω is a feature space.

(S2) Λ is a set.

(S3) {(Xi, Yi)}Ni=1 ⊂ Ω× Λ.

(S4) Ψ : [0,∞)→ R a strictly monotone increasing function.

(S5) H is a reproducing kernel Hilbert space.

(S6) L : HN 7→ R.

(S7) h1, ..., hm ∈ H.

Then the optimization problem

min
f∈H,c∈Rm

F (f, c) := (L({f(Xi) +

m∑
α=1

cαhα(Xi)}Ni=1) + Ψ(||f ||))

has solutions in 〈{kXi
}Ni=1〉.

Proof. We set H0 := 〈{kXi
}Ni=1〉. Let us fix any f ∈ H and c ∈ Rm. Then there are f0 ∈ H0 and f1 ∈ H⊥

0 (See [14].).
From this, ||f0||2 ≤ ||f ||2. So,

f(Xi) = (f, kXi) = (f0, kXi) = f0(Xi)

and
Ψ(||f0||2) ≤ Ψ(||f ||2)

This implies F (f0, c) ≤ F (f0, c).
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3.8.4 Kernel Principal Components Analysis

Proposition 3.61. The followings are settings and assumptions.

(S1) Ω is a feature space.

(S2) H is a reproducing kernel Hilbert space over Ω with the reproducing kernel k.

(S3) Φ : Ω→ H is a feature map such that

Φ(x) = kx (∀x ∈ Ω)

(S4) {Xi}Ni=1 ⊂ Ω.

(S5) Φ̃(Xi) := Φ(Xi)−
1

N

∑N
j=1 Φ(Xj).

(S6) We call the optimization problem

max
f∈H,||f ||=1

1

N

N∑
i=1

((f,Φ(Xi))−
1

N

N∑
j=1

(f,Φ(Xj))
2

problemA1.

(S7) We set

K̃i,j := (Φ̃(Xi), Φ̃(Xj)) = k(Xi, Xj)−
1

N

N∑
b=1

k(Xi, Xb)−
1

N

N∑
a=1

k(Xa, Xj)+
1

N2

N∑
a,b=1

k(Xa, Xb) (i, j = 1, 2, ..., N)

We call K̃ := {Ki,j}Ni,j=1 the centering gram matrix. Let λ1 ≥ λ2 ≥ ... ≥ λN denote all eigenvalues of K̃.
For each i, let ui denote an unit eigenvector regarding to λi.

(S8) We call the optimization problem
max

a∈RN ,aT K̃a=1
aT K̃2a

problemB1.

Then the followings holds.

(i) A solution of the problemA1 exists in 〈{Φ̃(Xi)|i = 1, 2, ..., N}〉.
(ii) For any solution of the problemB1, denoted by a,

∑m
i=1 aiΦ̃ is a solution of problemA1.

(iii) f1 :=
∑N
i=1 α

1
i Φ̃(Xi), α

1
i =

1√
λ1
u1. Then f1 is a solution of problemA1.

(iv) (Φ̃(Xi), f
1) =

√
λiu

1
1 for any i.

(v) We define the optimization problem

max
f∈H,||f ||=1,f⊥⟨f1⟩

1

N

N∑
i=1

((f,Φ(Xi))−
1

N

N∑
j=1

(f,Φ(Xj))
2

and we call it problemA2. By the same way, we define problemA3,...,problemAN. And fp :=
∑N
i=1 α

1
i Φ̃(Xi),

αpi =
1√
λp
up. Then fp is a solution of problemAp (p = 1, 2, ..., N).

(iv) (Φ̃(Xi), f
p) =

√
λiu

1
p for any i and p.
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4 Mathematical Programming

4.1 MILP and Branch-and-Bound Method

Definition 4.1 (MILP:Mixed integer linear programming). Let

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ (Z+)
n × (R+)

p|g(x, y) := Ax+Gy ≤ b}

We call the following problem a MILP.

max f(x, y) := ctx+ hty

subject to (x, y) ∈ S

We succeed notations in Definition4.1. And we set

S0 := {(x, y) ∈ (R+)
n × (R+)

p|Ax+Gy ≤ b}

Let us assume the MILP has a opmimal solution (x∗, y∗) and the optimal optimal value z∗. So S0 6= ϕ. Let us fix
(x, y) ∈ S0.

Algorithm Branch-and-Bound Method

Input: S0 6= ϕ
Step 1: Take a (x0, y0) ∈ S0 and (x, y, z)← (x0, y0, f(x

0, y0)) and S ← S0

Step 2: Take j ∈ {1, 2, ..., n}. S00 := {(x, y) ∈ S|xj ≤ bx0jc} and S01 := {(x, y) ∈ S|xj ≥ dx0je} and
MILP00 : maxf(S00) and MILP01 : maxf(S01).
Delete S0 from S and add S00 and S01 to S.

Step 3: for Sα ∈ S do
Solve LPα : maxf(Sα).
if LPα is not feasible then

Delete Sα from S.
else

We set (xα, yα) which is a optimal solution and zα which is its optimal value.
Delete Sα from S.
if xα ∈ Zn+ then

if zα > z then
(x, y, z)← (xα, yα, f(xα, yα)).

end if
elsezα > z

Take j ∈ {1, 2, ..., n}. Sα0 := {(x, y) ∈ Sα|xj ≤ bxαj c} and Sα1 := {(x, y) ∈ Sα|xj ≥ dxαj e}.
Add Sα0 and Sα1 to S.

end if
end if

end for
Output: (x, y, z).

4.2 Meyer’s Fundamental Theorem

4.2.1 Main result

The propositions shown in this subsection will not be presented with proofs in this subsection, but will be presented with
proofs in the subsections that follow.

Definition 4.2 (Polyhedron). Let A ∈M(m,n,R), b ∈ Rm. We call

P := {x ∈ Rn|Ax ≤ b}

a Polyhedron in Rn or a H-polyhedron. We call the right side H-representation. If A ∈ M(m,n,Q), b ∈ Qm then P is a
rational polyhedron.
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Definition 4.3 (Recession cone). Let P be a nonempty polyhedron. We call

rec(P ) := {r ∈ Rn|x+ λr ∈ P, ∀x ∈ P, ∀λ ∈ R+}

the recession cone of P .

Notation 4.4. Let

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

We set
P (A,G, b) := {(x, y) ∈ (R+)

n × (R+)
p|g(x, y) := Ax+Gy ≤ b}

Definition 4.5 (Convex, Convex combination). Let A ⊂ Rn. We say A is convex if
∑n
i=1 λiai ∈ A for a1, ..., an ∈ A and

λ1, ..., λn ⊂ [0, 1] such that
∑n
i=1 λi = 1. We call the sum

n∑
i=1

λiai

convex combination of a1, ..., an.

Proposition 4.6. Let

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ (Z+)
n × (R+)

p|g(x, y) := Ax+Gy ≤ b}

Then

(i)

sup{ctx+ hty|(x, y) ∈ S} = sup{ctx+ hty|(x, y) ∈ conv(S)}

Furthermore, there is (x, y) ∈ S such that ctx + hty = sup{ctx + hty|(x, y) ∈ S} ⇐⇒ there is (x, y) ∈
conv(S) such that ctx+ hty = sup{ctx+ hty|(x, y) ∈ S}

(ii) ex(conv(S)) ⊂ S

Theorem 4.7 (Meyer(1974)[9] Fundamental Theorem). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ (Z+)
n}.

Then there are A′ ∈M(m,n,Q), G′ ∈M(m, p,Q), b′ ∈ Qm such that

conv(S) = P (A′, G′, b′)

By Proposition4.6 and Theorem4.7, MILP

max f(x, y) := ctx+ hty

subject to (x, y) ∈ S

is equal to a pure LP

max f(x, y) := ctx+ hty

subject to (x, y) ∈ P (A′, G′, b′)

We set

Ã :=

(
A
A′

)
, G̃ :=

(
G
G′

)
, b̃ :=

(
b
b′

)
,

Then clearly
S = {(x, y) ∈ Rn × Rp|(x, y) ∈ P (Ã, G̃, b̃), x ∈ Zn}

and MILP

max f(x, y) := ctx+ hty

subject to (x, y) ∈ S
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has a continuous ralaxation

max f(x, y) := ctx+ hty

subject to (x, y) ∈ P (Ã, G̃, b̃)

whose optimal value is equal to the one of the original MILP. And we can effectively find an optimal solution of this
continuas ralaxation which is contained in S.

From the above discussion, the following can be shown.

Proposition 4.8. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ (Z+)
n}.

Then there is M ∈ N and are Ã ∈M(M,n,Q), G̃ ∈M(M,p,Q), b̃ ∈ QM such that

S = P (Ã, G̃, b̃) ∩ Zn+ × Rp+

and
conv(S) = P (Ã, G̃, b̃)

4.2.2 Fourier elimination and Farkas Lemma

Definition 4.9 (Conic combination). Let v1, ..., vm ∈ Rn. For every λ1, ..., λm ≥ 0, we call
∑m
i=1 λivi a conic combination

of v1, ..., vm.

Theorem 4.10 (Fourier Elimination). Let

(S1) A ∈M(m,n,R), b ∈ Rm.

(S2) I+ := {i|ai,n > 0}, I− := {i|ai,n < 0}, I0 := {i|ai,n = 0}.

(S3) a′i,k :=
ai,k
|ai,n|

(i ∈ I+ ∪ I−, k ∈ {1, 2, ..., n− 1}), b′i :=
bi
|ai,n|

(i ∈ I+ ∪ I−).

(S4) Ã := (A, b) ∈M(m,n+ 1,R).

(S5) We set Ãn−1 ∈M(#I+ ∗#I− +#I0, n,R) and b′ ∈ R(#I+∗#I−+#I0) by

(kq-th row of Ãn−1) =
1

|ak,n|
(k-th row of Ã) +

1

|aq,n|
(q-th row of Ã) (∀k ∈ I+, ∀q ∈ I−)

and
((#I+ ∗#I− + j)-th row of Ã′) = (j-th row of Ã) (j = 1, 2, ...,#I0)

(S6) xi := (x1, ..., xi) (x ∈ Rn)

Then

(i) Ax ≤ b, x ∈ Rn is feasible if and only if

n−1∑
i=1

(a′k,i + a′q,i)xi ≤ b′k + b′q (∀k ∈ I+, ∀q ∈ I−),

n−1∑
i=1

ap,ixi ≤ bp (∀p ∈ I0)

(ii) If A ∈M(m,n,Q) and b ∈ Qm, then a′k,i, a
′
q,i, b

′
k, b

′
q ∈ Q (∀k ∈ I+, ∀i ∈ {1, 2, ..., n− 1}, ∀q ∈ I−).

(iii) {x ∈ Rn|Ax ≤ b} 6= ϕ ⇐⇒ {x ∈ Rn+1|Ã(xt,−1)t ≤ 0} 6= ϕ ⇐⇒ {x ∈ Rn|Ãn−1((x
n−1)t,−1)t ≤ 0} 6= ϕ.

(iv) For each i ∈ {0, 1, ..., n−1}, there is mi ∈ N and Ãi ∈M(mi, i+1,R such that every row of Ãi is a conic
combination of rows of Ã and

{x ∈ Rn|Ax ≤ b} 6= ϕ ⇐⇒ {x ∈ Ri|Ãi((xi)t,−1)t ≤ 0}

(v) If Ã ∈M(m,n+ 1,Q) then Ãi ∈M(mi, i+ 1,Q) i ∈ {0, 1, ..., n− 1}.
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(vi) {x ∈ Rn|Ax ≤ b} 6= ϕ ⇐⇒ Ã0 ≤ 0.

Proof of the ‘only if‘ part in (i). Let us assume x ∈ Rn such that Ax ≤ b. Then

n−1∑
i=1

a′k,ixi + xn ≤ b′k (∀k ∈ I+)

and
n−1∑
i=1

a′q,ixi − xn ≤ b′q (∀q ∈ I−)

So, by adding the left and right sides of these two inequalities, respectively, the following holds.

n−1∑
i=1

(a′k,i + a′q,i)xi ≤ b′k + b′q (∀k ∈ I+, ∀q ∈ I−),

n−1∑
i=1

ap,ixi ≤ bp (∀p ∈ I0)

Proof of the ‘if‘ part in (i). Let us assume

n−1∑
i=1

(a′k,i + a′q,i)xi ≤ b′k + b′q (∀k ∈ I+, ∀q ∈ I−),

n−1∑
i=1

ap,ixi ≤ bp (∀p ∈ I0)

Then

n−1∑
i=1

a′k,ixi − b′k ≤ −(
n−1∑
i=1

a′q,i − b′q) (∀k ∈ I+, ∀q ∈ I−)

We set

xn := min{−(
n−1∑
i=1

a′k,i − b′k)|k ∈ I+}

Then

xn ≥ max{(
n−1∑
i=1

a′q,i − b′q)|q ∈ I−}

So, Ax ≤ b.

Proof of (ii)-(iv). These are followed by (i).

Theorem 4.11 (Farkas Lemma I). Let

(S1) A ∈M(m,n,R), b ∈ Rm.

Then
{x ∈ Rn|Ax ≤ b} = ϕ ⇐⇒ {v ∈ Rm|Atv = 0, btv < 0, v ≥ 0} 6= ϕ

Proof of ‘only if‘ part. By Fourier elimination method (iv), there are m0 ∈ N and U ∈M(m0, n,R) such that U ≥ 0 and
UÃ = (Omi,n−1, b

0) and b0 6≥ 0. Then there is u ∈ Rm0 such that utb0 < 0. We set

v := (utU)t

Then v ≥ 0 and Av = 0 and vtb < 0.
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Proof of ‘if‘ part. Let us assume ∃v ∈ Rm such that vtA = 0 and vtb < 0 and v ≥ 0. For any x ∈ Rn, vtAx = 0. So,
Ax 6≤ b.

Theorem 4.12 (Farkas Lemma II). Let

(S1) A ∈M(m,n,R), b ∈ Rm.

Then
{x ∈ Rn|Ax = b, x ≥ 0} 6= ϕ ⇐⇒ {u ∈ Rm|Atu ≤ 0} ⊂ {u ∈ Rm|utb ≤ 0}

Proof of ‘ =⇒ ‘. Let us fix x ∈ {x ∈ Rn|Ax = b, x ≥ 0}. Let us fix any u ∈ {u ∈ Rm|Atu ≤ 0}. So, btu ≤ 0.

Proof of ‘⇐= ‘. Let us assume
{x ∈ Rn|Ax = b, x ≥ 0} = ϕ

Then
{x ∈ Rn|Ax ≤ b,−Ax ≤ −b, x ≥ 0} = {x ∈ Rn|Bx ≤ c} = ϕ

Here,

B :=

 A
−A
−In

 , c :=

 b
−b
On,1


and In is the n-th unit matrix. By Farkas Lemma I, there are v ∈ Rm+ and v′ ∈ Rm+ and w ∈ Rn+ such that

Bt

v
v′

w

 = 0,

v
v′

w

t

c < 0

This implies
A(−(v − v′)) = −w,−(v − v′)tb > 0

We set u := −(v − v′). Then
u ∈ {u ∈ Rm|Atu ≤ 0} \ {u ∈ Rm|utb ≤ 0}

4.2.3 Polyhedron and Minkowski Weyl Theorem

Definition 4.13 (Polytope). We say A ⊂ Rn is a polytope if there are finite vectors v1, ..., vm ∈ Rn such that A =
conv(v1, ..., vm). We call v1, ..., vm vertices of A. If v1, ..., vm ∈ Qn, we call A is a rational polytope.

Definition 4.14 (Cone). We say C ⊂ Rn is a cone if 0 ∈ C and for every x ∈ C and λ ∈ R+ λx ∈ C.

By the definition of cone, the following holds.

Proposition 4.15. Any cone containing nonzero vector is not bounded.

Definition 4.16 (Convex Cone). We say C ⊂ Rn is a convex cone if C is cone and every conic combination of finite
vectors of C is contained in C.

Because every intersection of convex cones is also convex cone, the following holds.

Proposition 4.17 (Convex Cone generated by a set). Let us assume A is any subset of Rn. Then there is the minimum
convex cone containing A. We denote this convex cone by cone(A).

Definition 4.18 (Polyhedral cone). Let

(S1) A ∈M(m,n,Q).

We call
P := {x ∈ Rn|Ax ≤ 0}

a Polyhedral cone.

Theorem 4.19 (Minkowski Weyl Theorem for cones). Let

(S1) C ⊂ Rn.
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Then C is a Polyhedral cone if and only if C is finite generated cone.

STEP1. Proof of ‘if‘ part. Let us assume C is finite generated cone. Then there is r1, ..., rk ∈ R such that C =
cone(r1, ..., rk). We set R = (r1, ..., rk).

By applying Fourier elimination method k times to the the following inequality

−µ ≤ 0, Rµ ≤ x,−Rµ ≤ −x

and Fourier elimination method (vi), there is A ∈M(m,n,R) such that the above inequality is equivalent to

Ax ≤ 0

So, C = {x ∈ Rn|Ax ≤ 0}.

STEP2. Proof of ‘only if‘ part. Let us assume C is a Polyhedral cone. So, there is A ∈ M(m,n,R) such that C = {x ∈
Rn|Ax ≤ 0}. We set C∗ := {y ∈ Rn|∃ν ∈ Rm+ such that Atv = y}. Then

C∗ = cone(a1, ..., am)

Here, ai ∈ Rn is the i-th row vector of A (i = 1, 2, ...,m). By STEP1, there is R ∈M(n, k,R) such that

C∗ = {y ∈ Rn|Rty ≤ 0}

We denote the i-th column vector of R by ri (i = 1, 2, ..., k). We will show

C = cone(r1, ..., rk)

Let us fix any x ∈ cone(r1, ..., rk). Then there are ν1, ..., νk ∈ R+ such that x = Rν. Because ai = Atei (i = 1, 2, ...,m),
ai ∈ C∗ (i = 1, 2, ...,m). So, AR ≤ 0. This implies Ax = ARν ≤ 0. This means x ∈ C. We have shown cone(r1, ..., rk) ⊂ C.

Let us fix any x̄ ∈ cone(r1, ..., rk)c. So, {ν ∈ Rk|Rν = x̄, ν ≥ 0} = ϕ. By Farkas Lemma II, there is y ∈ Rn such that
Rty ≤ 0 and ytx̄ > 0. So, y ∈ C∗. Then there are ν ∈ Rm+ such that y = Atν. So, νtAx̄ > 0. Because ν ∈ Rm+ , this implies
Ax̄ 6≤ 0. This means x̄ ∈ Cc. Consequently C ⊂ cone(r1, ..., rk).

Definition 4.20 (Minkowski sum). Let A,B ⊂ Rn. We call

A+B

the Minkowski sum of A and B.

Proposition 4.21. Let

(i) Minkowski sum of any two convex set is convex.

(ii) For any two subset A,B ⊂ Rn,

conv(A+B) = conv(A) + conv(B)

Proof of (i). Let A,B ⊂ Rn be convex. For any a1, ..., am ∈ A and b1, ..., bm ∈ B and λ1, ..., λm ⊂ [0, 1] such that∑m
i=1 λi = 1,

m∑
i=1

λi(ai + bi) =

m∑
i=1

λiai +

m∑
i=1

λibi ∈ A+B

So, A+B is convex.

Proof of (ii). By (i), conv(A)+conv(B) is convex. And A+B ⊂ conv(A)+conv(B). So, conv(A+B) ⊂ conv(A)+conv(B).

Let us fix any a1, .., ak ∈ A and ba, ..., bl ∈ B and λ1, ..., λk, µ1, ..., µl ∈ [0, 1] such that
∑k
i=1 λi = 1 and

∑l
i=1 µi = 1.

Then

k∑
i=1

λiai +

l∑
j=1

µjbj =

l∑
j=1

µj(

k∑
i=1

λiai + bj) =

l∑
j=1

µj(

k∑
i=1

λi(ai + bj)) =
∑
i,j

λiµj(ai + bj) ∈ conv(A+B)
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Theorem 4.22 (Minkowski-Weyl Theorem). A subset P ⊂ Rn is a Polyhedron if and only if there is a polytope Q a finite
generated cone C such that

P = Q+ C

We call the right side V-representation and call P a V-polyhedron.

Proof of ‘only if‘ part. Let us fix A ∈M(m,n,R) and b ∈ Rm such that P = {x ∈ Rn|Ax ≤ b}. We set

CP := {(x, y) ∈ Rn × R|Ax− yb ≤ 0, y ≤ 0}

Then clearly
P = {x ∈ Rn|(x, 1) ∈ CP }

By Minkowski Weyl Theorem for cones, there are r1, r2, ..., rKRn+1 such that

CP := cone(r1, r2, ..., rK)

Because CP is a cone, we can assume rin+1 = 0 or 1 (∀i). So, there are u1, ..., uk ∈ Rn and v1, ..., vl ∈ Rn such that

CP = cone(

(
u1
1

)
, ...

(
uk
1

)
,

(
v1
0

)
, ...,

(
vl
0

)
)

So,
P = conv(u1, ..., uk) + cone(v1, ..., vl)

Proof of ‘if‘ part. We assume we can get

P = conv(u1, ..., uk) + cone(v1, ..., vl)

Then

P = cone(

(
u1

1

)
, ...,

(
uk

1

)
,

(
v1

0

)
, ...,

(
vl

0

)
) ∩ Rn × {1}

Because cone(

(
u1

1

)
, ...,

(
uk

1

)
,

(
v1

0

)
, ...,

(
vl

0

)
) is a Polyhedral cone, P is a Polyhedron.

Proof of the last part.

Proposition 4.23. Let

(i) Bounden Polyhedron is polytone.

(ii) If A ∈M(m,n,Q) and b ∈ Qm, then there are v1, ..., vk ∈ Qn and r1, ..., rl ∈ Zn such that

P := {x ∈ Rn|Ax ≤ b} = conv(v1, ..., vk) + cone(r1, ..., rl)

If P is bounded, P is a rational polytope.

(iii) P ⊂ Rn is a rational polyhedron if and only if P is a minkowski sum of a rational polytope and a convex
cone generated by finite rational vectors.

Proof of (i). By Proposition4.15, (i) holds.

Proof of (ii). By the proof of Theorem4.19, (ii) holds.

Proof of (iii). By the proof of Theorem4.19, (iii) holds.
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4.2.4 Perfect formulation and Meyer’s Foundamental theorem

Proposition 4.24. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ (Z+)
n × (R+)

p|g(x, y) := Ax+Gy ≤ b}

Then

(i)

sup{ctx+ hty|(x, y) ∈ S} = sup{ctx+ hty|(x, y) ∈ conv(S)}

Furthermore, there is (x, y) ∈ S such that ctx + hty = sup{ctx + hty|(x, y) ∈ S} ⇐⇒ there is (x, y) ∈
conv(S) such that ctx+ hty = sup{ctx+ hty|(x, y) ∈ S}

(ii) ex(conv(S)) ⊂ S

Proof of the first part of (i). Because S ⊂ conv(S),

sup{ctx+ hty|(x, y) ∈ S} ≤ sup{ctx+ hty|(x, y) ∈ conv(S)}

We can assume z∗ = sup{ctx + hty|(x, y) ∈ S} < ∞. Let us set H := {(x, y) ∈ Rn+p|ctx + hty ≤ z∗}. Because H is
convex and S ⊂ H, conv(S) ⊂ H. So,

sup{ctx+ hty|(x, y) ∈ S} ≥ sup{ctx+ hty|(x, y) ∈ conv(S)}

Proof of the last part of (i). The part of =⇒ is clear. We set d := (c, h). Let us assume there is z̄ = (x̄, ȳ) such that

dtz̄ = sup{ctx + hty|(x, y) ∈ conv(S)}. Then there are λ1, ..., λk > 0 and z1, ..., zk ∈ S such that z̄ =
∑k
i=1 λizi. Clearly

dtzi ≤ dtz̄ (∀i). Because dtz̄ =
∑k
i=1 d

tλizi, there is i such that dtzi ≥ dtz̄. So, dtzi = sup{ctx+hty|(x, y) ∈ conv(S)}.

Proof of (ii). Let us fix any v ∈ ex(conv(S)). Because ex(conv(S)) ⊂ conv(S), there are λ1, ..., λm ∈ (0, 1] and v1, ..., vm ∈

S such that v =
∑
i=1 λiv

i. We can assume m > 1. We set v′ :=
∑m
i=2

λi
1− λ1

vi. Then v′ ∈ conv(S). Because

v = λ1v1 + (1− λ1)v′ and v ∈ ex(conv(S)), v = v1 ∈ S.

Proposition 4.25. Let r1, ..., rK ∈ Rn. Then

conv(

K∑
i=1

Z+r
i) = cone(r1, ..., r

K)

Proof. We will show this by Mathematical induction. If K = 1, then this proposition holds. Let us fix any k ∈ N and
assume this proposition holds for every K ≤ k.

We set C := conv(
∑k+1
i=1 Z+r

i). Clearly C ⊂ cone(r1, ..., rk+1). Let us fix x ∈ cone(r1, ..., rk+1). Then there are

µ1, ..., µk+1 ∈ R+ such that x =
∑k+1
i=1 µir

i. We can assume µk+1 > 0. We set λ :=
2µk+1

d2µk+1e
. Because 0 ∈ C,

2µk+1r
k+1 = (1− λ)0 + λd2µk+1erk+1 ∈ C. By Mathematical induction assumption,

∑k
i=1 2µir

i ∈ C. So,

k+1∑
i=1

µir
i =

1

2
(2µk+1r

k+1 +

k∑
i=1

2µir
i) ∈ C

So, cone(r1, ..., rk+1) ⊂ C.

Theorem 4.26 (Meyer(1974)[9] Fundamental Theorem). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ Zn}.

Then there are A′ ∈M(m,n,Q), G′ ∈M(m, p,Q), b′ ∈ Qm, c ∈ Rn, h ∈ Rp such that

conv(S) = P (A′, G′, b′)
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STEP1. Decomposition of S. We can assume S 6= ϕ. Then by Proposition4.23, there are v1, ..., vt ⊂ Qn+p and r1, ..., rq ⊂
Zn+p such that

P := P (A,G, b) = conv(v1, ..., vt) + cone(r1, ..., rq)

We set

T := {
s∑
i=1

λiv
i +

q∑
j=1

µjr
j |0 ≤ λi, µj ≤ 1 (∀i, j),

s∑
i=1

λi = 1} = conv(v1, ..., vt) +

q∑
j=1

[0, 1]rj

Then T is bounded. There is M ∈ N and D ∈M(M,n+ p,Q) such that

T = {z ∈ Rn+p|∃λ ∈ Rn+, ∃µ ∈ Rp+ s.t. D

(
λ
µ

)
≤ z,

s∑
i=1

λi ≤ 1,−
s∑
i=1

λi ≤ −1, µ ≤ 1}

By Fourier elimination method, there are C ∈ M(M,n,R) and d ∈ Qn such that T = {x ∈ Rn|Cx ≤ d}. So, by
Proposition4.23, T is a rational polytope.

Let

TI := {(x, y) ∈ Zn × Rp|(x, y) ∈ T}, RI := {
q∑
j=1

µjr
j |µj ∈ Z+ (∀j)}

We will show
S = TI +RI

Because TI +RI ⊂ T and i-th component of TI +RI is integer for every i ∈ {1, 2, ..., s}, TI +RI ⊂ S.
Let us fix any (x, y) ∈ Zn × Rp such that (x, y) ∈ S. Then there are λ1, ..., λs, µ1, ..., µq ∈ [0, 1] such that

∑s
i=1 λi = 1

and

(x, y) =

s∑
i=1

λiv
i +

q∑
j=1

µjr
j

We set

(x′, y′) :=

s∑
i=1

λiv
i +

q∑
j=1

(µj − bµjc)rj , r :=
q∑
j=1

bµjcrj

Then (x′, y′) ∈ TI and r ∈ RI . So, (x, y) ∈ TI +RI . Consequently, S = TI +RI .

STEP2. Proof that conv(S) is a rational polyhedron. By Proposition4.21 and STEP1,

conv(S) = conv(TI) + conv(RI)

Because conv(RI) = conv(r1, ..., rq), by Proposition4.25, conv(RI) is a rational polyhedral cone. So, it is enough to show

conv(TI) is a rational polytope

Since T is bounded, X := {x ∈ Zn|∃y ∈ Rp such that (x, y) ∈ TI} is bounded and so is a finite set.
For each x ∈ X, we set Tx := {(x, y)|∃y ∈ Rp such that (x, y) ∈ TI}. For any x̄ ∈ X,

Tx̄ = {(x, y) ∈ Rn × Rp|x = x̄ and (x, y) ∈ T}

Because T is a rational polytope, Tx̄ is a rational polytope. We denote th set of all vertices of Tx̄ by Vx̄ for any x̄ ∈ X.
We set V := ∪x∈XVx. V is a finite set. We will show

conv(TI) = conv(V )

Because TI = ∪x∈XTx = ∪x∈Xconv(Vx) ⊂ conv(V ), conv(TI) ⊂ conv(V ). Because V = ∪x∈XVx ⊂ ∪x∈Xconv(Vx) =
∪x∈XTx = conv(TI), conv(V ) ⊂ conv(TI). So, conv(TI) = conv(V ). Consequently, conv(TI) is a rational polytope.

By the proof of Theorem4.24, the following holds.

Theorem 4.27. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ Zn}.
Then there are

a1, ..., ak ∈ P (A,G, b) ∩ Zn ×Qp = S

and
r1, ..., rl ∈ Zn+p

such that
conv(S) = conv(a1, ..., ak) + cone(r1, ..., rl)
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4.2.5 Sharp MILP Formulation

Definition 4.28 (MILP Formulation). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), B ∈M(m, t,Q), b ∈ Qm.

(S2) S ⊂ Qn.

(S3) T (A,G,B, b) := {(x, y, z) ∈ Qn ×Qp × Zt|Ax+Gy +Bz ≤ b}.

We say (A,G,B, b) is a MILP formulation for S if and only if S is equal to the image of

pn : T (A,G,B, b) 3 (x, y, z) 7→ x ∈ Qn

Clearly the following holds.

Proposition 4.29. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ (Z+)
n}.

(S3) We set

Ã :=


A
En
Op,n
On,n

 , G̃ :=


G
On,p
−Ep
On,p

 , B̃ :=


B
−En
Op,n
−En

 , b̃ :=


b
0n
0p
0n


Then (Ã, G̃, B̃, b̃) is a MILP formultation for S.

Definition 4.30 (Sharp MILP Formulation). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), B ∈M(m, t,Q), b ∈ Qm.

(S2) S ⊂ Qn.

(Aq) (A,G,B, b) is a MILP formulation for S.

We say (A,G,B, b) is sharp MILP formulation for S if and only if conv(S) is equal to the image of

pn : T̃ (A,G,B, b) 3 (x, y, z) 7→ x ∈ Qn

Here, T̃ (A,G,B, b) is a LP relaxation of T (A,G,B, b).

Theorem 4.31. Here are the settings and assumptions.

(S1) S ⊂ Qn.

(A1) There are A ∈ M(m,n,Q), G ∈ M(m, p,Q), B ∈ M(m, t,Q), b ∈ Qm such that (A,G,B, b) is a MILP
formulation for S.

Then there there are M ∈ N and Ã ∈ M(M,n,Q), G̃ ∈ M(M,p,Q), B̃ ∈ M(M, t,Q), b̃ ∈ QM such that (Ã, G̃, B̃, b̃) is a
sharp MILP formulation for S.

Proof. We set
TI := {(x, y, z) ∈ Qn ×Qp × Zt|Ax+Gy +Bz ≤ b}

and p1 : TI 3 (x, y, z) 7→ x ∈ Qn. Because (A,G,B, b) is a MILP formulation for S,

p1(TI) = S

By Theorem4.2.4, there are M ∈ N and Ã ∈M(M,n,Q), G̃ ∈M(M,p,Q), B̃ ∈M(M, t,Q), b̃ ∈ QM such that

TI = {(x, y, z) ∈ Qn ×Qp × Zt|Ãx+ G̃y + B̃z ≤ b̃}

conv(TI) = {(x, y, z) ∈ Qn ×Qp ×Qt|Ãx+ G̃y + B̃z ≤ b̃}

Because conv(S) = conv(p1(TI)) = p1(conv(TI)),

conv(S) = p1(conv(TI))

So, (Ã, G̃, B̃, b̃) is a sharp MILP formulation for S.
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4.2.6 Review

Meyer theorem states that the convex hull of the feasible region of MILP is a rational polyhedron. So, the feasibility and
the optimal value of MILP are equivalent to the feasibility and the optimal value of some LP, respectively. By methods
such as simplex method, we can find this LP solution in extreme points of feasible reasion. By Proposition4.24, this
extreme point is a solution of original MILP problem.

I think there are the following three ideas that are important in the proof of Meyer theorem.

1. Fourier elimination method

2. Expressing the feasible region of MILP or LP in terms of the Minkowski sum of bounded and unbounded
parts

3. Going back and forth between integer and continuous parts of a polyhedron

Fourier elimination method plays an important role throughout this section. Fourier elimination method is a method
of solving linear inequalities

Ax ≤ b (4.2.1)

focusing on the sign of the coefficients of a certain variable and using only non-negative multipliers to eliminate the variable.
(4.2.1) corresponds to another two linear inequalities. If there is a solution of (4.2.1), then there is U ∈M(m0, n,R) such
that U ≥ 0 and UA = 0 and

0 ≤ Ub (4.2.2)

By focusing on row vectors of U , if there is no solutions of (4.2.1), then there is u ∈ Rn+ such that

Atu = 0, utb < 0, u ≥ 0 (4.2.3)

Correspondance between (4.2.1) and (4.2.3) is stated by Farkas Lemma.
For idea2 on LP feasible reasion P , we state this idea as Minkowski Weyl Theorem.

P = conv(v1, ..., vs) + cone(r1, ..., rq) (4.2.4)

By increasing the dimension of the solution space of the simultaneous inequalities by one as follows, Minkowski Weyl
Theorem is boil down to the case in P is a polyhedral cone.

P = P̃ ∩ Rn × {1}, P̃ := {(x, y) ∈ Rn × R|(A,−b)
(
x
y

)
≤ 0} (4.2.5)

By Fourier elimination method and Farkas Lemma, any polyhedral cone is equivalent to finite generated convex cone.
Meyer theorem is the following.

Theorem 4.32. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), b ∈ Qm, c ∈ Rn, h ∈ Rp.

(S2) S := {(x, y) ∈ P (A,G, b)|x ∈ Zn}.

Then conv(S) is a rational polyhedron.

In the proof of Meyer theorem, we focus on Polyhedron P := P (A,G, b) which is containing S. By Minkowski Weyl
Theorem, we get

P = conv(v1, ..., vs) + cone(r1, ..., rq)

We focus a bounded part of P

T = conv(v1, ..., vs) +

q∑
j=1

[0, 1]rj

We denote a integer part of T by TI and denote a integer part of cone(r1, ..., rq) by RI . Then we get

S = TI +RI

So,
conv(S) = conv(TI) + conv(RI)

Because conv(TI) is a rational polytope and conv(RI) is a rational polyhedral cone, conv(S) is a rational polyhedron.
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4.3 MILP formulation

4.3.1 Minimal formulation

Definition 4.33 (Implied equations, redundant inequalities, and facet). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qm, P := {x ∈ Qn|Ax ≤ b}. ai is the i-th row vector of A..

Then

(i) We say F ⊂ P is a face of P if and only if F = {x|aTi x = bi (∀i ∈ L)} for some L ⊂ {1, 2, ...,m}.
(ii) We say F ⊂ P is a proper face of P if and only if F is a face and F 6= ϕ and F 6= P .

(iii) We say F ⊂ P is a facet of P if and only if F is a proper face and maximum with respect to inclusion.

(iv) We say aix ≤ bi (i ∈ L) is implied equations of P if and only if aix ≤ bi (∀i ∈ L) for any x ∈ P .

(v) We say aix ≤ bi (i ∈ L) is facet defining inequalities of P if and only if F := {x|aix ≤ bi (∀i ∈ L)} is a
facet of P .

(vi) We say aix ≤ bi (i ∈ L) is redundant inequalities of P if and only if there is a subset I ⊂ {1, 2, ...,m}
such that P = {x|aix ≤ bi (∀i ∈ I \ L)}.

(vii) We say L ⊂ {1, 2, ...,m} is a minimal formulation of P if and only if P = {x|aix ≤ bi (∀i ∈ L)} and
there is no i L such that ai ≤ b is a redundant inequality of P .

4.3.2 Locally ideal formulation

Proposition 4.34 (Standard equity form for LP). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qm.

(S2) S := {x ∈ Qn|Ax ≤ b}.
(S3) We set for x ∈ S,

Φ(x) := (y+, y−, z)

Here,
y+i := max{xi, 0} (i = 1, 2, ..., n)

y−i := max{−xi, 0} (i = 1, 2, ..., n)

zj := (aj , x)− bj (j = 1, 2, ...,m)

(S4) S̃ := {(y+, y−, z) ∈ Qn+|A(y+ − y−) + z ≤ b}.

Then Φ is a bijective from S to S̃. We call S̃ the standard equity form of S. We call each zj a slack variable.

Definition 4.35 (Basic feasible solution for LP .). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qm.

Then

(i) For x ∈ Qn, we say x̄ is a basic solution of Ax = b if and only if {ai|ai is the i-th column of A and x̄i > 0}
are linear independent.

(ii) For x ∈ Qn+, we say x̄ is a basic feasible solution of

Ax = b, x ≥ 0

if and only if x is a basic solution of Ax = b.

Proposition 4.36. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qm.

(S2) x is a solution of Ax ≤ b, x ≥ 0.

(S3) z = (z1, .., zm) are nonzero slack variables for Ax+ z = b, x, z ≥ 0.

(S4) I := {i ∈ {1, 2, ...,m}|aTi x = bi}. Here ai is the i-th row vector of A.

(S5) J := {j ∈ {1, 2, ..., n}|xj 6= 0}.
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Then (x, z) is a basic feasible solution iff {{ai,j}i∈I}j∈J are linear independent.

Proof. We set I ′ := {i ∈ {1, 2, ...,m}|aTi x < bi}. (x, z) is a basic feasible solution iff {aj}j∈J ∪ {ei}i∈I′ are linear
independent. Here aj is the j-th column of A. This is equivalent to {aj−

∑
i∈I′ ai,jei}j∈J ∪{ei}i∈I′ are linear independent.

So, (x, z) is a basic feasible solution iff {{ai,j}i∈I}j∈J are linear independent.

Definition 4.37 (Locally ideal). Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), G ∈M(m, p,Q), B ∈M(m, t,Q), b ∈ Qm.

(S2) S ⊂ Qn.

(S3) T (A,G,B, b) := {(x, y, z) ∈ Qn ×Qp × Zt|Ax+Gy +Bz ≤ b}.
(S4) S̃ := {w ∈ QM |Cw = c, w ≥ 0} is a standard equity form of S and Φ is the bijection from S to S̃ in

Proposition4.34.

We say (A,G,B, b) is a locally ideal MILP formulation for S if and only if S̃ has at most one basic feasible solution and
for any basic feasible solution of S̃ w, Φ−1(w) ∈ Qn+p × Zt.

We will show an example of MILP formulation which is not locally ideal but sharp.

Example 4.38. Here are the settings and assumptions.

(S1) S = ∪ni=1Pi. Pi := {x ∈ Qn||xi| ≤ 1, xj = 0 (j 6= i)} (i = 1, 2, ..., n).

Then

(i) The following is a MILP formulation for S.

yj − 1 ≤ xi ≤ 1− yj (i = 1, 2, .., n, j 6= i), (4.3.1)

yi ≥ 0, (i = 1, 2, .., n), (4.3.2)
n∑
i=1

yi = 1 (4.3.3)

y ∈ Zn

(ii) conv(S) = {x ∈ Qn|
∑n
i=1 |xi| ≤ 1}

(iii) Equalities and Inequalities in (i) and the following is a sharp MILP formulation for S.

n∑
i=1

rixi ≤ 1 (r ∈ {−1, 1}n) (4.3.4)

(iv) If n = 3, the formulation in (iii) is not locally ideal.

(v) The following is a sharp and locally ideal MILP formulation for S.

−yi ≤ xi ≤ yi (i = 1, 2, .., n), (4.3.5)

yi ≥ 0, (i = 1, 2, .., n), (4.3.6)
n∑
i=1

yi = 1 (4.3.7)

y ∈ Zn

Proof of (i). It is clear.

Proof of (ii). The part of ⊂ is clear. Let us fix any x in the right side. We take s ≥ 1 such that
∑n
i=1 s|xi| = 1. Then

x =

n∑
i=1

r|xi|
sign(xi)

r
ei

So, x ∈ conv(S).

Proof of (iii). We set T := {(x, y) ∈ Qn × Qn|(x, y) satisfies equalities and inequalities of (i)}. Clearly p1(T ) ⊂ conv(S).
Clearly T is convex. Because Pi × {ei} ⊂ T (∀i), S ⊂ p1(T ). So, conv(S) ⊂ T .
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Proof of (iv). Clearly x1 = x2 = y1 = y2 =
1

2
, x3 = y3 = 0 is a feasible solution. We will show this is a basic feasible

solution. By Proposition4.36, it is enough to show the column vectors of

x1 x2 y1 y2
x1 ≤ 1− y1 1 0 0 1
x2 ≤ 1− y2 0 1 1 0
y1 + y2 = 1 0 0 1 1
x1 + x2 = 1 1 1 0 0

are linear independent. Because this matrix is nonsingular, the column vectors of this matrix are linear independent.

Proof of (v). By the same argument as the proof of (iii), we can show this formulation is sharp. For locally ideal property,
it is enough to show for any basic feasible solution (x+, x−, y, z) there is #{i|yi 6= 0} = 1. Because

∑n
i=1 yi = 1,

#{i|yi 6= 0} ≥ 1. For aiming contradiction, let us assume #{i|yi 6= 0} > 1. So, there are i1 6= i2 such that yi1 , yi2 > 0.
We can assume i1 =, i2 = 2. We will show in each case of the followings.

case1 |x1| < y1 or |x2| < y2.

case2 |x1| = y1 and |x2| = y2.

In case1, we can assume |x1| < y1. If |x2| < y2, then By Proposition4.36, the clumns vectors of the following matrix are
linear independent.

y1 y2
∗ 0 0
... ... ....
∗ 0 0∑

i yi = 1 1 1

This is contradiction. So, |xi2 | = yi2 . By Proposition4.36, the clumns vectors of the following matrix are linear independent.

y1 y2 x∗2
∗ 0 0 0
... ... ... 0
∗ 0 0 0

q2y2 + r2x2 ≤ 0 0 q2 r2∑
i yi = 1 1 1 0

Here, q2r2 6= 0. So, the clumns vectors of the following matrix are linear independent.

y1 y2 x∗2
∗ 0 0 0
... ... ... 0
∗ 0 0 0

q2y2 + r2x2 ≤ 0 0 0 r2∑
i yi = 1 1 0 0

This is contradiction.
In case2, By Proposition4.36, the clumns vectors of the following matrix are linear independent.

y1 y2 x∗1 x∗2
∗ 0 0 0 0
... ... ... ... ...
∗ 0 0 0 0

q1y1 + r1x1 ≤ 0 q1 0 r1 0
q2y2 + r2x2 ≤ 0 0 q2 0 r2∑

i yi = 1 1 1 0 0

Here, q1r1q2r2 6= 0. So, the clumns vectors of the following matrix are linear independent.

y1 y2 x∗1 x∗2
∗ 0 0 0 0
... ... ... ... ...
∗ 0 0 0 0

q1y1 + r1x1 ≤ 0 0 0 r1 0
q2y2 + r2x2 ≤ 0 0 0 0 r2∑

i yi = 1 1 1 0 0
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This is contradiction.
Consequently, #{i|yi 6= 0} ≤ 1.

Memo 4.39. We measured execution times in three formulations in Example4.38. Here are the settings.

Version of SCIP: SCIP9.0.0.0

Target Machine: Ubuntu Desktop 22.04

Host Machine: Windows10

CPU:Inter Core i7-6700T@2.8GHz

DRAM: 32GB

Here are the problem.

maximize
∑
i=1

cixi, x ∈ S

For n = 1000, the execution times are below.

Simple formulation(i) : 119sec

Locally ideal formulation(v) : 0.028sec

For sharp formulation(iii) and n = 17, the execution time is 229sec. See [10] for sample code.

Proposition 4.40. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qm.

(S2) S := {x ∈ Qn1 ×Qn2 |Ax ≤ b}.
(S3) T (A,G,B, b) := {(x, y, z) ∈ Qn ×Qp × Zt|Ax+Gy +Bz ≤ b}.
(S4) S̃ := {w ∈ QM |Cw = c, w ≥ 0} is a standard equity form of S and Φ is the bijection from S to S̃ in

Proposition4.34.

Then

(i) For any x ∈ ex(S), Φ(x) is a basic feasible solution.

(ii) For any x ∈ S \ {0} such that Φ(x) is a basic feasible solution, Φ(x) ∈ ex(S̃).
(iii) Let us assume S ⊂ [0,∞)n1+n2 . Then for any x ∈ S such that Φ(x) is a basic feasible solution, x ∈ ex(S).

Proof of (i). Let z is a slack variable for Ax ≤ b. In := {i|xi 6= 0}. J0 := {j|zj = 0}. If J0 = ϕ, then Ax < b. So, there is
x1, x2 ∈ Qn t ∈ (0, 1) such that Ax1Ax2 < b and x = tx1 + (1− t)x2. This is contradiction. So, J0 6= ϕ. If x = 0, Φ(x) is
clearly basic feasible solution. So, we can assume x 6= 0. It is enough to show {{ai,j}i∈In |j ∈ J0} are linear independent.
For aiming contradiction, let us assume {{ai,j}i∈In |j ∈ J0} are linear dependent. We set k := #In and

A′ := {ai,j}i∈In,j∈{1,2,...,n}, A
′′ := {ai,j}i ̸∈In,j∈{1,2,...,n}, b

′ := {bi}i∈In , b′′ := {bi}i ̸∈In

Then there is a c ∈ Qn \ {0} such that

ci = 0 (∀i 6∈ In), x+ sc is a solution of A′x = b′ (∀s ∈ R)

Because A′′x < b′′, there is s > 0 such that A′′(x + sc) < b′′ and A′′(x − sc) < b′′. This means that x 6∈ ex(S). This is
contradiction.

Proof of (ii). Let us fix any x ∈ S \{0} such that Φ(x) is a basic feasible solution. We can assume |x1|, .., |xk| > 0, xk+1 =
... = xn = 0 and

a1,1x1 + ...+ a1,kxk = b1

...

al,1x1 + ...+ al,kxk = bl
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and

rank

a1,1 ... a1,k
... ... ...
al,1 ... al,k

 = k

So, the equation

a1,1x̄1 + ...+ a1,kx̄k = b1

...

al,1x̄1 + ...+ al,kx̄k = bl

has the unique solution.
For aiming contradiction, let us assume that Φ(x) 6∈ ex(S). Then there are x1 := (x1,+, x1,−, z1) and x2 :=

(x2,+, x2,−, z2) and t ∈ (0, 1) such that x = tx1 + (1 − t)x2. So, xj,+i = xj,−i = 0 (∀i > k, j = 1, 2) and xj,+i =

δ+,sign(xi)x
j,+
i (∀i ≤ k, j = 1, 2) and xj,−i = δ+,sign(xi)x

j,−
i (∀i ≤ k, j = 1, 2). This implies (x

1,sign(x1)
1 , ..., x

1,sign(x1)
k ) and

(x
2,sign(x2)
1 , ..., x

2,sign(x2)
k ) satisfies the equation

a1,1x̄1 + ...+ a1,kx̄k = b1

...

al,1x̄1 + ...+ al,kx̄k = bl

This is contradiction.

Proof of (iii). (iii) is followed by the same argument of the proof of (ii).

Definition 4.41 (Affine combination, Affine independent).

(i) For x1, ..., xm ∈ Qn,
m∑
i=1

λixi, λ1, ..., λm ∈ Q,
m∑
i=1

λi = 1

is called an affine combination of x1, ..., xm.

(ii) We say x1, ..., xm ∈ Qn are affinely independent if for any λ1, ..., λm ∈ Q such that
∑m
i=1 λi = 0 and∑m

i=1 λixi = 0, λ = 0.

Definition 4.42 (Dimension). For S ⊂ Rn,

dim(S) := max{#A|A is a finite subset of S and A is affinely independent} − 1

Definition 4.43 (Pointed set). We say convex subset S ⊂ Rn is pointed if and only if ex(S) 6= ϕ.

Proposition 4.44. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qn.

(S2) P := {x ∈ Qn+|Ax ≤ b}.
(A1) P 6= ϕ.

Then P is pointed.

Proof. For y ∈ P , We set
N(y) := #{i|yi 6= 0},M(y) := #{j|aTj y = bj}

Here, aj is the j-th row vector of A. We set
K := max{N(y)|y ∈ P}

If K = n, clearly 0 ∈ ex(P ). So, we can assume K < n. We set

L := max{M(y)|y ∈ P,N(y) = K}

Because K < n, L > 0. There is x ∈ P such that N(x) = K,M(x) = L. We set k := n − K. We can assume
x1, ..., xk > 0, xk+1 = ... = xn = 0 and

A′x′ = b′
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Here, A′ := {ai,j}i=1,...,L,j=1,2,...,n, x
′ := (x1, ..., xk), b

′ := (b1, ..., bL)
T . For aiming contradiction, let us assume rank(A′) <

n. there is r′ ∈ Qk such that
A′(x′ + tr) = b′ (∀t ∈ R)

So, there is y ∈ P such that N(y) > N(x) or M(x) < M(y). This is contradiction. So, rank(A′) = n. From this,
x ∈ ex(P ).

Definition 4.45 (Edge). Let P be a nonempty polyhedron in Rn. We call a face of P whose dimension is 1 an edge of
P .

Proposition 4.46. Here are the settings and assumptions.

(S1) a1, ..., akQn.

(A1) For any i, ai 6∈ conv(a1, ..., ai−1, ai+1, ..., ak).

Then
ex(conv(a1, ..., ak)) = {a1, ..., ak}

Proof. By Proposition4.24, it is enogh to show supset part. Let us assume there is i such that ai 6∈ ex(conv(a1, ..., ak)).
We can assume i = k. So there are λ1, ..., λk, η1, ..., ηk, t ∈ (0, 1) such that

∑k
i=1 λi = 1 and

∑k
i=1 ηi = 1 and ak =

t
∑k
i=1 λiai + (1− t)

∑k
i=1 ηiai and

∑k
i=1 λiai 6= ak and

∑k
i=1 ηiai 6= ak. So, tλk + (1− t)ηk < 1. This implies

ak =

k−1∑
i=1

tλi + (1− t)ηi
1− tλk − (1− t)ηk

ai

So, ak ∈ conv(a1, ..., ak−1). This is contradiction.

Proposition 4.47. Here are the settings and assumptions.

(S1) P ⊂ Rn is a Poryhedron.

(S2) a1, ..., ak, r1, ..., rlQn such that P = conv(a1, ..., ak) + cone(r1, ..., rl).

(A1) For any i, ai 6∈ conv(a1, ..., ai−1, ai+1, ..., ak).

Then
ex(P ) ⊂ {a1, ..., ak}

Proof. By Proposition4.24, it is enough to show ex(P ) ⊂ conv(a1, ..., ak). Let us fix any x ∈ P \ conv(a1, ..., ak). There
are y ∈ conv(a1, ..., ak) and z ∈ cone(r1, ..., rl) \ {0} such that x = y + z. Because 2z, 0 ∈ cone(r1, ..., rl), y, y + 2z ∈ P .
So, z =

1

2
(y + y + 2z). This means x 6∈ ex(P ). Consequently, ex(P ) ⊂ conv(a1, ..., ak).

Proposition 4.48. Here are the settings and assumptions.

(S1) P ⊂ Rn is a Poryhedron.

(A1) P is pointed.

Then there are a1, ..., ak, r1, ...rl ∈ Qn

P = conv(a1, ..., ak) + cone(r1, ..., rl), ex(P ) = {a1, ..., ak}, 0 6∈ cone(r1, ..., rl)

Proof. By Minkowski-Weyl Theorem, Then there are a1, ..., ak, r1, ...rl ∈ Qn

P = conv(a1, ..., ak) + cone(r1, ..., rl)

For aiming contradiction, let us assume 0 6∈ ex(cone(r1, ..., rl)). The there are z1 6= z2 ∈ cone(r1, ..., rl) such that

0 =
1

2
(z1 + z2). For any i,

ai =
1

2
((ai + z1) + (ai + z2))

This implies ai 6∈ ex(P ). By Proposition4.47, ex(P ) = ϕ. This is contradiction. So, 0 ∈ ex(cone(r1, ..., rl)).
By dropping some elements if necessary, we can assume that for each i

ai 6∈ conv(a1, ..., ai−1, ai+1, ..., ak) + cone(r1, ..., rl)
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For aiming contradiction, let us assume ai 6∈ ex(P ). We can assume i = k. Then there are y1, y2 ∈ conv(a1, ..., ak) and
z1, z2 ∈ cone(r1, ..., rl), t ∈ (0, 1) such that

ak = t(y1 + z1) + (1− t)(y2 + z2), y1 + z1 6= ak, y2 + z2 6= ak

There are λ1, ..., λk, η1, ..., ηk, t ∈ (0, 1) such that
∑k
i=1 λi = 1 and

∑k
i=1 ηi = 1 and y1 =

∑k
i=1 λiai and y2 =

∑k
i=1 ηiai. If

y1 = y2 = ak, 0 = tz1+(1−t)z2. This contradicts with 0 6∈ ex(P ). So, y1 6= ak or y2 6= ak. This implies tλk+(1−t)ηk < 1.
So,

ak =
1

1− tλk − (1− t)ηk
(

k∑
i=1

(tλi + (1− t)ηi)ai + tz1 + (1− t)z2)

This means ak ∈ conv(a1, ..., ak−1) + cone(r1, ..., rl). This is contradiction.

Proposition 4.49. Here are the settings and assumptions.

(S1) S ⊂ Qn.

(A1) (A,B,D, b) is a locally ideal MILP formulation for S.

(S2) We set

P := {(x, u, y) ∈ Qn ×Qp ×Qt|Ax+Bu+Dy ≤ b}, PI := {(x, u, y) ∈ P |y ∈ Zt}
p : P 3 (x, u, y) 7→ x ∈ Qn

(A2) P is pointed.

then (A,B,D, b) is a sharp formulation for S.

Proof. By Proposition4.48, there are a1, ..., ak, r1, ...rl ∈ Qn

P = conv(a1, ..., ak) + cone(r1, ..., rl), ex(P ) = {a1, ..., ak}, 0 6∈ cone(r1, ..., rl),
ai = (x̂i, ûi, ŷi) (i = 1, 2, ..., k), rj = (x̃j , ũj , ỹj) ∈ Zn × Zs × Zt (j = 1, 2, ..., l)

By the assumption of locally idealness and Proposition4.40, ŷi ∈ Zt (∀i).
Let us fix any (x, u, y) ∈ P . There are λ1, ..., λk, η1, ..., ηk ∈ [0, 1) ∈ Q such that

∑k
i=1 λi = 1 and

∑k
i=1 ηi = 1 and

(x, u, y) =

k∑
i=1

λi(x̂
i, ûi, ŷi) +

l∑
j=1

ηj(x̃
j , ũj , ỹj)

We set

(x1, u1, y1) :=

k∑
i=1

λi(x̂
i, ûi, ŷi)

Because y1 ∈ Zt and (A,B,D, b) is a MILP formulation for S, x1 ∈ S. Without loss of generality, we can assume λ1 > 0.

There is α ∈ Z ∩ (1,∞) such that
α

λ1

∑l
j=1 ηj ∈ Zt. We set

(x2, u2, y2) :=

k∑
i=1

λi(x̂
i, ûi, ŷi) + α

l∑
j=1

ηj(x̃
j , ũj , ỹj)

Then

(x2, u2, y2) = λ1((x̂
1, û1, ŷ1) +

α

λ1

l∑
j=1

ηj(x̃
j , ũj , ỹj)) +

k∑
i=2

λi(x̂
i, ûi, ŷi) ∈ conv(a1, ..., ak)

So, x2 ∈ conv(p(P )). So, x = (1− 1

α
)x1 +

1

α
x2 ∈ conv(p(P )). Consequently, (A,B,D, b) is a sharp formulation.

Proposition 4.50. Here are the settings and assumptions.

(S1) A ∈M(m,n,Q), b ∈ Qm.

(S2) S := {x ∈ Qn1
+ × Zn2

+ |Ax ≤ b}.
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(S3) Ã :=

(
A1 A2

On2,n1 En2

)
. Here A1 := (a1, ..., an1) and A2 := (an1+1, ..., an) and each ai is the i-th column

vector of A. B :=

(
Om,n2

−En2

)
, b̃ :=

(
b

0n2

)
(A1) Q := {x ∈ Qn1

+ ×Qn2
+ |Ax ≤ b} has at least one basic feasible solution.

Then (Ã, B, b̃) is a locally ideal formulation for S iff (Ã, B, b̃) is a sharp formulation for S.

Proof. Proposition4.44 and Propositon4.49, it is enough to show ‘if‘ part. Let us assume (Ã, B, b̃) is a sharp formulation
for S. Then

conv(S) = p({(x′, x′′, y) ∈ Qn1 ×Qn2 ×Qn|(x′, x′′) ∈ Q, x′′ = y}) = Q

By Theorem4.27, there are a1, ...,ak ∈ S and r1, ..., rl ⊂ Zn such that

Q = conv(a1, ...,ak) + cone(r1, ..., rl)

We can assume a1, ...,ak are distinct. Let us fix any x which is a basic feasible solution of Q. By Proposition4.40,
x ∈ ex(Q). We will show x ∈ S. There are λ1, ..., λk, η1, ..., ηl ∈ [0, 1] such that

∑k
i=1 λi =

∑l
i=1 ηi = 1 and

x =

k∑
i=1

λiai +

l∑
j=1

ηjrj

For aiming contradiction, let us assume there is j such that ηj > 0. We can assume j = 1. Then We set

x1 =

k∑
i=1

λiai +
1

2
η1r1 +

l∑
j=2

ηjrj , x
2 =

k∑
i=1

λiai +
3

2
η1r1 +

l∑
j=2

ηjrj

Then x1 6= x2 and x =
1

2
(x1 + x2). This contradicts with x ∈ ex(Q). So,

x =

k∑
i=1

λiai

For aiming contradiction, let us assume there is i1 6= i2 such that λi1 , λi2 > 0. We can assume i1 = 1, i2 = 2. We set

y1 = (λ1 + λ2)a1 +

k∑
i=3

λiai, y
2 = (λ1 + λ2)a2 +

k∑
i=3

λiai

Because a1 6= a2, y
1 6= y2. And x =

λ1
λ1 + λ2

y1 +
λ2

λ1 + λ2
y2. This contradicts with x ∈ ex(Q). So, x ∈ S.

4.4 Cutting Plane

Definition 4.51 (Valid Inequality). Let P ⊂ Rn, c ∈ Rn, δ ∈ R. We say the inequality cTx ≤ δ is invalid if cTx ≤ δ for
any x ∈ P .

4.5 Semidefinite Bounds

T.B.D

4.6 Reformulation and Relaxation

4.6.1 Lagrangian Relaxation

Definition 4.52 (Lagragian Relaxation). Here are the settings and assumptions.

(S1) c ∈ Qn.

(S2) b ∈ Qm.

(S3) A ∈M(m,n,Q).

(S4) p ∈ N≤n.
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(S5) F := {x ∈ Zp ×Q(
≥0n− p)|Ax ≤ b}.

(S6) m1 ∈ N≤n,m2 := m−m1.

(S7) A1 :=

 a1
...
am1

 , A2 :=

am1+1

...
am

. Here, ai is the i-th row vector of A (i = 1, 2, ..., n+ p).

(S8) Q := {x ∈ Rn+|A2x ≤ b2, xj ∈ Z (j = 1, 2, ..., p)}.

We call

zI := max
x∈F

cx

⇐⇒
zI := max cx

Ax ≤ b
xj ∈ Z (j = 1, 2, ..., p)

xj ∈ Q≥0 (j = 1, 2, ..., n)

the original problem. And, for λ ∈ Rm1
>0 , we call

zLR(λ) := max
x∈Q

(cx+ λ(b1 −A1x))

⇐⇒
zI := max(cx+ λ(b1 −A1x))

A2x ≤ b2

xj ∈ Z (j = 1, 2, ..., p)

xj ∈ Q≥0 (j = 1, 2, ..., n)

LR(λ), lagrangian relaxation.

Proposition 4.53. We take over notations and settings in Definition4.65. Then

zLR(λ) ≥ zI (∀λ ∈ Rm1
>0 )

Definition 4.54 (Unimodular Matrix). Let A ∈ M(m,n,Z). We say A is unimodular if rank(A) = m and for every
m-th squared submatrix B

detB = 0,±1

Definition 4.55 (Totally Unimodular Matrix). Let A ∈M(m,n,R). We say A is totally unimodular if for every squared
submatrix B

detB = 0,±1

Clearly the following holds.

Proposition 4.56. For any totally unimodular matrix A ∈M(m,n,R), each ai,j = 0 or 1.

Theorem 4.57. We take over notations and settings in Definition4.65. And

(A1) {x|A1x ≤ b1, x ∈ conv(Q)} 6= ϕ.

Then
zLD = max{cx|A1x ≤ b1, x ∈ conv(Q)}

Corollary 4.58. We take over notations and settings and assumptions in Theorem4.57. Then

zI ≤ zLD ≤ zLP

Here, zLP is an optimal solution of the continuous relaxation of the original problem.

Corollary 4.59. We take over notations and settings and assumptions in Theorem4.57. And
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(A2) conv(Q) = {x ∈ Rn≥0|A2x ≤ b2}.

Then
zLD = zLP

Corollary 4.60. We take over notations and settings and assumptions in Theorem4.57. And

(A2) A2 is totally unimodular.

(A3) b2 is integer.

Then
zLD = zLP

4.6.2 Dantzig-Wolfe Reformulation

Definition 4.61 (Ray). Let a ∈ Rn. We call [0,∞)a a Ray of Rn.

Definition 4.62 (Extreme Ray). Let C be a polyhedral cone. We call R ⊂ C an extreme ray of C if R is an edge of C.

Proposition 4.63 (Dantzig-Wolfe Reformulation). We take over notations and settings and assumptions in Theorem4.65.
And

(S9) {vk}k∈K is a finite subset of conv(Q).

(S10) We pick {vk}k∈K ⊂ Qn and {uh}h∈H ⊂ Qn such that conv(Q) = conv({vk}k∈K) + cone({uh}h∈H).
Remark that such {vk}k∈K and {uh}h∈H exist by Meyer’s theorem.

Then

(i) The problem
max{cx|A1x ≤ b1, x ∈ conv(Q)}

is equal to the following problem.

max(
∑
k∈K

(cvk)λk +
∑
h∈H

(crh)µh)∑
k∈K

(A1v
k)λk +

∑
h∈H

(A1r
h)µh ≤ b1∑

k∈K

λk = 1

λ ∈ R#K
≥0 , µ ∈ R#H

≥0

The formulation is called Dantzig-Wolfe relaxation ot the original proglem.

(ii) The original problem is equal to the following problem. The formulation is called the Dantzi-Wolfe refor-
mulation of the original problem.

max(
∑
k∈K

(cvk)λk +
∑
h∈H

(crh)µh)∑
k∈K

(A1v
k)λk +

∑
h∈H

(A1r
h)µh ≤ b1∑

k∈K

λk = 1∑
k∈K

(vk)λk +
∑
h∈H

(rh)µh ∈ Zn

λ ∈ R#K
≥0 , µ ∈ R#H

≥0
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4.6.3 Column Generation

Example 4.64 (Dantzig-Wolfe Reformulation and Column Generation). We take over notations and settings and as-
sumptions in Proposition4.63.

(i) K ′ ⊂ K,H ′ ⊂ H.

(ii) We call the following problem master problem.

max(
∑
k∈K′

(cvk)λk +
∑
h∈H′

(crh)µh)∑
k∈K′

(A1v
k)λk +

∑
h∈H′

(A1r
h)µh ≤ b1∑

k∈K′

λk = 1∑
k∈K′

(vk)λk +
∑
h∈H

(rh)µh ∈ Zn

λ ∈ R#K′

≥0 , µ ∈ R#H′

≥0

Then

(i) The master problem is unbounded, the Dantzig-Wolfe relaxation is also unbounded.

(ii) The dual of the master problem is the following.

min(πb1 + σ)

π(A1v
k) + σ ≥ cvk, k ∈ K ′

π(A1r
h) ≥ crh, h ∈ H ′

π ∈ Rm≥0, σ ∈ R

(iii) Let us assume the master problem has an optimal solution, and (π̄, σ̄) is an solution of the dual problem.
We set

c̄k := cvk − π(A1v
k)− σ̄ (k ∈ K),

c̄h := crh − π(A1r
h) (h ∈ H)

If c̄k ≤ 0 (∀k ∈ K) and c̄h ≤ 0 (∀h ∈ H), then (π̄, σ̄) is an optimal solution of the Dantzig-Wolfe
relaxation.

(iv) We take over notations and settings and assumptions in (iii). We call the following problem the pricing
problem.

ζ := −σ̄ +max
x∈Q

(c− π̄A1)x

Then

(a) ζ is unbounded if and only if there is h ∈ H such that c̄h > 0.

(b) ζ is bounded and ζ > 0 if and only if there is k ∈ K such that c̄k > 0.

(c) ζ is bounded and ζ ≤ 0 if and only if there is k ∈ K such that c̄h ≤ 0, c̄k ≤ 0 (∀h ∈ H, ∀k ∈ K).

4.6.4 Benders Decomposition

Theorem 4.65 (Benders Theorem). Here are the settings and assumptions.

(S1) c ∈ Qn.

(S2) h ∈ Qp.

(S3) A ∈M(m,n,Q).

(S4) G ∈M(m, p,Q).

(S5) F := {(x, y) ∈ Zn≥0 ×Qp≥0|Ax+ Fy ≤ b}.
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(S6) We call

max
(x,y)∈F

{cx+ hy}

⇐⇒
max{cx+ hy}
Ax+Gy ≤ b
x ∈ Zn≥0

y ∈ Qp≥0

the original problem.

(S7) Q := {u ∈ Rm≥0|uTG ≥ h}.

(S8) We pick {uk}k∈K ⊂ Qm such that conv(Q) = conv({uk}k∈K). Remark that such {uk}k∈K exist by
Meyer’s theorem.

(S9) C := {u ∈ Rm≥0|uTG ≥ 0}.

(S10) We pick {rJ}j∈J ⊂ Qm and {rj}j∈J ⊂ Qm such that C = cone({rj}j∈J). Remark that such {rj}j∈J and
{rj}j∈J exist by Meyer’s theorem.

Then the original problem is equal to the following problem.

max{η + cx}
η ≤ uk(b−Ax) (∀k ∈ K)

(rj)T (b−Ax) ≥ 0 (∀j ∈ J)
x ∈ Zn≥0

η ∈ R
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5 Event graph analysis

5.1 Max-plus algebra

Definition 5.1 (Semi-ring). Here are the settings.

(S1) R is a set.

(S2) ⊕,⊗ are binomial operators on R.

We say (R,⊕,⊗) is a semi ring if

(i) For any x, y, z ∈ R,
(x⊕ y)⊕ z = x⊕ (y ⊕ z)

(x⊗ y)⊗ z = x⊗ (y ⊗ z)

(ii) For any x, y, z ∈ R,
x⊕ y = y ⊕ x

(iii) For any x, y, z ∈ R,
x⊗ (y ⊕ z) = x⊗ y ⊕ x⊗ z

(iv) R has the unit element ϵ with respect to ⊕.

(v) R has the unit element e with respect to ⊕.

(vi) ϵ⊗ x = x⊗ ϵ = ϵ.

We say R is commutative if ⊗ is commutative. We say R is idempotent if ⊗ is idempotent.

Definition 5.2 (Rmax). Here are the settings.

(S1) Rmax := R ∪ {−∞}. We set ϵ := −∞ and e := 0.

(S2) For x, y ∈ Rmax
x⊕ y := max{x, y}

x⊗ y := x+ y

We call Rmax := (Rmax,⊕,⊗) the max-plus algebra.

Clearly the following holds.

Proposition 5.3. Rmax is a commutative and idempotent semi ring.

5.2 Petri net and Event graph

Definition 5.4 (Petri net, place, transition). Here are the settings.

(S1) (N ,A) is a directed graph.

We say (N ,A) is a petri net if there is (P,Q) which is a pair of disjoint subsets of N satisfying the following two
conditions.

(i) N = P ∪Q,P ∩Q = ϕ.

(ii) A ⊂ P ×Q ∪Q× P.

We denote this petri net by (N ,P,Q,A).
We call each element of P a place and call each element of Q a transistion. Let us fix p ∈ P and q ∈ Q. We say p is

the input place of the transition q and q is the output place of the transition p if (p, q) ∈ A. We say p is the output place
of the transition q and q is the input place of the transition p if (p, q) ∈ A.

We denote the set of all input place of q by π(q) and denote the set of all input transition of p by π(p).
We denote the set of all output place of q by σ(q) and denote the set of all output transition of p by σ(p).

Definition 5.5 (Event graph). Here are the settings.

(S1) (N ,P,Q,A) is a petri net.
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We say this petri net is an event graph if for each p ∈ P there is the unique q1 ∈ Q such that (p, q1) ∈ A and there is the
unique q2 ∈ Q such that (q2, p) ∈ A.

Definition 5.6 (Enability and Firing in petri net). Here are the settings.

(S1) (N ,P,Q,A) is a petri net.

(S2) w : A → N≥1. We call w(a) is the weight of a ∈ A.

(S3) M1 : P → Z≥0. For each p ∈ P, we say p is marked with M1(p) tokens.

(S4) q ∈ Q.

Then

(i) We say q is enable if each input place p of q is marked with at least w(p, q) tokens.

(ii) Let us assume q is enable. We set for each p ∈ P

M1(p) :=M0(p) + χσ(q)(p)w(q, p)− χπ(q)(p)w(p, q)

We call M1 the firing of M0 with respect to q.

Definition 5.7 (Liveness, Autonomous, Time event graph). Here are the settings.

(S1) G := (N ,P,Q,A, w,M0) is an event graph with weight and token.

Then

(i) We say G is liveness if for any cycle c of G there is p ∈ P whose output transition is enable.

(ii) For each q ∈ Q, q is a supplier transition if π(q) = ϕ.

(iii) We say G is autonomous if G is no supplier transitions.

(iv) Let τ : P → Z≥0 and γ : A ∩ P ×Q → Z≥0 such that

γ(p, q) ≤ τ(p)

Then (G, τ, γ) with time event graph.

Definition 5.8 (Enability and Firing in Time event graph). Here are the settings.

(S1) G := (N ,P,Q,A, w,M0, τ, γ0) is a time event graph.

(A1) For any q1, q2 ∈ Q, there is at most one p ∈ P such that (q, p), (p, q) ∈ A.

(A2) w = 1 on A.

(S2) q ∈ Q.

Then

(i) We say q is enable if each input place p of q is marked with at least w(p, q) tokens and τ(p) ≤ γ(p, q).
We denote the all enable transitions by E(G).

(ii) Let us assume q is enable. We set for each p ∈ P

M1(p) :=M0(p) + χσ(q)(p)w(p, q)− χπ(q)(p)w(p, q), γ1(p) := 0

We call (M1, γ1) the firing of (M0, γ0) with respect to q.

Clearly the following holds.

Proposition 5.9. Here are the settings.

(S1) G0 := (N ,P,Q,A, w,M0, τ, γ0) is a time event graph.

(A1) For any q1, q2 ∈ Q, there is at most one p ∈ P such that (q, p), (p, q) ∈ A.

(A2) w = 1 on A.

(S3) We set
M1(p) :=M0(p) + χE(G0)(q1)− χE(G0)(q2)

Here q1 ∈ π(p) and q2 ∈ σ(p). And

γ1(p, q) :=

{
γ0(p, q) + 1 M0(p) > 0 and q is not enable
0 otherwise

66



(S4) We set G1 := (N ,P,Q,A, w,M1, τ, γ1).

Then G1 is a time event graph.

Definition 5.10 (Firing time). Here are the settings.

(S1) G0 := (N ,P,Q,A, w,M0, τ, γ0) is a time event graph.

(A1) For any q1, q2 ∈ Q, there is at most one p ∈ P such that (q, p), (p, q) ∈ A.

(A2) w = 1 on A.

(S3) We define {Gt}∞t=0 inductively by the procedure defined in Proposition5.9.

Then
xq(k) := {t0 ∈ Z≥0|k = #{t ≤ t0|q ∈ E(Gt)}} (q ∈ Q, k ∈ N≥1)

We call xq(k) the k-th firing time of q. We set

x(k) := (xq1(k), ..., xq#Q)
T (k ∈ N≥1)

Definition 5.11 (System Matrix). Here are the settings.

(S1) {Gt := (N ,P,Q,A, w,Mt, τ, γt)}t∈Z≥0
is a sequence of time event graphs by the procedure defined in

Proposition5.9.

(S2) {x(k)}∞k=1 is the sequence by Definition5.10.

(S3) We denote the maximum number of tokens at any one place in {Gt}t∈Z≥0
by M .

Then for each m ∈ {0, 1, ...,M}

[Am]j,l :=

{
aj,l pj,l exists and pj,l has m tokens in G0

ϵ otherwise
(j, l = 1, 2, ...,#Q)

Here pj,l is the place such that (qj , pj,l), (pj,l, ql) ∈ A.

Proposition 5.12. We succeed notations in Definition5.11. And let us assume any Gt is autonomous. Then

x(k) = A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕ ...⊕AM ⊗ x(k −M) (k =M + 1,M + 2, ...)
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