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This is a study memo of [8], [12].

1 Preliminaries

1.1 Basic Notations

Notation 1.1 (The set of all probability measures on (R)). Denote the set of all borel sets on R by B(R). Denote the
set of all probability measures on B(R) by Z(R).

Notation 1.2 (order relation in R™). Let z,y € R™. Denote v <y (v <y)if x; <y, (x; <wy;) (V7).

Definition 1.3 (A distribution of random variables). Let (Q,.%, P) be a probability space and let X = (X1, Xa, ..., Xp)
be random variables on Q. We define Px : B(R") > A P(X1(A)) € [0,1]. We denote the distribution of X by Px.

Definition 1.4 (A distribution function of a probability measure). Let u € Z(R™). We define F, : R" 3 z +— p((—o0, z1]x
(=00, x3]... X (—00,2,]) € R and we call F, the destribution function of .

Notation 1.5 (Fourier transform). Let f € L'(R"™). Denote fourier transformation of f by F(f) and denote fourier
inverse transformation of f by # ~1(f).

Definition 1.6 (Weakly convergence of probability measures). Let
(S1) (Q,.Z, P) is a probability space.
(52) Let {ua}ie, € P(RY).
(S3) Let p € P(RY).

{pn 352, is weakly converges to p if lim, o F,, (z) = F,(z) for any point x at which F,, is continuous. Denote this by
i = p (n — 00)

Definition 1.7 (Characteristic function of probability measure). Let
(S1) (Q,.F,P) is a probability space.
(S2) Let u € P(R™).

then call ¢, : R" 5 t — [, exp(itz)du(xz) € C is the characteristic function of . Bellow, assume the characteristic
function of i denotes ¢, unless otherwise noted.

Definition 1.8 (Characteristic function of random variables). Let
(S1) (Q,.Z, P) is a probability space.
(S2) Let X = (X1, Xa, ..., X) be a vector of random variables on (Q, F, P).

then call px : R >t +— fQ exp(itX)dP € C is the characteristic function of X. Bellow, assume the characteristic function
of X denotes px unless otherwise noted.

Definition 1.9 (Tightness of probability measures). Let

(S1) (Q,.Z, P) is a probability space.

(52) Let {im}32, € PRV).
{pn 352y is tight if for any € > 0 there is a M > 0 such that

pn({z e RN ||z| < M}) >1—¢ (1.1.1)

Definition 1.10 (Weakly compactness of probability measures). Let

(S1) (2,7, P) is a probability space.

(S2) Let {u,}o, C P(RN).

{ln}sly is weakly compact if for any subsequence {ja(m)tney of {tn}ney there is a subsequence of {fia(n)}ne1 which
weakly comverges to a probability measure.

Definition 1.11 (Outer measure). Let
(S1) X is a set.
I':2% — [0,00] is an outer measure on X if the followings hold.
(i) D(¢) =0
(i) If A C B then T'(A) <T'(B)
(i) If {A;}32, C 2% then T(U2  A;) < 2 T'(4;)



1.2 Finite measures on metric space

We introduce several definitions and propositions for only Section2.2.2.

1.3 several facts on metric space
The following three definitions are from [2].
Definition 1.12 (Elementary function family). Let
(S1) (X,d) is a metric space.
& C Map(X,[0,00)) is called a family of elementary functions if the followings holds.
(i) if f,g€ & then f+g€&.
(i) if f,g€ & and f > g then f —g € &.
(iii) if f,g € & then min{f,g} € &.
Definition 1.13 (Elementary integral). Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.
l:8+—[0,00] is an elementary integral on & if the followings hold.
(1) if f,9 € & then I(f +g) = U(f) + U(g)
(ii) if f,g € & and f < g then I(f) < (9)
Definition 1.14 (Complete elementary integral). Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.
(83) 1: &+ [0,00] is an elementary integral.

l is a complete elementary integral if for any {fn}‘fz:l} such that limy, o fr = f (pointwise convergence) and fn, < fni1
(Vn € R) satisfies limy, o0 1(frn) = 1(f)

Definition 1.15 (Functional from elementary integral). Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.

(883) 1: &+ [0,00] is an elementary integral.

We define
Li{e: X —[0,00)} 3 0 s inf{S,Uei)les € & (Vi) < T2y} € [0,00) (1.3.1)

Proposition 1.16. Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.

(88) 1: &+ [0,00] is an elementary integral.
(A1) [0,00)& C &.

For anya >0 and f €&
laf) =al(f) (1.3.2)

Proof. Let us fix q1 € (a,00) N Q and g2 € (0,a) N Q. 2l(f) = lq2f) < Uerf) <Uq1f) = qul(f). So l(af) = ad(f) O
Proposition 1.17 (Outer measure from elementary integral). Let

(S1) (X,d) is a metric space.

(52) & C Map(X,|[0,00)) is a elementary function family.

(88) 1: &+ [0,00] is an elementary integral.



(S4) L is the functional in Definitionl.15.
(S5) We setT':2%X 3 A L(xa).

then I' is outer measure on X.

Proof. It is easy to show terms except (iii) in Definitionl.11. So we will show only (iii) in Definitionl.11.

Ai?il C 2%,
Let us fix € > 0.
For each i € N, there are {¢; ;}52; C & such that xa, < ¥52,p;; and X22,1(¢; ;) < T'(A;) + 57

21
So Xuge, A, < ZZ 1,j=1%ij-
(UZ,1A ) < X6 71’%11(90”) <R T(A;) +e
Consequently, (iii) holds.

Proposition 1.18. Let

(S1) (X,d) is a metric space.

(52) & C Map(X,[0,00)) is a elementary function family.

(S3) 1: & [0,00] is an elementary integral.

(S4) L is the functional in Definitionl.15.

(S5) T is the outer measure in Propositionl.17.

(S6) Mr is the o-algebra in Proposition2.9.

(A1) CL(X) C &.

(A2) If A, B are borel sets and d(A, B) > 0 then p(A) + u(B) = p(AU B).

then B(X) C M.

Proof. Because Mr is o-algebra, it is enough to show that all closed sets are contained in 9.
Let us fix closed set A. Let us subset B and C such that A C B and C C A°.
Because A is closed set, C C {z|d(x, A) > 0}.
For each n € N we set C, := {z € C|d(z, A) > 2} and D,, := {z € C|-2; > d(z, 4) > L1}.
The followings holds.
C=uU>,D,

Cy =UN_, D, (YN)

We assume 2952 ,I'(D,,) < co. Let us fix € > 0.
There is ng such that 52 T'(D,) < e.
Because d(A, Cp,) > 0,

L'A)+I(C) = I'(A)+T'(Cp UUZZ,,, Dn)
< T(A)+T(Cyy) +e
< F(A)+F( o)+
= I'(4 )Jre
< T(Au0)+

So if 92, T'(D,,) < oo then T'(A) + T'(C) =T(AUC).
We assume X952 I'(D,,) = co. Then X522 T'(Day,) = 00 or X2 I'(Dgy—1) = 0o. We assume 322 T'(Day,) =

If ny # ny then d(Dy,,Dyn,) > 0. So I'(C) > (U, Dy,) > 5 T(Dyy,) = o0o. So if £ ,T'(Day,)

I'(B)+T(C)=T(AUC) =
Similary, if 322 ;T'(Dayp—1) = oo then I'(B) + I'(C) =T (AU C) =

Proposition 1.19. Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.

(83) 1: &+ [0,00] is an elementary integral.

(S4) {fu}oy C & and fr, > fnt1 on X (Vn).
(A1) There is f € & such that lim,_,o || frn — flloc =0

Let us fix

(1.3.5)

0.
= oo then

O



(A2) RE C &

then
lim I(fn) = I(f)

n=r00
Proof. [I(f) = U(fa)| = U(f = fn) < [If = fallscl(1) = 0 (n — 00)
Proposition 1.20. Let
(S1) (X,d) is a metric space.
(S2) 1: &+ [0,00] is an elementary integral on & := {f|f is nonnegative borel measurable on X }.
(S3) L is the functional in Definition1.15.
(S4) hi,hy € 8.
(A1) d(supp(hy), supp(hs)) > 0.
then L(hy + ho) = L(h1) + L(hs)
Proof. Let us fix arbitary € > 0. Let us fix f and ¢ in Proposition??.
Let us fix {¢;} C & such that hy + he < X2, ¢; and E5°,1(p;) < L(hy + he) + €.

By definition of f and g,
hi+he < (f +9)EZ1 0

and
hy < fE52104
and
he < g372,pi
So
L(hi +ha)+€ > I21(g;)
> B2 (U(fei) +2Z4U(g04))
> L(h1) 4+ L(ho)
Consequently

L(hl) =+ L(hz) < L(h1 + hg)

Proposition 1.21. Let
(S1) (X,d) is a metric space.
(S2) 1: &+ [0,00] is an elementary integral on Cy(X).
(53) L is the functional in Definitionl.15.

(S4) T is the outer measure in Propositionl.17.
(S5) My is the o-algebra in Proposition2.9.

then #(X) C Mr.

Proof. Let us fix arbitary borel sets A, B such that d(A, B) > 0.
By Proposition1.20, T(AU B) = L(xaus) = L(xa + x8) = L(xa) + L(xs) =T(A) + T'(B).
By Propositionl.18, Z(X) C Mr.

(1.3.6)

(1.3.7)
(1.3.8)

(1.3.9)

(1.3.10)

(1.3.11)



1.4 several facts on compact metric spaces

Proposition 1.22. Let

(S1) (X,d) is a compact metric space.
(S2) 1 is an elementary integral on C4(X). Cy(X) :={f € C(X)|f > 0}

then there is an unique measure p on (X, B(X)) such that for any f € C(X)

= [ s
X
Ezistence. Let us fix f € C(X).
By replacing f by ||f]|co — f, it is enough to show

/ faul(f) < 1(f)
X

(1.4.1)

(1.4.2)

By an argument similar to one in the proof of Proposition2.17, there are @, i, ,, <. 1<i<p(m) C R such that

0=am1 < am2 < ... <ampm) > ||flleo (Ym €N)

1

. (VYm, Vi)

|@m,i — @mit1] <
p({f = am;}) =0 (Vm, Vi)
We set

hp i= Ef:(T)am,iX[ ) (m € N)

AmisQm i+1
and
Nmon = E“,":(’l”)am}ix(am’ﬁ%’amﬂl7;) (meN, 1<i<p(m))

) K2 n

Let us fix € > 0.
By Proposition2.10, f € Cy(X).
By (1.4.5), there is m,n such that

[ i [ Bl <
X X

Because f € C,(X), if i # j then d(f~((am.; + %,a/m,i_l,_l - %)),fﬁl((amd- + %,am,j_i'_l —
So
1(f) > Lihmn > / _—
X

Therefore,

/deu—esl(f)

Consequently,

/ Jdu < 1(f)
X

Uniqueness. Let us fix arbitary u; € &(X) and arbitary ps € Z(X) such that

/ fdus = / fdpz (VF € C4(X)
X X

We set B := A € B(X)|p1(A) = p2(A). Clearly & is o-algebra.
Let us fix closed set A.

(1.4.3)

(1.4.4)
(1.4.5)
(1.4.6)

(1.4.7)

(1.4.8)

L1y)) > 0.

n

(1.4.9)

(1.4.10)

(1.4.11)

(1.4.12)



By Proposition??, there are {f, }52_; C C1(X) such that
||fm||oo <1 (Vm) (1.4.13)

and
UiMun—oofm = Xa (pointwize convergence) (1.4.14)

By Lebesugue’s convergence theorem, 1 (A4) = pa(A).

So Ac A.
Consequently # C #B(X).



2 Probability

2.1 Some Facts Used Without Proofs
In this note, we use the following propositions without proofs.
Proposition 2.1. Let
(S1) (Q,.Z, P) is a probability space.
(S2) X is a N-dimensional vector of random variables on (£, F).
(S3) Let ux be a probability distribution of X.
(S4) f € LHQUL>(Q)
then

/ fdux = / foXdP
RN Q
Proposition 2.2. For any n > 0,

1 (-)?
F (exp(—n(-)?) = —=exp(—=/-).
V21 4n
Proposition 2.3. Let X be a positive definite symmetric matriz.
tT2t
N, (t) = exp(— )

2
Proposition 2.4. Let

(S1) Arbitrarily take M > 0 and fix it.

(S2) Let fr, : D(0,M) >z (1+ 2)" € C, where D(0, M) := {2z € C| |2| < M}, (n=1,2,...).

then {fn}52, uniformly converges to exp on D(0, M).
Proposition 2.5. Let

(A1) Let F : R — R is monotone increasing.
then {z | F is not continuous at x} is at most countable.
Proposition 2.6. Let

(S1) (Q,.Z, P) is a probability space.

(52) Let {n}pzy C P(R).
(A1) Let p € Z(R) such that p, = u (n — o).

then for any bounded continuous function f: R +— R

Lt o0 / F (@) dpn(z) = / f(@)du(x)

Proposition 2.7. Let

(S1) (2,7, P) is a probability space.
(S2) w is a probability measure on R.
(A1) Elp) =0 and Vip] = 1.

then ¢, (s) =1 — % +0(s%) (s = 0)

The following propositions are used for only Sectionl.2 and Subsection2.2.2.

Proposition 2.8. Let
(S1) (X,d) is a metric space.

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)

then there is a complete metric space (X,d) and an isometry mapping i - (X,d) — (X,d) such that i(X) is dense in X.

We call (X,d) is a completion of (X,d).



Proposition 2.9. Let

(S1) X is a set.

(S2) T is an outer measure on X.

(S3) Mr:={ACX| if BC A and C C A° then u(B) + p(C) = u(BUC)}.
then the followings holds.

(i) Mr is a o-algebra.

(ii) T is a measure on Mr.
Proposition 2.10. Let

(S1) (X,d) is a compact metric space.
then C(X) C Cu(X).
Proposition 2.11. Let

(S1) (X,d1) is a compact metric space.
(52) (Y,d2) is a compact metric space.
(A1) feC(X,Y).

then f(X) is compact in'Y.

Proposition 2.12. C.(R") is dense in L'(R").

2.2 Weak convergence of probability distributions
2.2.1 The Case of Single Variable
Proposition 2.13 (Helly’s selection theorem). Let

(S1) (Q,.Z, P) is a probability space.
(S2) Let {p,}52, C P(R) and denote F,, by F,, (n=1,2,3,...).

Then there is a subsequence {Fyn)}nzy and F' : R — [0,00) such that F is monotone increasing and right continuous,
and Fony(x) — F(z) for any point x at which F' is continuous.

Proof. There is {z,}>2; C R such that {z,}22, = R. Let fix such {z,}72;. Because 0 < F,(x,,) < 1 (for any m,n
in N), there is a subsequence {a(n)}n; C N and {F(z,)}nZ; C [0,1] such that F () (2,) = F(x,) (m — 00). We fix
such {a(n)}52, and F(zy,),. We define F(z) := infoe(kjo<z,} F(2m). By the definition of F, F' is right continuous and
monotone increasing. Arbitrarily take x € R at which F' is continuous and fix it. Arbitrarily take ¢ > 0 and fix it. Let
pick T (m1) and Ta(me) such that z4m1) < 2 < Ta@me) and (F(Ta(m2)) — F(Tami))) < §- There is a ng € N such that
|Fa(Zamn) — F(Ta@mn)] < § and |Fy(Tam2)) — F(Za@me))| < § for any n > ng. Let fix such ng and m1 and m2. For
any n > ng

|Fn(ma(m1)) - F(x)| < |Fn(xa(ml)) - F(xa(ml)” + ‘F(fva(ml)) - F(m)‘
€
< - 2.2.1
< ¢ (221)
and
an(xa(mQ)) - F(JJ)| < |Fn(ma(m1)) - F(xa(ml)” + ‘F<xa(m1)) - F(Jf)‘
€
< £ 2.2.2
< ¢ (222)
So for any n > ng
€
|Fn(xa(m1)) - Fn(££a(m2))| < 5 (223)
Arbitrarily take n > ng and fix it. Because F,,(xm1) < Fo(z) < Fo(2m2),
€
maz{|Fp(Taim1)) — Fn(@)], |Fn(Tamz)) — Fu(z)|} < 3 (2.2.4)
By (2.2.1) and (2.2.2) and (2.2.4),
|E,(x) — F(x)] <€ (2.2.5)
O

10



Proposition 2.14. Let
(S1) (,.7, P) is a probability space.
(52) Let {pn}pz, C P(R).
If {un}S2, is tight then {un,}5% is weakly compact.

Proof. By Proposition2.13, there is F': R — [0, 00) such that F' is monotone increasing and right continuous, and for any
point x at which F' is continuous
Fony(z) = F(z) (n — 00) (2.2.6)

Here we denote F),, by F,. Because of tightness of {1, }72, limity oo (F(x) — F(—x)) = 1. So there is a probability
measure u such that F is a distribution function of p. By (2.2.6), u, = u (n — o). O
Proposition 2.15. Let

(S1) (Q,.Z, P) is a probability space.

(52) Let {un}o2: C P(R). and p € P(R)

(A1) pn = p (n — o).

(A2) Let f be an arbitary bouded continuous function on R.

then
tin [ faun(a) = [ fdn(e) (2.2.7)
Proof. Let us fix arbitary f € Cy(R) and € > 0.

Because p(R) = 1 and R = Ugega, for each n € N {a € R|u(a) > 1} is finite. So {a € R|u(a) > 0} is at most coutable.
So there is 71 > 0 and ro > 0 such that

€

1= p((=r1,m2)) < o (2.2.8)
3(I[fllee + 1)
and p(—r1) =0 and p(—rz) = 0.
Because f is uniformly continuous on X,
So there are dm,iq <o 1<i<g(m) C R such that
—T1 =1 < Am2 < e S Ay p(m) = T2 (VM € N) (2.2.9)
and 1
|@m,i — amit1] < om (Vm, Vi) (2.2.10)
and
p{am,i}) =0 (Ym, Vi) (2.2.11)

For each m € N, set f,,, := Efz(T)f(ai)X[%aHl).
Because lim,,, ,~ fim = f (pointwize convergence), by Lebesugue’s convergence theorem there is m € N such that

T2 T2

€
[ Smn— | el <3 (2.2.12)
—T1 —T1 3
Because v
e =32 f(ai)n([ai, i) (2.2.13)
—r
and v
[ i = 250 @i (fass ) () (22.14)
i
So there is ng such that
T2 T2 €
[ = [ sl < § (2 o) (2.2.15)
—T1 —T1
By (2.2.8) and (2.2.12) and (2.2.15),
|/ fron — / ful < e (Vn>np) (2.2.16)
R R

11



2.2.2 The Case of Multi Variables
Definition 2.16 (Weak convergence(in general metric space)). Let
(S1) (X,d) is a metric space.

(52) {pntnzy C 2(X).
(83) e P(X).

We say {un}S2, weakly converges to p if for any borel set A such that u(9(A4)) = 0 limy, e pin(A) = p(A) Denote
W => 1 by weak convergence.

The following proposition gives the equivalent definition of weak convergence.
Proposition 2.17. Let
(S1) (X,d) is a metric space.

(52) {pntpzs C 2(X).
(S3) pe 2(X).

then the followings are equivalent.
(i) pn = p.
(ii) Set Cp(X) :={f € C(X)|||flloc < 0}. For any f € Cp(X)

lim fd,un:/fd,u (2.2.17)

n— oo

(i1i) Set C(X) :={f € C(X)| f is uniformly continuous on X}. For any f € Cp(X) N Cy(X)

li_>m fdu, = /fd,u (2.2.18)
(iv) For any closed set A
lim p,(A) < p(A) (2.2.19)
n—oo
(v) For any closed set U
lin j1,(U) > (V) (2.2.20)

(i) => (ii): Let fix arbitary f € C,(X). Because Uger{f = a} = X and u(X) =1, forany n € N {a € R|u({f = a}) > 1}
is a finite set. So {a € R|u({f =a}) > 0} = U5 {a € R|u({f = a}) > L} is at most countable.
So there are Umi1<m<oo1<i<p(m) © R such that

—|[fllse > @m1 € am2 < oo < Aoy > || flloe (Ym €N) (2.2.21)
1 .
|am,i = ami1| < 5o (Ym, Vi) (2.2.22)
p({f = am}) =0 (Vm, Vi) (2.2.23)
For m € N set
m ‘= Zf:(T)am,i+1X{am,i§f§am,i+1} (2'2'24)
and
b 2= Ef:Uln)amﬂx{am.iﬁfﬁam,wrl} (2225)

Because for any m and ¢ O{am,; < f < amyt1} C{f = ami} U{f = am,i+1}, for any m and i

u(@{amﬂv S f S amvi_,_l}) =0 (2226)

Let fix arbitary € > 0.
By Lebesugue’s convergence theorem, there is m € N such that [ g, dp — [ hpmdp < e.
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By (i),

= lim [ hwdps
n—oo

< lim [ fdu,
n—oo

and

—
~
IS
=
+
[0}
Y
—
s
3
=9
=

= lim [ gndu,
n— oo

> lim [ fdu,
n—oo

Consequently, [ fdp =lim, oo [ fdpiy.
(i) = (i) It’s trivial.
(i) = (iv): Let fix arbitary closed set A. We set
fu(x) =11 = min(1,d(z, A))|" (n € N,x € z)

frn € Co(X) N CW(X) (¥Yn) and lim, o0 frn = x4 (pointwiseconvergence) and

/ fmdpin > pn(A)

By Lebesugue’s convergence theorem,
j(A) > T i (A)

n—0o0

(iv) <= (v): It’s trivial.

(i) and (v) = (i): Let A € B(X) and u(0A) = 0. By (iv),

) < i ()
< w4

oA
= EE
N
~ _—
s
FNEE
=
=

In the same way as above we obtain

lim i, (4) > p(A)

n—r o0

Consequently

lim_ 1, (A) = p(A)

n—oo

The following is the definition of a metric of Z(R).

Proposition 2.18. Let

13

(2.2.27)

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)

(2.2.32)

(2.2.33)

(2.2.34)



(S1) (X,d) is a compact metric space.
(52) {fn}52 is a dense subset of (X,d). By Proposition??, such subsets always exist.

(83) T(p1, p2) =352 | [ fudpy — [ fudpa| (p1, p2 € Z(R)).
then the followings hold.
(i) T is a metric on Z(R).
(i) for any {un}>, C Z(R) and p € Z(R), pn = p (n — 00) is equivalent to T(fin, 1) — 0 (n — 00).

(i): Let fix u; € Z(X) and ps € P(X) such that 7(p1, pu2) = 0. It is enough to show p; = pg for showing (i). By (S2),
for any f € C1(X) [ fdur = [ fdus. By uniqueness in Propositionl.22, puy = pio. O

(ii): Let us assume 7(pn, ) — 0 (n — 00). Let us fix arbitary € > 0. There is m € N such that |[f — fi[|occ < 5. There
is ng € N such that for any n > ng

€
|/Xfmdﬂn_/Xfmd/J| < g (2.2.35)

|/deun*/deﬂ| < \/deun*/xfmdunl

1 [ ot = [ w41 [ = [ fda
< €

For any n > ng

(2.2.36)

Consequently, p, = p (n — 00).
The inverse is clear. O

Proposition 2.19. (£(X), 1) is a compact metric space.

Proof. By Proposition??, it is enough to show (Z(X), 1) is sequencially compact.

Let us fix arbitary p,52; C Z(X).

For any m € N, { [ fipn}22, is bounded.

For each m € N, there is {¢(m,n)}52; such that I(fm) = limy oo [ frnGpip(m,n) exists and [I(fn) = [ fmdpipmn)| <
L (Vn>m).

We set ¢(m) := ¢(m,m) (m € N).

By the definition of ¢, for any m € N I(fn,) = imp—oo [ frndity(n)-

Let us fix arbitary f € Cy(X) and € > 0. There is & € N such that [|f — fx|| < §.

There is ng € N such that for any m > ng and any n > ng | [ fedpypm) — [ frdipm) < §

So for any m > ng and any n > ng | [ fdpym) — [ fdppom| < e

So I(f) := iMoo | fdpiy(m) exists.

Clearly [ is an elementary integral on Cy(X).

So by Propositionl.22, there is u € 4(X) such that

1) = [ fdu (v € €4() (2:2.37)

Clearly fiy(n) = p (n — 00).

Proposition 2.20. Let

(S1) (X,d) is a separable metric space.
(A1) {pn}2, C P(X) is tight.

There is a subsequence u¢(n)?f1:1} and p € P (X) such that py,(n) = p (n — 00).

Proof. Let (X, J) be a compact metric space in Proposition?? and i : X — X in Proposition??. By Proposition1.22, for

each n € N there is a measure fi,, such that for any g € C(X) and n € N

/goid,un:/ gdfiy, (2.2.38)
X X
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There is an increasing sequence of compact sets { K, }52 ; such that

1
o (K) > 1= = (2.2.39)
(Ym € N,Vn € N)
Let K =92, K,,. By (2.2.39), for any m € N
() = i (i(E)) = 1 (2.2.40)
For n € N and z € X, gmn(x) == (1 —minl,d(x, K,))". f)’( Imndis > fm(Kp) > 1 — % By reaching n — oo,
pan (K) = fi(i(Kp)) = 1 — L. By reaching m — oo,
a(i(K)) =1 (2.2.41)

By Proposition, there is a subsequence {fiy(n) oz and fi € P (X) such that ji, = ji (n — 00).
Because for any n € N i(K,) is compact, i(K,) € B(X). So i(K) € B(X).
We will show
B(X)C B:={ACX|i(ANK)B(X)} (2.2.42)
Because i is injective, if {A,}52, C A then U2 | A, € #. And if AR then i(A°NK)=i(K)Ni(ANK)* € B So Bisa
c-algebra. For any closed set A, A € B. So (2.2.42) holds.
For A € #(X), we define
w(A) == a(i(AU K)) (2.2.43)

By (2.2.41),
uw(K)=1 (2.2.44)
Let me fix arbitary f € Cp(X) N Cy(X). Because f € Cy(X) and i(X)isdenseinX , there is f € Cy(X) N Cy(X) such
that fli(X) = foi L
By the definition of {u,}22 ; and u,
lim [ fdu, = lim [ foidu,
X

Il Il

=
T ¥
=

Il
=
3

~
o
2
L

QU

=

I
-
U
=

(2.2.45)

|
~
Ql
=

2.3 Characteristic functions of probability distribution
2.3.1 The Case of Single Variable
By Fubini’s theorem, the following holds.
Proposition 2.21. Let
(S1) (,.Z, P) is a probability space.
(S2) Let u € P(R).
(S8) Let f € L*(R).
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then

Aﬂm%ww=49*umwmm (2.3.1)

Proposition 2.22 (Uniqueness of Characteristic Function). Let

(S1) (Q,.Z, P) is a probability space.
(S2) Let p € P(R) and p/ € P(R).

If o, = o then p=p'.

Proof. Let us arbitary f € C°(R"). By Proposition??, Z(f) € L*(R™). By Proposition??, [, f(z)du(x) = [, f(x)dp/ ().

By Proposition??, p = p’. O
This proposition states that convergence of distributions in law is derived from each point convergence of the charac-

teristic function.

Proposition 2.23 (Levy’s Continuity Theorem(Single Variable Case)). Let

(51) {pninz: € P(R)
(52) @, is the characteristic function of u, (n=1,2,...)
(A1) {pn}S2; C P(R) then the followings are equivalent.

(i) There is a ¢ s.t @ is a measurable function on R and ¢ is continuous at 0 and ¢(0) =1 and p, —— ¢
n—oo
(converge pointwise). Below, we fix such .

(i) Then there is a u € P(R) such that ¢ is the characteristic function of p and p, = p (n — o).

(i) = (ii). The followings are strategy of the proof.
~Memo

(STEP1) Showing {pn,}22, is tight.
(STEP2) Getting pu of the subject.

(STEP1)
For each m € N, there is a measurable function f,, such that f,, continuous at 0 and f,,,(0) = 1 and supp(f) C [%, %]
is compact and f,, <1in R and F~1f,, <1inR. {X[= 1 1)}m=1 sutisfies the above conditions. Fix such {fm}7_;.
We get -

Amw%MM=Ar%mmmm (23.2)

So
Lm

[ tn@ont)dz =13 [ 7 fu(@)duno) (2.3.3)
2 Jr 2 Jr
Call the left side of the above (2.3.3) I, ,, and call the right side of the above (2.3.3) J, . Fix any € > 0.

(STEP1-1)

—~Memo

We will show that I, , < ¢ for sufficient large m, n. We will show this statement using the dominated convergence theorem
and continuity of ¢ at 0

(STEP1-2)

~Memo

We will show that Jy, , > pn({x € R| |x| > m}) for sufficient large m,n. We will show this statement using the dominated
convergence theorem and continuity of ¢ at 0

The following holds.

Flf(a) = ~F (" (2.3.4)

m )
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So
Jm,n = 1*1/]:71‘/:1%(
2 R

= /R1— %f*lfm(

B -5 £ d 0.
~/{wER| |w\2m}1 9 fm(m) ﬂn(x) (235)

)dpin ()

3=

)dpin ()

~ 3=

In (2.3.5), we use statement F~1f,, <1in R (Vm € N).

1= 57 n) 2 1= gm0
1
> 3 (2.3.6)
So )
I > §un({x € R| |z]| > m}) (2.3.7)
By (STEP1-1) and (2.3.7) for sufficient large m and n we get
2¢ > pp({z € R| |z] > m}) (2.3.8)

So We have shown {u,}>2, is tight.
(STEP2)

By (STEP1), there is a subsequence {tyn)}nez; which converges to a u in law. It is enough to show for any subse-
quence of {u,}22; the subsequence has some subsequnece of the subsequence which converges to p in law. Let fix any
subsequence {ji, ) }nz1- There is a subsequence {fiy(a(n))}ne1 Which converges to u'. By increasing n to oo in (2.3.3)
and Proposition2.15, ¢, = ¢ and ¢, = ¢. By uniqueness of characteristic function, p = p'.

O
(i) = (i). pu: Rt [,exp(itz)du. It is easy to show ¢, is continuous at 0.
By Proposition2.15,
/ea:p(itac)d,u(m) = ILm exp(itz)du, (Vt) (2.3.9)
R oo JR
O

2.3.2 The Case of Multi variables
Proposition 2.24 (Levy’s continuity theorem(multi variate case)). Let
(51) {pn}ozy € P(RY)
(S2) @y, is the characteristic function of pn, (n=1,2,...)
(A1) {pn}isy C P(RY)
(A1) There is a ¢ s.t @ is a measurable function on RN and ¢ is continuous at 0 and p(0) = 1 and @, —— ¢

n—oo
(converge pointwise). Below, we fix such .

Then there is a . € P(RN) such that ¢ is the characteristic function of u and p, = p (n — 00).

Proof. By an argument which is similar to the proof of Proposition2.23, we can show that {u, 5, is tight.
By Proposition2.20 and uniqueness of fourier transformation in RY and Proposition2.17, there is u € Z2(R)N such
that g, = p (n — 00) and ¢, = ¢.
O
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2.4 Central limit theorem
2.4.1 The Case of Single Variable
Theorem 2.25 (Central limit theorem). Let

(S1) (Q,.Z, P) is a probability space.

(52) {X;}52, is a sequence of random variables on (0, %, P).
(A1) 3p such that X; ~ p (Vi). Bellow, we fix such p.

(A2) {X YN, are independent for any N € N.

(A3) E[u) =v and V]u] = 02 and o > 0.

then P/ (x_,) weakly converges to N(0,0).

Proof. We can assume v = 0 and ¢ = 1. Bellow, we assume that.

Let Vi, := \)/(7% (i=1,2,..,n)and Y, := Y 1 | Vi, (n =1,2,...). By (Al), Y, = ¥y, (Vi,Vn). Let ¢, = ¢y, and

Yn =y, (n=1,2,..). And let ¢, : R > s — [, exp(isz)du(x). Then ¢, = (v)" and ¥y, (t) = wu(ﬁ) and (Vt € R).
We will show the following equation. By Proposition2.7,

t2 1
PYi,n (t) =1- % + O(E)(n — OO) (241)
By the above equation and Proposition2.4,
0= (1= =+ o)y > eap(-L) (0 - ) (242
on(t) = 5, Tol exp(—7) (n— o0 4.

By Proposition2.23, there is a pg € Z(R) such that P 5 converges to po in law and ¢, = exp(—%). Because

ON@©,1) = e:z:p(f%) and uniqueness of characteristic function, P s ¢ converges to N(0,1) O

2.4.2 The Case of Multi Variables
Theorem 2.26 (Central Limit Theorem(Multi Variables Case)). Let
(S1) (2,7, P) is a probability space.
(52) {X;}2, is a sequence of N-dimensional vectors of random variables on (Q, F#, P).
(A1) 3u such that X; ~ p (Vi). Bellow, we fix such p.
(A2) {X;}_, are independent for any n € N.
(A3) Elu] = v and cov[u] = 02 and o is N-by-N positive definite symmetric matriz.

then P /m(x_,) weakly converges to N(0, ).

Proof. Let us fix arbitary t € RY and s € R. Let us set Y, := st’ (X,, — v).
The following holds.

P (% —v)(5t) = E(exp(vnist" (X —v))) = ¢ m_,)(s) (2.4.3)
By Theorem2.25 and Proposition2.23 and Proposition2.3,
_ s2tT%t
Jm o iy (s) = exp(———— (2.4.4)
By setting s =1,
li % t) = £ 2.4.5
nglgo QD\/E(Xfu)(S ) = exp(— B ) (2.4.5)
By Proposition2.24 and Proposition2.3, P 5 x_,) weakly converges to N (0, X).
O
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2.5 Law of large numbers

Proposition 2.27 (Weak law of large numbers). Let

(S1) (,.%, P) is a probability space.

(A1) {X;}52, is a sequence of independent random variables on (Q, . F, P).
(A2) There is a pp € P(R) such that X; ~ p(Vi).

(A3) E[u] = v and V]u] = o? emist.

then the followings hold.

(i) {X;}52, stochastic converges to u, i.e., for any € > 0

lim p(|X —p[ =€) =0 (2.5.1)

Hereafter we denote stochastic convergence by —L2 5o plim.
N—oc0

(i) For any e > 0,
2

- o
p(| X —pl =€) < ne2 (2.5.2)
A proof using Chebyshev’s inequality. For any n € N,
% Ep(X —p? >
WX —p > = HEHE=C
1
< —2/ dp
€ JIX—p2>e?}
1 . o2
< SVX]=—
- e X ne?

(2.5.3)

This implies the above equation.

A proof using Central limit theorem. By resetting X; —
€ > 0 and 0 > 0. There is a > 0 such that

— M, we can assume g = 0 and o = 1. Let us fix arbitary

N(0,1)((—o00,—a) U (a,0)) < § (2.5.4)

By Central limit theorem, there is ng € N such that

7= < b (2.5.5)
and for any n > ng -
lu(lvnX| > a) — N(0,1)((—o00, —a) U (a,00))| < 9 (2.5.6)
So for any n > ng
pX12 9 < uX|2 ) = u(alX| 2 o)
< 2 (2.5.7)

So lim p(|X| > €) < 2. Consequently, li_>m wu(|X|>¢) =0.

n—oo

2.6 Multivariate normal distribution
Remark 2.28. Let
(S1) (Q,.7,P) is a probability space.
(52) X :=(Xy, ..., X,) is a vector of random variables.
(58) A is a (m,n) matriz.
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(A1) (X1,...,Xn) ~ N(0,E,).
then cov(AX) = AAT.

The following Proposition3.6.4 is used to prove the Proposition3.42 discussed later.
Proposition 2.29. Let

(A1) X == (X1, X2, ..., Xp)T ~ N(v,BBT), where B is a (p,q) matriz.
(S1) Let s € [1,p—1]NN and XNV := (X1, ..., X;) and X := (Xo41,..., Xp).
(A2) cov(XM X)) = 0.

then XU and X@) are independent.

Proof. The following proof consists of two steps.
STEP1. General case

In this step, we will show that it is enough to show the Proposition when r := rank(B) = p < q. For each i € NN[1, p],
let b; be the i-th row vector of B. Let V; be the vector space generated from by, bs,...,bs and let V5 be the vector space
generated from bsy1,bs490,...,0,. We can take {b,(;)};L; is a basis of Vi and {b,(;)};2, is a basis of V5. Since Vi L V5,
{bo(iy }ity N {br@y}izy = ¢ and {byi)}ity U {b-@i)};2, are linear independent. So it is enough to show {b,(;};L; and
{br(i)};2, are independent when rank(B) is the number of rows of B.

STEP2. Case when rank(B) =p <gq
Let W be the orthogonal complement of the vector space generated from b, by, ..., b,. We can take c1, ..., ¢(q—p) which

is an orthonormal basis of W and let
C1
C=1| ® |, andlet D:= {g} By (A1), there are random variables {e}?_; on (2,.#) and random variables { Y }7_7
Ca—p) |
on (Q, ) such that € := {e}{_, are i.i.d and ¢; ~ N(0,1) (Vi)
and Z := [‘;{ = De + v and cov(Z) = DDT.

The distribution of Z has the density function fe:RT2> 2 c-exp(a” DDTx) € R, where c is a constant. By (A2)
and the definition of C,

hY 0 0
DDT =10 Yo 0 , where X1 and Yo are symmetric positive definite matrixies. So the distribution of X has
0 0 Egyp . .
the density function f, : RP 5 z d-exp(zM” 21zM) . exp(2?” £12(?)) € R, where d is a constant and (V) = (24, ..., z,)
and ?) = (2,41, ...,,). By the format of f,, X(*) and X are independent. O
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3 Statistics

3.1 Popular Probability Distributions

3.1.1 General Topics on Random Variables

By the definition of independence, the following clearly holds.
Proposition 3.1. Let

(S1) (§;, %, P;) (i=1,2,...,N) is a sequence of probability spaces.
(52) (Q,.Z,P) is the probability spaces which is direct product of (§;,7, P;) (i=1,2,..,N)
(S3) X; is a random variable on S; (i =1,2,...,N).
(S3) We setY;:= X;om; (i=1,2,...,N).
then Y1, ..., YN is a sequence of independent random variables.
The following clearly holds.
Proposition 3.2. Let P is probability measure on (Q := N U {0},2). Then idq is random variable on Q and idg ~ P.
By Fubini’s theorem(see [5]), the following two propositions clearly holds.
Proposition 3.3 (Marginal distribution). Let

(S1) (4, %, B;) is a probability spaces (i = 1,2).
(A1) Py x Py has a density function fp, p,.

Then for almost everywhere x € R, fp, p,(x,-) is measurable and

fpi (@) = / frr. 2 (2, 9)APs(y)

exists and fp, is measurable and
[ tr@ar@) =1
R
Proposition 3.4 (Conditional probability density function). Let

(S1) (4, %, B;) is a probability spaces (i = 1,2).
(A1) Py X P» has a density function fxy.
(S2) x € R such that fx y(x,-) is measurable and fx(z) > 0.

(53) Set
[P P, (2,Y)
=i R
fP2\P1(1:) (y) fP1 (.T) (y € )
We call fp,p,(z) the conditional probability density function of Py given the occurrence of the value x of
P.
Then

/R Fraipre) (1) dPa(y) = 1

The following definitions are based on [6].
Definition 3.5 (Probability model, True distribution, Prior probability). The followings are settings and assumptions.

(A1) Q is a probability borel measure on RY and Q has the density function q. We call q a true distribution.
(S1) W is a Borel set of RY.
(A2) ® is a probability borel measure on W that has the density function ¢. We call ¢ a prior probability.
(A3) Q x @ has the densition function p.
(52) We set p(-1|-2) by for w € W such that ¢p(w) >0

p(z|w) == polow) (r) (v € RY)

We call p(-1]-2) the a probability model. Or, we denote p(-1|-2) by p(z|w).
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Definition 3.6 (Exponential family). The followings are settings and assumptions.
(S1) (Q,q, W, ®,0,p) is a pair of true distribution, prior probability, probability model.

We say p is in exponential family if there are v, g, f such that f is a borel measurable map from W to R’ and g are borel

measurable maps from RN to R’ and v is a borel measurable function on W and for any x € RN and any w € W such
that ¢p(w) > 0

p(zlw) = v(z)exp(f(w) - g(x))
Definition 3.7 (Conjugate prior distribution). The followings are settings and assumptions.
(S1) (Q,q, W, ®,0,p,v,g, f) is in exponential family.
(S2) v e R’.

Then, we set

= u\v) = 6xp(vf(u>) u zZ\V) 1= ETP\VU - w w
o) = () = T ey € W) 20 = [ eapto- fw)ae(

We call ¢(-1]-2) the conjugate prior distribution of the exponential family (Q,q, W, ®,¢,p,v, g, f).

The following is clear.
Proposition 3.8 (Posterior Probability Distribution). The followings are settings and assumptions.

(S1) (Q,q, W, ®,p,p) is a probability model.
(A2) q is continuous.
(S2) X™ = {X;}" | is a sequence of RN -valued random variables such that X; ~ Q.

(A3) p is continuous and for any 1, ...,x, € ¢~ *((0,00)) there is w € W such that p(z;,w) > 0 (Vi € N).
(A4) ¢ is continuous and ¢ >0 in W.
(S3) B > 0.

Then,
Z,(8) = /W H(w) I p(X; ) d(w) > 0
We set

r(w, X") = r(w]X") = ¢(w)I p(X;i|w)” (weW)

1
Zn(B)

We call (-|X™) is the posterior distribution of p. And we call § an inverse temperature and Z, () the partition function,
respectively.

Proposition 3.9. The followings are settings and assumptions.

(S1) (Q,q,W,®,,p,v,4g,f) is an exponential family.
(A2) q is continuous.
(S2) X™ = {X;}", is a sequence of RN -valued random variables such that X; ~ Q.
(A3) p is continuous and for any 1, ...,z, € ¢~ ((0,00)) there is w € W such that p(z;,w) > 0 (Vi € N).
(A4) ¢ is continuous and ¢ >0 in W.
(S3) B >0 is an inverse temperature.
(S4) veR’.
(55) 0 :=v+ 321, Bg(Xi).
Then

(i) The partiation function is represented as below.

(i) The posterior probability distribution is represented as below.

r(w]X™) = p(wl0)
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Proof of (i).

Zu(@) = | S p(X ) ab(w) = [ (oI (X ) 0 o)

/ (o), (0(X) exp(f(w) - g(X))))PdB(w) = —— / exp(v - ()T, (0(X:) exp(f (w) - 9(X:)))) d(w)
w w

z(v)
L / T o) expl((v 1 B3 9(%0)) - Fw))d(w) = 201 o(x)?
@) Sy 291X 2wy U

Proof of (ii).

Pl X o= G p(Xfw)? - = w(ww)H?_lp(XAw)ﬁz(mém

Zu(9)
e f@) ik i () el fw)
= TR L () el () X)) i ey = gy = 2

3.1.2 Probability Generating Function
Definition 3.10 (Probability Generating Function). Let
(S1) (2 =NU0,2% P) is a probability space.

then we set

Gp(z) := ZP(Z)ZZ (z€C) (3.1.1)
i=0

Proposition 3.11. The followings hold.

(i) Radius of convergence of Gp(z) is not less than 1.
(ii) If Gp = Gp then P = P,

(i) If Y is a random wvariable on any probability space such that Y ~ P then Gp(z) = E(zY) for any
2 € D(0,1) .

(iii) If Y1,Ys is a random variable on any probability space such that Y1,Ys are independent then Gpry iy, =
Gpy, Gpy,.

proof of (i). Because 0 < P < 1, (i) holds.
proof of (#). By (i) and definition of Gp and G'p, (ii) holds.
proof of (iii). Let us fix any z € D(0,1). For any N € N,

N
E(ZY) = Z/ szQ+/ 2YdQ
i—0 {Y=i} {Y>N}

N
- ZP(i)ziJr/{ 2YdQ (3.1.2)
=0

Y>N}

So
N

|E(zY) =) P(i)| < | 2¥dQ| < Q{Y > N}) (3.1.3)
—0 Y>N
Consequently (iii) holds.

proof of (iv). Tt is enough to show (iv) by (iii).
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3.1.3 Bernoulli distribution

Definition 3.12 (Bernoulli distribution). We call a probability distribution P on {0,1} the Bernoulli distribution if for
some p € [0,1] P({1}) =p and P({0})=1—-p

Proposition 3.13 (Expectation and Variance of Bernoulli distribution). Let us assumel a probability distribution P on
{0,1} is the Bernoulli distribution with P({1}) =

(i) E(P) =
(i) V(P) = p(1 —p),
(7). Tt is trivial.

(Z) V f{Ol}IdP E( )2:f{o’l}l'dp—pQ:p—p2:p(1—p)

3.1.4 Binomial distribution

Definition 3.14 (Binomial distribution). For some p € [0,1] and n € N we call a probability distribution B(n,p) on
{0,1,...,n} the Binomial distribution if B(n,p)({i}) = ,Cip*(1 —p)n —1i) (i = 0,1,...,n).

Clearly the following holds.
Proposition 3.15. Let

(S1) (Q,.Z,P) is a probability space.
(52) {X;}1, be independent random variables.
(A1) The distribution of X; is the Bernoulli distribution B with B({1}) = p (Vi).

then the distribution of 37 1 X, is B(n,p).

By Proposition Proposition3.2 and Proposition3.1, Random variables like the one above exist.

E(B(2,p)) =1-2C1p(1 —p) +2-2C5p* = 2p+0-p® = 2p. Eppyp)(2?) = 2p+2%p* — 2p>. E(B(3,p)) = 1-3C1p(1 —
p)?+2-3Cp*(1—p)+3p® =3p+0-p* +0-p® = 3p. Eps,p)(z?) = 3p+3°p? —3p? + 00 p3. We can extend these fact to
the following lemma and the following proposition.

Lemma 3.16.

(i) ThoykiCe(=1)F =0 (VI > 2).
(ii) $%_ k% Cp(—1)F =0 (VI > 3).
(i). L(x):= (1—33) S 1Cre(=1)F(=1)kzk

L'(2) = U1 - 2) " = B, kG~ 1) (~1)kak?
So, if [ > 2, then

0 = L'(1)
= Xh_ kCr(=1)F(-1)" (3.1.4)
O
(ii). L(z) := (1 — )l =L _,,Cp(—=1)*(=1)ka*.
L'"x) =11 -a2)"t =% _ k(k—1),Cp(=1)k(=1)kzk—2.
So, if I > 3, then
0 = L'"(1)
= Tjoik(k — 1)iCk(=1)*(-1)*
= S RCk (=D (1) = S ki Cr (1) (= 1)" (3.1.5)
By (i), 2L _ kCr(—=1)*(=1)* = 0. So B¢ _ k%, Cr(—1)*(—1)* = 0. O

Proposition 3.17 (Expectation and Variance of Binomial distribution).

(i) E(B(n,p)) = np
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(i) V(B(n,p)) = np(1 - p)

proof1 of (i). Let us take {X;}i = 1,2.,,,,n} in Proposition3.15. E(B(n,p)) = E(X}_,X;) = i F(X;) = np
proof1 of (ii). Let us take {X;}i =1,2.,,,,n} in Proposition3.15. V(B(n,p)) = X7, V(X;) = np(1 — p)

proof2 of (i).

E(B(n,p) = > kaCip*(1—p)"*
k=1

n—k

l
= anckrpk ankci(_lypi
k=1 =0

- Z Z ke Crp" - Ci(—1)'p’

=1 k=1,2...,l, i=0,1,....n—k, k+i=l

= >0 > knChn—kCi(—1)"
=1

k=1,2....1, i=0,1,....n—k, k—+i=l

n l
= > ') kaCr ok Crop(—1)F
=1 k=1

n

l
= Z(fl)lpl Z knck : n—kcl—k(fl)k

k=1

11 l nb k
(=1)p ;km(_l)

~

=

I
NE

N
Il
i

|
NE

l
(—1)lp" ; kkf(?l' :)! (—1)k

o~
Il
i

I
NE

l
(15 Co 3 g (-1
2 gy

N
Il
-

I
NE

l
(—1)'p'nC > kiCr(—1)F
k=1

N
Il
-

By Lemma3.16, for any [ > 2, 22:1 kCr(=1)* = 0. So E(B(n,p)) = np.
proof2 of (ii). By the proof2 of (ii),
n l
Epmp(a®) = D> (=1)'p'C Y FiC(-1)F
=1 k=1

By Lemma3.16, for any [ > 3, Ei:l k2,Cr(—=1)F = 0.

S0 Ep(np)(@?) = X1 (=)' nC1 Y4y KA Cr(—1)F = np(1—p) +n?p?. By (i), V(B(n,p)) = Ep(nyp) (2?) — B(B(n,p))?

np(l —p).

3.1.5 Geometric distribution
Definition 3.18 (Geometric distribution). Let p € (0,1).
Pk):=1-p)*1p(k=1,2,.)
We call P is Geometric distribution with p
Clearly P is a probability measure on {1,2,...,n,...}.

Proposition 3.19. Let P is Geometric distribution with p. Then

pz

A TOE
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Proof.

Gp(2) > (1—p) it

k=1

= pzy (1—p)*'pF!

k=1
1

- pzlf(lfp)z

Proposition 3.20. Let P is Geometric distribution with p. Then

and

proof1 of (8.1.11).

) _ p(I—(1—p)z)+pz(1—p)
Crle) = 0= (- p)2°
So
vy (L= (1 =p)1)+pl(l —p)
P’ +p—p?)

proof2 of (8.1.11).

By calculating the derivative,

So

o TN o
E(P>_pk§:jlk<1 (1-p)) Pa=a-py " »

proof of (8.1.12). By calculating the derivative of (3.1.17),

a fx)g = k(k—1)2*?
k=2

So

Ep(a(@=1) = p3_k(k=1)(1-p""
k=2

k=2
_ .2 201-p)
- p(l p) (pg - pg
V(P) = Brla(e — 1)+ Bp(e) - Bp(? = X224 2
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3.1.6 Negative binomial distribution

Definition 3.21 (Negative binomial distribution). We call a probability distribution P on {1,2,...} the Negative binomial
distribution if for some p € [0,1] P({k}) = pryr—2C,_1(1 — p)k¥~1p"~L. We denote this distribution by NB(r,p).

Proposition 3.22.

a

Pz
GNB(rp)(2) = O—(=por (3.1.20)
Proof. Because
1 =Ny
= ' 1.21
1—2 ZZ:% & (3 )
the following holds by r» — 1 times derivative.
—1)! = ,
(r )r = Z i(i—1)...(i —r+2)z (3.1.22)
(1 o Z) i=r—1
O

Proposition 3.23. Let X1, ..., X, are independent random variables and for any i Px, is the geometric distribution. Then
the distribution of >._, X; — (r — 1) is N(r,p).
3.2 Descriptive statistics
3.2.1 Skewness
Definition 3.24 (Skewness). Let
(S1) pe ZR).
(A1) v := E[u] and 02 := V[u] exist.
(z —v)®

Let us call E| 3
o

| be the skewness of p.

Proposition 3.25. Let

(S1) f is a probability density function on R.
(A1) f(x) = f(—z) a.e x > 0.
(A2) [ |z|"f(x)de < oo (i =1,2).
(A3) [pxf(x)dx = 0.
Then the skewness of the distribution from f is zero.

Proof. We denote S by the skewness of the distribution from f.
S = / 23 f(x)da
R
oo 0
= / x3f(x)dx+/ 23 f(x)da
0

— 00

o 0
_ / 2 f(2)dz + / (—9) F(—y) (—1)dy
0

oo

= Oox3 z)dxr — - 3
= /0 f(x)d /0 y° f(y)dy
=0 (3.2.1)

Proposition 3.26. Let

(S1) f is a probability density function on R.
(A1) [ |z|"f(x)de < oo (i =1,2,3).
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(52) d > 0.

(A2) For any e > 0, there is A, B,a,b € R suchthatl < A< B and0<a<bandb< A and (b—a) < (B—A)
and ﬁf; rf(—z)dr < ﬁff vf(z)dz and (A% — 1) ff vf(—x)dr — (b*> — 1) fab xf(—z)dz > d and

| Jo° &' f(@)dx — ff 2 f(z)dz| < e and | [J° ' f(—z)dx — f; rif(x)dz| <e (i=1,3).
(S3) We denote the skewness of the distribution from f by S.

Then S > d.
Proof.

&S] b
/ 3 f(—x)de < / 23 f(—x)de + €
0 a

IN

/ab 2 f(—z)dw — /ab zf(—x)dzx + /b ef(—z)ds + €

a

IN

/ab(x2 — Dz f(—z)dx + /ab xf(—x)dx +e

IA

b oo
(b* — 1)/ xf(—x)dx—i—/o zf(—x)dx + 2¢

IN

B oo
(A2—1)/A xf(—x)dx—d—i—/o xf(—x)dx + 2¢

IA

B B o0
A2/A xf(x)dx—d—/A xf(—x)dx—k/o xf(x)dx + 2¢

IN

B 00 ')
AQ/A xf(a:)dx—d—/o xf(—x)dx+/0 xf(x)dx + 3e

IA

B
/ 23 f(x)dx — d + 3e

A

IN

/ 23 f(x)dr — d + 4e
0

So S >d.

3.2.2 Kurtosis

Definition 3.27 (Kurtosis). Let

(S1) pe ZR).
(A1) v := E[u] and 02 := V[u] exist.

4
Let us call E[(gc 4V) | — 3 be the kurtosis of 11 and denote it by Kurt(u).
o

Proposition 3.28. The kurtosis of N(u, o) is 0.

1
Proof. Let us denote by C, := E.
Exulle—i)'] = Co [~ (o pteap(-5(* s
= G [ w5
= G [ et -5y ds
— 36, [ oo wlean(- ("L P)da
= 30
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Proposition 3.29. For 7 > 0 let us denote kurtosis of hry := 5=X[—r - by k(h-). Then lir% k(h:)
T—

—3.
Proof. Because E[zf] =0,
E[z*h,]
k(h:)+3=
o) 43 = e, )2
The followings hold.
Elz*h,] = =7°
and
E[z*h,] = =73
So there is constant C' > 0 .
k(h7)+3~C<:3>2 :C; (1= 0o0r7— )

Proposition 3.30. We set for e >0 and 6 >0

1 .
2510 if o] > 1,
fes(@) =911 1
(- ; <
6(2 4+5) if ol <€
0 otherwise

oo

and lim k(h;) =

T—00

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

Then f.s is a probability density function. Let us denote the kurtosis of fes by k(fs). Then the followings hold.

(i) Then for any e >0 }ir% E(fes) = o0.
—
(i) For any § >0 liH(l] k(fes5) = 00.
e—

Proof. Because

fe,5 is a probability density function.
Because Elzfes] =0,

The followings holds.

E[I2f€75] = 2(/0 1:2f€75(x)d:17+/1 x2f€75(z)dx)

e 1 1 Rl |
e 1 1 1
= 556 15) T vy

Bletfsl = ([ "0t fg()de + / Tt 5(a)de)

0
e 1 1 ~© 1

= “?5‘4+9+[ 27 40)
e 1 1 1

= 9((Z — — Y4+ =
(3(2 44 )er))

So, if we fix § then there is constant C > 0
&5
k(f€,5)+3~C(€3)2:C (e = 0)

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)



and if we fix € then there is constant C' > 0

K(fus) +3~ C% (0 0)
Then (i) and (ii) hold.

3.3 Bayes’s theorem

Theorem 3.31.

_ P(H))P(A|H;)
P(H;|A) = E;L=1P(Hj)P(A‘Hj)

Proof. By the definition of conditional probability,

P(H;)P(A|H;)

and
P(A) = S_ P(AU H;) = SI_, P(H,) (A H))

So, the above equation holds.

3.4 Crude Monte Carlo method
Proposition 3.32. Let

(S1) (S :=1{1,2,...,M},2% H) is a probability space.
(52) (,.7,P) is a probability space.

(S3) {X,}22, is a sequence of independet random variables on Q such that X, (Q) C S for any n € N.

(A1) X, ~ H for anyn € N. X,, ~ H) means that P({X,, =i}) = H(i)

(S4) g is a function on S.

(S5) {Yn}52, is a sequence of independet random variables on Q such that Y, () C S for any n € N.
(A2) Y, ~ C for any n € N. Here, C is the counting measure of S.

then

plim 229 _ 5 o) H((s)) = 8 plim D= dO0DH YY)
N —o00 N N—oo N

(3.2.14)

(3.3.1)

(3.3.2)

(3.3.3)

(3.4.1)

STEP1. Showing (the left side)=(the middle side) . Clearly {g(X,)}22, is a sequence of independet random variables on

Q. By (Al),
/Q 9(X)dP = Sacs g(s)H({s})

and
/Q 9(X,)dP = S5 g*(s)H({s})

So by weak law of large numbers (3.4.1) holds.

STEP2. Showing (the right side)=(the middle side) . We set
G:S53s—g(s)H({s})#S eR

By applying the method of STEP1 to G and C,

plim Z=IHIAVDES g (s #seds))

N—o00 N
= Zses 9(s)H({s})

30

(3.4.2)

(3.4.3)

O

(3.4.4)

(3.4.5)



3.5 Chi-Squared Test for Categorical Data

Proposition 3.33. Let
(S1) (Q,.Z, P) is a probability space.
(52) {X;}2, is a sequence of N-dimensional vectors of random variables on (Q, ., P).
(A1) {X;}5°, distribution converges to N(0,Ey).

then {|X;]?}52, distribution converges to x*(N).

Proof. Let us fix arbitary a > 0.
Let A be the N-dimensional Lebesugue’s measure. By (Al) and A(0B(X,/a)) =0,

p{IXi? <a}) = p({X; € B(X,Va)})
—  N(0,En)(B(X,va)) (i — o) (3.5.1)
By the definition of chi-squared distribution with degree of free N,
N(0, Ex)(B(X, 0)) = x2(N)([0,a]) (3.5.2)
So {|X;|?}¢2, distribution converges to x2(NV). O

Theorem 3.34. Let
(S1) (2,7, P) is a probability space.
(52) {X:}2, is a sequence of K-dimensional vectors of random variables on (Q, %, P).
(S3) {mi H, € (0,1) such that X5 m, = 1.
(A1) P{X;r =1}) =1 (Vi,Vk).
(A2) For any k,l such that k #1, {X;, =1} U{X;, =1} = ¢ (Vi).
(84) O =X X ) (n € N,k € N).
(S5) Ey:=nm, (n € Nk € N).

then © )
=y Tk — k) 3.5.3
Q(n) k=1 y— ( )
distribution converges to x*(K — 1).
Proof. We set B
Yo i = \/ﬁ(Xk — 7Tk) (n eN ke N) (3.5.4)
Then
Yo i = =S8,k (Vn) (3.5.5)
and
Ong — Eny =vVnY,r (n €Nk €N) (3.5.6)

Yn = (Yn,la [ Yn7K_1)T
If we set A :={a;;}ij=1,. k-1 by

,,,,,

et =),
Aij = {;K it (i # ), (3.5.8)
So

Q(n) =Y,TAY, (n€N) (3.5.9)

and A is a nonnogetive definite symmetric matrix.
We set (K — 1)-by-(K — 1) matrix ¥ := {0 j }i j=1,..k—1 by 0i; = cov(X1,;, X1 ;). Then

- ﬂi(lfﬂi) lf (Z:])7
Tij = {—m—wj it (i # ), (3.5.10)

and
i = cov(Xp i, Xp5) (Vn, Vi, Vj) (3.5.11)
By Proposition3.35, ¥ is positive definite symmetric matrix.
By the central limit theomre(see [?]), Vi o distribution converges to N (0, X).
By Proposition3.33, {Q(n)}22  distribution converges to x?(K — 1).
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Proposition 3.35. Let A and B be matrizies in the proof oh Theorem3.34. Then A=l =%
Proof. For any i € {1,2,..., K — 1}

(AX)ii = ;06 + Dk Ok

11 1
— + —)mi(l = m) + Eppi — (=i
(m_+7rK)7T( ™) + k;éWK( ;)

_ (1,7r.)+7r,(177ri)72k¢i7rk
1 K3 7TK

=1 (3.5.12)

For any i € {1,2,..., K — 1} and any j € {1,2,..., K — 1} such that i # j,
(AX)ij = @ii0ij+ aij055 + XkzijaikOk,i
1 1 1
= (4 ) + — (1 = 7)) 4 Dt i — (=TT
( +7TK)< 7T7T])+7TK7T]( Tj) + Si )Jﬂ-K( ;)
Ty Ty

Y Mo
= (7TJ 7TK7TZ)+(7TK ﬂ_Kﬂj) -

-
J

= Xt Tk

K

= 0 (3.5.13)

3.6 Linear Regression

3.6.1 Preliminaries for Linear Regression
Throughout this section, we assume the following settings.
Setting 3.36 (Linear regression). Let

(S1) (Q,.Z, P) is a probability space.

(A1) XTX is a reqular matriz of order (K + 1).
(83) Let € := {e;}{1<i<ny be N random variables.

(A2) {e}pr<icny < N(0,5Y 62Ey), where o > 0.

(84) Let {Bi}1<i<ky be a real K-dimension vector.
(85) Lety := {yi}{1<i<ny be N random variables which are defined by the following equation.

y=Xp+e (3.6.1)

Remark 3.37. By (A1),
rank(X) =K (3.6.2)

Definition 3.38 (Least squares estimate). Let
Bi=(XTX)"1(XTy) (3.6.3)

We call 3 the least squares estimate of (3.6.1).
And let

g=Xp (3.6.4)

We call § the predicted values of (3.6.1).
Lastly let

é=y—79 (3.6.5)
We call é the residual of (3.6.1).
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Remark 3.39. j3 is the point which minimize RX 3 z — |y — X 2|2 € [0, 00). And

Bi=8+(XTXx)'xTe (3.6.6)

and for each i B; ~ N(Bi,0%&) and & > 0, where & is (i,i) component of (XTX)_I.

Definition 3.40 (Multivariate normal distribution). Let X; be a random variable on (Q,.%) (i =1,2,...,N). {Xi}i]il ~
N(v,%) if there is a natural number | and (N,l) matriz A and there are random variables {e}._, on (92,.F) such that
€:={e}l_, arei.i.d and ¢, ~ N(0,1) (Vi) and X = Ae +~ and ¥ = AAT.

3.6.2 Interval estimation of regression coefficients

Proposition 3.41.
512

€]
;?p,ﬁgv_Ag (3.6.7)
Proof. The following holds.
é=(Ex — X(XTX)71XT)e (3.6.8)

Let A:= (Exy — X(XTX)71XT) then A is symmetric and idempotent. So each eigenvalue of Ais 0 or 1. And tr(A) = N —

tr(X(XTX)1XT) = N—tr((XTX) ' XTX) = N— K so rank(A) = N— K. So by Proposition??, f—f ~x}(N-K). O

Proposition 3.42. B and é are independent.

Proof. By (3.6.6) and (3.6.8), cov(é,B) = 0. So by Proposition3.42 3 and é are independent. O
By Remark and Proposition3.41 and Proposition3.41 and Proposition3.42, the folloing Proposition holds.

Proposition 3.43. For each i € NN[1, K],

(Bi = Bi)V (N — K)
v

~ (N = K) (3.6.9)

In the above equation, tn_k is the t-distribution whose degrees of freedom is N— K and &; is (i,1) component of (XTX)_l.

The following is a remark.

Proposition 3.44.

B8 —vig) ) (3.6.10)
N-K
A12¢ R
Proof. By Proposition3.41, E(J\|/_e|7§;() = 02¢;. By Remark3.6.2, V(53;) = 02¢; O
élvEi

' is denoted by se(f;).

vN-K

3.6.3 Decomposition of TSS

By the above remalk,

Proposition 3.45.

(§,€) =0 (3.6.11)
Proof. By (3.6.6),
XTg=X"Xp=X"(XB+€)=X"Ty (3.6.12)
So
(,6) = prxTe
= 'X"(y-9)
=0
O

Proposition 3.46. Let
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(A1) There is a K-by-K matriz B such that the first column of XB is 1y

then B
g=1 (3.6.13)
Proof. By (3.6.6),
XTy=XTXp=X"(Xp+e€)=X"y (3.6.14)
So the following holds.
BTxTe =0 (3.6.15)
The fitst component of the BT XT¢é is § —7. So 5 = 7. O
Proposition 3.47. Let
(S1) TSS := |y —yl,|?
(52) RSS := [y —7ln|?
(53) ESS =y — i
(A1) (A1) in Proposition3.46
then
TSS =RSS+ESS (3.6.16)
Proof. Because
1
TSS =y"(E = 1nn)y (3.6.17)
and 1
RSS = yT(XT(XTX)71X — N1N7N)y (3.6.18)
and
ESS =4T(E - XT(XTX)"'X)y (3.6.19)
TSS =RSS+ ESS. O

3.6.4 Cochran’s theorem

Proposition 3.48. Let
(S1) m € N and A;:N-by-N symmetric matriz (i = 1,2,...,m)
(A1) En =X, A;
(A2) N =X, rank(A;)

then
AiAj = 06i ;A (Vi, Vj) (3.6.20)

where 0; ; is a Kronecker delta.

Proof. Let V; := A;RY and n; := rank(4;) and {v; j}1<j<n, be a basis of V; (i = 1,2,...,m). By (Al) and (A2),
{Ui7j}1§i§m,1§j§m is a basis of RN. and

RN =P Vi (3.6.21)
i=1
Let fix arbitary ¢ € {1,2,..., N} and fix arbitary x € RN, A;x = (7, 4;)Ax = (A;)%x + (52442, By (3.6.21),
A;x = A%z and AjA;x = 0. O
By Proposition3.48 and Proposition?? and Proposition, the following theorem holds.

Proposition 3.49 (Cochran’s theorem).
We take over (S1) and (A1) in Proposition3.48. And let

(52) (Q,.F,P) is a probability space.
(A1) e ~N(0,EN)
(S3) Q; =€ Aje (i =1,2,...,m)

then Q; ~ x?(rankA;) (Vi) and Q; and Q; are independent for all (i,7) € {(i,7)|i # j}
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3.6.5 Testing

Throughout this subsection, we assume

B = (6,0,0,...,0)" (3.6.22)
and
1 x1,1 33172 Z1,L
X — 1 x2,1 x2.2 T2, L (3 6 23)
1 xN,l J,‘N72 xN,L
Then
XB = Polna (3.6.24)
So
7 = X(XTX)'xTy
= X(XTX)'XT(XB+e)
= Bolyi+ X(XTX) 1 xTe (3.6.25)
And
_ 1
Ylna = BONlN,l + 1n,Ne€ (3.6.26)
Consequently,
1
RSS = H(X(XTXx) ' xT - N1N71)e (3.6.27)

1
Because X (XTX)7' X7 is symmetric, X (X7 X)~'X7T and NlN"l are commutative.

1
And because X (X7 X)~1X7 is idempotent and symmetric, (X (X7 X)~1XT — NlN’l) is idempotent and symmetric.

1 1
rank(X(XTX)"1XT — NlN’l) =tr(X(XTX)"1XxT — NlN’l) =L

So by Proposition3.49, RSS and ESS are independent and RSS ~ x?(L) and ESS ~ x?(N — L —1).
So,

RSS
L I
ESS F(L,N—-L-1) (3.6.28)
N-L-1
3.6.6 Simple linear regression

Throughout this subsection, we set

I = ixi» T, = Zn:yi’ Tow= zn:l"?v Ty = zn:ﬂczyz (3.6.29)
i=1 i=1 i=1 i=1

(1) Casel: there is intercept
Throughout this subsection, we assume

1 T
x=|1 (3.6.30)
1 z,
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Then

So

Consequently,

(2) Case2: there is no intercept
Throughout this subsection, we assume

Then

(XTX)"'XTy
1 1
1 1 1 1 To 1 vT
((.131 ) xn) . ) X y
1 z,

o _ Ty =TT,
nly , — T2
1
Loy LT,
- 1
Ty w— —T2
n
_ S (@ — ) (i — 1)
> iy (v — 2)?
5= Z?:1(mi —Z)(yi — 9)

Yy (@i — 2)?

X = (a:l,azg,...,xn)T

55
<

B =

&3
8

3.6.7 Estimation about population mean

Throughout this section, we assume X = 1y is one and we define u by 8 = ul;. The followings hold.

XTX =N
1
Y= X(XTXx)"'xT = NN

e:=y—79yly
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3.6.8 Estimation about difference between two population means

Throughout this section, we assume

and

Then the followings hold.

(ly 0
= 0

So, by reproductive property of normal distribution,

And the following holds.

By Proposition3.42, (1 — p2 — (g1 — %2)) and |y — p1lar|? + |y2 — p2ln|? are independent.

Consequently, the following

1 1

pr—p2 — (1 —y2) ~ N0, (+ +

M N

1] = [y — pa 1> + |y2 — p2ln|?

holds.
(1 — p2 — (J1 — 2))VM + N — 2
1 1
_ 1 2 _ 1 2\ ( _
\/(|y1 palar? + lyo — poln| )(M+N)

3.6.9 One way analysis of variance

Throughout this section we set

Then

— T
Y= (yl,l, o Ylng s Y2,15 - Y2 im0y - YKL ~'~7yK,nK)

B = (M17IU/27 "-nuK)T
o= 22 g, )
n;
., O O O
v |t o0 0
e O O 1o,
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(3.6.51)
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L1 0 0 0

ni

1
Y= X(XTX)"'1XT = © nalnama O 0 (3.6.56)
O @) 0] e
In this subsection, hereafter, we assume there is a real number g such that
B =plg (3.6.57)
Then the followings holds.
1
TSS =€ (Eyx — ﬁlN,N)e (3.6.58)
1
ESS =€l (Y — NlNW)e (3.6.59)
1
rank(Y — NlN’N) =K-1 (3.6.60)
RSS = €' (Ex —Y)e (3.6.61)
rank(En —Y)=N - K (3.6.62)
So, by Cohchran’s theorem, ESS and RSS are independent, and ESS ~ x?(K — 1) and RSS ~ x?(N — K).
Consequently, the following theoem holds.
Theorem 3.50. Under the setting(3.6.55) and the assumption(3.6.57)
(ESS/(K —1))/(RSS/(N - K))~F(K—-1,N — K) (3.6.63)
And the followings hold.
1
p— 0 0
o L 0
(XTx)™' = no (3.6.64)
0 0 —
nK
B = (gl,-7g27-7'“7gK,-)T (3665)
So, by Proposition3.43, the following theoem holds.
Theorem 3.51. Under the setting(3.6.55)
(s — i) (N = K)n; t(N — K) (3.6.66)
Yi T Hi ESS e

3.7 Principal Component Analysis

3.8 Kernel Method

3.8.1 Motivation

Kernel Method is a method for effectively analyzing high dimensional data which does not fit statistical linear model.
Terminology 3.52 (Feature Space, Feature Map). The followings are settings.

(S1) Q be a set.
(S2) H be a real inner product space.
(53) ®:Q — H.

We call Q2 a feature space and ® a feature map, respectively.
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I imagine © to be a high dimensional data set like a subset of R'°°%0 And I assume that for a given statistical problem
like regression or principal component analysis or others, €2 does not fit statistical linear model like linear regression or
linear principal component analysis or others. So, I hope ®(2) does fit the linear model. Since 2 is high dimensional, in
many case H is also high dimensional. In general, that impose us highly costed calculation of the inner product. However,
if we find k : 2 x Q2 — R such that

(D(X), ®(Y)) = k(X,Y) (VXY € Q)

the inner product is easy to calculate. Here, k is called a kernel function and H is called a reproducing kernel Hilbert
space. Kernel method is the method to solove a given problem using (H, k). In addition, such statistical problems are
often reduced to an optimization problem in H. By the theory of the kernel method, it is shown that a solution of the
optimization problem can be expressed as a linear combination of {®(X;)}7 ;.

Zaifb(Xi)

3.8.2 Positive Definite Kernel Function
Definition 3.53 (Real Valued Positive Definite Kernel Function). The followings are settings.

(S1) 2 be a set.
(52) k be a real valued function on §Q.

We say k is a positive definite kernel function if for any 1, ...,xm € Q {k(zi,x;)}ij=1,2,...m S a positive semi-definite
symmetric matrix.

Definition 3.54 (Complex Valued Positive Definite Kernel Function). The followings are settings.

(51) Q be a set.
(52) k be a complex valued function on §Q.

We say k is a complex valued positive definite kernel function if for any x1,...,xm € Q {k(x;,z;)}ij=12
semi-definite Hermitian matrix.

m S a positive

.....

Example 3.55. Let G be a topological group and ¢ be a positive definite function on G. Then

k(z,y) = ¢(zy™") (z,y € G)

is a positive definite kernel function. For detail, see [14].

3.8.3 Reproducing Kernel Hilbert Space(RKHS)
Definition 3.56 (Reproducing Kernel Hilbert Space). The followings are settings.

(S1) 2 is a set.
(S8) H is a Hilbert space.

We say H is a real reproducing kernel Hilbert space over € if
H C Map(Q,R)
and for each x € Q) there exists k, € H such that
(u,kz) = u(x) (Vu € H)

We call a function
k:Q%3 (2,y) — ko(y) €R

reproducing kernel.
Proposition 3.57. The followings are settings.
(S1) H is a real reproducing kernel Hilbert space over Q.
Then the reproducing kernel is uniquely determined and is a positive definite kernel function.

Proof. See [14]. O
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The following theorem shows that a positive definite kernel function identify a reproducing Hilbert space.
Theorem 3.58 (Moore-Aronszajn). The followings are settings.
(S1) k is a real positive definite kernel function over Q.
Then there is a reproducing kernel Hilbert space H over  such that

(i) k is a reproducing kernel of H.
(ii) For any x € Q, k(-,x) € H.
(111) {k(-,z)}rcq are dense in H.

Proof. See [14]. O
Moore-Aronzjan Theorem also gives us a good feature map.
Proposition 3.59. The followings are settings.

(S1) Q is a feature space.
(52) k is a real positive definite kernel function over Q.
(583) H is a reproducing kernel space with k.
(S4) We define a feature map by
b: Q52— k(,z)e H

Then
(@(2), 2(y)) = k(z,y) (Vz,y € Q)

Proof. The proposition is clear from the definition of reproducing kernel space. O
The following theorem clarify a form of a solution of optimization problems in a reproducing Hilbert space.
Theorem 3.60 (Representer Theorem). The followings are settings.

(S1) Q is a feature space.

(52) A is a set.

(S3) {(X:, Y)Y, cQxA.

(S4) U :]0,00) = R a strictly monotone increasing function.
(S5) H is a reproducing kernel Hilbert space.

(S6) L: HN — R.

(S7) hiyecrhi € H.

Then the optimization problem

min F(f,¢) == (LU{F(X0) + Y caha(X)}0) + 2(|£]])

feH ceRm

has solutions in ({kx,},).

Proof. We set Hy := ({kx,},). Let us fix any f € H and ¢ € R™. Then there are fy € Hy and f; € Hy (See [14].).
From this, ||fo]|> < ||f|?. So,

and

(| fol?) < w(II£11%)
This implies F(fo,c) < F(fo,c). O
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3.8.4 Kernel Principal Components Analysis
Proposition 3.61. The followings are settings and assumptions.

(S1) 2 is a feature space.
(S2) H is a reproducing kernel Hilbert space over Q with the reproducing kernel k.
(53) ®:Q — H is a feature map such that

O(z) =k, (Vo eQ)
(84) {XiHL, c Q.

(53) B(X)) = B(X;) ~ - S, B(X,).

(56) We call the optimization problem

1 Y 1 o
fegyl\zl%;(\\ﬂﬁg((f’@()(i N;(f’ (X))

problemAl.
(S7) We set
) } } N N 1 N
Kij = (®(X,), ®(X;)) = k(Xi, X;) Z (Xi, Xp)— Z (Xar X))+ 555 > k(Xa, Xp) (1,5 =1,2,...
b=1 a=1 a,b=1

We call K := {Ki,j}f-\fj:l the centering gram matriz. Let A\ > Ao > ... > Ay denote all eigenvalues of K.

For each i, let u; denote an unit eigenvector regarding to \;.
(§8) We call the optimization problem }
max o’ K?a
a€RN aT Ka=1

problemB1.
Then the followings holds.

(i) A solution of the problemAl exists in ({®(X;)|i =1,2,...,N}).

(ii) For any solution of the problemB1, denoted by a, > .-, a;® is a solution of problemAl.

~ 1
(iii) f* .= Zil al®(X;), af = \/Tul. Then f! is a solution of problemAl.
1

(iv) (B(X:), f1) = VAud for any i.

(v) We define the optimization problem

N 1 N
remfiots i N ; (. N;

and we call it problemA2. By the same way, we define problemAS3,...,problemAN. And fP :=

1
af = ——=uP. Then fP is a solution of problemAp (p=1,2,...,N).

7 \/E
() (®(X;), fP) = VAiuy, for any i and p.
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4 Mathematical Programming

4.1 MILP and Branch-and-Bound Method
Definition 4.1 (MILP:Mixed integer linear programming). Let
(S1) Ae M(m,n,Q), Ge M(m,p,Q), be Q™, ceR", h € RP.
(52) §:=A{(z,y) € (Z1)" x (Ry)Plg(2,y) := Az + Gy < b}
We call the following problem a MILP.
maz f(x,y) = c'z + hly
subject to (xz,y) € S

We succeed notations in Definition4.1. And we set

S = {(z,y) € (Ry)" x (Ry)?| Az + Gy < b}

Let us assume the MILP has a opmimal solution (z*,3*) and the optimal optimal value z*. So S # ¢. Let us fix
(x,y) € S°.

Algorithm Branch-and-Bound Method
Input: S°# ¢
Step 1: Take a (2°,¢%) € S and (x,v,2) < (z0, yo, f(2°,9°)) and S + Sp
Step 2: Take j € {1,2,...,n}. Soo := {(x,y) € S|lz; < [29]} and So; := {(z,y) € S|z; > [2}]} and
MILPgp : maz f(Soo) and MILPg; : max f(So1)-
Delete Sy from S and add Spg and Sp; to S.
Step 3: for S, € S do
Solve LP, : maz f(Sy).
if LP, is not feasible then
Delete S, from S.
else
We set (z¢,y*) which is a optimal solution and z® which is its optimal value.
Delete S, from S.
if % € Z" then
if z¢ > z then
(z,y,2) < (@, y%, f(2% y%)).

end if
elsez* > z
Take j € {1,2,...,n}. Sao == {(z,y) € Salz; < [2§]} and Sa1 := {(z,y) € Salz; > [25]}.
Add S, and S,1 to S.
end if
end if

end for
Output: (z,y,2).

4.2 Meyer’s Fundamental Theorem
4.2.1 Main result

The propositions shown in this subsection will not be presented with proofs in this subsection, but will be presented with
proofs in the subsections that follow.

Definition 4.2 (Polyhedron). Let A € M(m,n,R),b € R™. We call
P :={zx e R"|Az < b}

a Polyhedron in R™ or a H-polyhedron. We call the right side H-representation. If A € M(m,n,Q),b € Q™ then P is a
rational polyhedron.
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Definition 4.3 (Recession cone). Let P be a nonempty polyhedron. We call
rec(P):={r e R"|x + Ar € P,Vx € P,YA € Ry}
the recession cone of P.
Notation 4.4. Let
(S1) Ae M(m,n,Q), G € M(m,p,Q), b€ Q™, ce R", h € RP.

We set
P(A,G,b) == {(z,y) € (R+)" x (R4)?|g(z,y) :== Az + Gy < b}

Definition 4.5 (Convex, Convex combination). Let A C R™. We say A is convez if > . Nia; € A for ay,...,an, € A and
Aty ooy A C [0,1] such that Y | Ni = 1. We call the sum

n
g AiG;
i=1

convexr combination of ai, ..., ay.
Proposition 4.6. Let
(S1) Ae M(m,n,Q), G€ M(m,p,Q), be Q™, ceR", h € RP.
(52) S :=A{(z,y) € (Z1)" x (Ry)Pg(x,y) := Az + Gy < b}
Then
()
sup{c'z + h'y|(x,y) € S} = sup{c'z + h'y|(z,y) € conv(S)}

Furthermore, there is (z,y) € S such that c'z + hly = sup{c'z + hly|(z,y) € S} <= there is (z,y) €
conv(S) such that ¢tz + hly = sup{c'z + hly|(x,y) € S}

(i) ex(conv(S)) C S
Theorem 4.7 (Meyer(1974)[9] Fundamental Theorem). Here are the settings and assumptions.

(§1) Ae M(m,n,Q), G € M(m,p,Q), be Q™.
(52) S :={(z,y) € P(A,G,b)|x € (Z+)"}.

Then there are A’ € M(m,n,Q), G' € M(m,p,Q), v’ € Q™ such that
conv(S) = P(A",G",V)
By Proposition4.6 and Theorem4.7, MILP

max f(x,y) := c'x + h'y
subject to (z,y) € S

is equal to a pure LP

max f(z,y) := c'x + hly
subject to (z,y) € P(A",G', V)

(1)~ )

S ={(z,y) e R" x RP|(x,y) € P(A,é,i)),x ezZ"}

We set

Then clearly

and MILP

max f(x,y) := c'x + hly
subject to (z,y) € S
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has a continuous ralaxation
max f(x,y) := c'x + hly
subject to (z,y) € P(A,G,b)

whose optimal value is equal to the one of the original MILP. And we can effectively find an optimal solution of this
continuas ralaxation which is contained in S.
From the above discussion, the following can be shown.

Proposition 4.8. Here are the settings and assumptions.

(S1) Ae M(m,n,Q), Ge€ M(m,p,Q),be Q™, ceR", h € RP.

(52) S = {(w,y) € P(A,G,b)|z € (Z:)"}.
Then there is M € N and are A € M(M,n,Q), G € M(M,p,Q), be QM such that

S =P(A,G,b)NZ x RY,
and o
conv(S) = P(A,G,b)

4.2.2 Fourier elimination and Farkas Lemma

Definition 4.9 (Conic combination). Let vy, ..., v, € R™. For every A1, ..., Ay > 0, we call 2111 \iv; a conic combination
of V1, ..ey Upy.-

Theorem 4.10 (Fourier Elimination). Let
(S1) Ae M(m,n,R), b e R™.
(S2) It :={ila;, >0}, I~ = {ila;, <0}, I°:= {ila;, = 0}.

i . b . _
(53) d) = =k (i€ [ UT~ k€ {1,2,.on—1}), b} := (ieltul-).

B |ai,n ‘ai,n|
(84) A:=(A,b) € M(m,n+1,R).
(S5) We set An_y € M(#IT « #I~ + #1°, n,R) and b/ € R +#I+#1°) py,

~ 1 ~ 1 -
(kq-th row of A,_1) = —— (k-th row of A) + ——(q-th row of A) (Vk € I* Vg€ 1)

|ak,n |ag,nl

" (I *#1" + j)-th row of A') = (j-th row of A) (j = 1,2,..., #I°)
(S6) 2t := (z1,...,z;) (x € R")
Then
(i) Az <b,x € R"™ is feasible if and only if

n—1
Z(a;i‘,i + ai],i)xi S b;g + b; (Vk € I+an S 17)7
i=1

n—1

Z apit; < b, (Vp € 1°%
i=1
(i) If A€ M(m,n,Q) and b € Q™, then ajgma;’i?b;wb; €EQ (Vkelt Vie{l,2,...n—1},Vqge I).
(iii) {x € R*"|Az < b} # ¢ <= {z e R"A(z!,-1)! <0} # ¢ <= {x e R"A,_1((z" 1), —1)t <0} # ¢.

(iv) For eachi € {0,1,...,n—1}, there is m; € N and A; € M(m;,i+1,R such that every row of A; is a conic
combination of rows of A and

{z e R"Az < b} # ¢ <= {z € RYA;((z")!,-1)! <0}

(v) If A€ M(m,n+1,Q) then A; € M(m;,i+1,Q) i€ {0,1,...,n — 1}.
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(vi) {x € R*| Az <b} # ¢ <= Ay <O0.
Proof of the ‘only if* part in (i). Let us assume x € R™ such that Az <b. Then

n—1

> aj wi +an < by (ke TT)
i=1

and
n—1

Z ag i — T < b, (VgeI™)

=1

So, by adding the left and right sides of these two inequalities, respectively, the following holds.

n—1

> (ah; +al ) < b+ b, (Vke It Vge ),
=1

n—1

Z ap,iz; < by (Vp € 1°)

i=1

Proof of the ‘if part in (i). Let us assume

n—1
> (ah; +al ) < b+ b, (Vke It Vg eI),
=1
n—1

Z apizi < b, (Vp € I°)
i=1
Then
n—1 n—1
> ap i — b < =D ah;,—by) (VEeIt,\Vgel)
i=1 i=1
We set
n—1
Ty 1= min{f(z ap; — bk eI}
i=1
Then
n—1
Ty > max{(Z a:“- - b;)|q el }
i=1
So, Ax < b.

Proof of (ii)-(iv). These are followed by (i).
Theorem 4.11 (Farkas Lemma I). Let
(S1) Ae M(m,n,R), b € R™.

Then
{z eR"Az <b} = ¢ < {veR"Aw=0,bv<0,0>0}+#¢

Proof of ‘only if* part. By Fourier elimination method (iv), there are mo € N and U € M (mg, n,R) such that U > 0 and
UA = (Om,; n-1,b) and b° # 0. Then there is u € R™ such that u’b? < 0. We set

vi= (u'U)

Then v > 0 and Av =0 and v*b < 0. O
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Proof of “if* part. Let us assume Jv € R™ such that v*A = 0 and v < 0 and v > 0. For any 2 € R™, v’ Az = 0. So,
Ax Lb. O

Theorem 4.12 (Farkas Lemma II). Let
(S1) Ae M(m,n,R), b e R™.

Then
{r e R"|Ax = b,x > 0} # ¢ < {u e R"™|A'u <0} C {u € R"|u'b <0}

Proof of ‘= . Let us fix x € {x € R"|Ax = b,z > 0}. Let us fix any u € {u € R™|A'u < 0}. So, b'u < 0. O

Proof of ‘<= ‘. Let us assume
{r eR"Azx =b,x >0} =¢

Then
{z eR"Azx <b,—Ax < —b,z >0} ={z e R"|Bx <c} =¢
Here,
A b
B=|-A]|,c.=| —b
_In On,l

and I, is the n-th unit matrix. By Farkas Lemma I, there are v € R and v" € R7* and w € R such that

t

v v
Bt v | =0,|v] ¢c<0
w w

This implies
A(—=(v =) = —w, —(v —0")'b >0

We set u := —(v —v’). Then
u € {u € R™ AW <0}\ {ueR™u'b <0}

4.2.3 Polyhedron and Minkowski Weyl Theorem

Definition 4.13 (Polytope). We say A C R™ is a polytope if there are finite vectors vy, ...,v, € R™ such that A =
conv(V1, ..., V). We call vy, ..., vy, vertices of A. If vy, ..., v, € Q", we call A is a rational polytope.

Definition 4.14 (Cone). We say C C R™ is a cone if 0 € C and for every x € C and A € Ry \x € C.
By the definition of cone, the following holds.
Proposition 4.15. Any cone containing nonzero vector is not bounded.

Definition 4.16 (Convex Cone). We say C C R™ is a convex cone if C' is cone and every conic combination of finite
vectors of C' is contained in C.

Because every intersection of convex cones is also convex cone, the following holds.

Proposition 4.17 (Convex Cone generated by a set). Let us assume A is any subset of R™. Then there is the minimum
convex cone containing A. We denote this convex cone by cone(A).

Definition 4.18 (Polyhedral cone). Let
(S1) Ae M(m,n,Q).

We call
P :={x e R"|Ax <0}

a Polyhedral cone.
Theorem 4.19 (Minkowski Weyl Theorem for cones). Let

(S1) C C R™.
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Then C' is a Polyhedral cone if and only if C is finite generated cone.

STEPI1. Proof of ‘if* part. Let us assume C' is finite generated cone. Then there is 71,...,7x € R such that C =
cone(ry, ...,mg). We set R = (r1,...,7g).
By applying Fourier elimination method k times to the the following inequality

and Fourier elimination method (vi), there is A € M (m,n,R) such that the above inequality is equivalent to
Az <0

So, C'= {z € R"|Az < 0}.
O

STEP2. Proof of ‘only if* part. Let us assume C' is a Polyhedral cone. So, there is A € M(m,n,R) such that C = {x €
R™[Az < 0}. We set C* := {y € R"|Jv € R such that A’v =y}. Then

C* = cone(a',...,a™)
Here, a* € R™ is the i-th row vector of A (i = 1,2,...,m). By STEP1, there is R € M(n, k,R) such that
C* ={y eR"|R'y <0}
We denote the i-th column vector of R by r® (i = 1,2, ..., k). We will show
C = cone(ry, ..., Tx)

Let us fix any x € cone(ry, ..., 7). Then there are v4, ..., v € Ry such that z = Rv. Because a; = Ale; (i =1,2,...,m),
a; € C*(i=1,2,...,m). So, AR < 0. This implies Ax = ARv < 0. This means 2z € C. We have shown cone(ry, ...,r;) C C.
Let us fix any Z € cone(r1, ...,7,)¢. So, {v € RF|Rv = z,v > 0} = ¢. By Farkas Lemma II, there is y € R™ such that
R'y <0and y'z > 0. So, y € C*. Then there are v € R such that y = A'v. So, v Az > 0. Because v € R, this implies
AZ £ 0. This means T € C°. Consequently C C cone(ry, ..., rg). O

Definition 4.20 (Minkowski sum). Let A,B C R*. We call
A+ B

the Minkowski sum of A and B.
Proposition 4.21. Let

(i) Minkowski sum of any two convex set is conver.

(i) For any two subset A, B C R,

conv(A + B) = conv(A) + conv(B)

Proof of (i). Let A,B C R™ be convex. For any aj,...,a, € A and by,...,b,, € B and Ay,..., A\, C [0,1] such that
Z;il Ai =1,

m

=1 =1

i=1
So, A+ B is convex. O
Proof of (i). By (i), conv(A)+conv(B) is convex. And A+ B C conv(A)+conv(B). So, conv(A+B) C conv(A)+conv(B).

Let us fix any a;,..,ax € A and by, ...,b; € B and Ay, ..., A, fi1, - jr € [0,1] such that S5 A = T and Y, i = 1.
Then

k

k l l k l
DoNai+ D by = (O Nai+by) =Y (O Nilai +b5)) = D N (ai +b;) € conv(A + B)
i=1 j=1 =1 =1 j=1

i=1 %,J
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Theorem 4.22 (Minkowski-Weyl Theorem). A subset P C R™ is a Polyhedron if and only if there is a polytope Q a finite
generated cone C such that
P=Q+C

We call the right side V-representation and call P a V-polyhedron.

Proof of ‘only if part. Let us fix A € M(m,n,R) and b € R™ such that P = {x € R"| Az < b}. We set
Cp:={(z,y) e R" x R|Az —yb <0,y < 0}

Then clearly
P ={z eR"(x,1) € Cp}

By Minkowski Weyl Theorem for cones, there are r',72, ..., KR"*! such that
Cp := cone(r',r?, ...,r%)

Because C'p is a cone, we can assume 7';+1 =0or 1 (Vi). So, there are uy,...,ux, € R™ and vy, ...,v; € R™ such that

e =conel (") o () () (1))

> P = conv(ul, ...,u*) + cone(v', ..., v")
O

Proof of ‘“if* part. We assume we can get

P = conv(ul, ...,u*) + cone(v', ..., v")
Then ) . ) l

P = cone((u1 ) y oo <u1 > , (16) s s <%)) NR" x {1}

Because cone( <u11> R <u1k> , (%1> s e (%l)) is a Polyhedral cone, P is a Polyhedron. O
Proof of the last part. O

Proposition 4.23. Let

(i) Bounden Polyhedron is polytone.
(ii) If A€ M(m,n,Q) and b € Q™, then there are vy,...,vx € Q™ and ry,...,7 € Z™ such that

P :={z € R"|Az < b} = conv(vy, ...,v) + cone(ry, ...,r;)

If P is bounded, P is a rational polytope.

(ii) P C R™ is a rational polyhedron if and only if P is a minkowski sum of a rational polytope and a convex
cone generated by finite rational vectors.

Proof of (i). By Proposition4.15, (i) holds.
Proof of (ii). By the proof of Theorem4.19, (ii) holds.

Proof of (iii). By the proof of Theorem4.19, (iii) holds.
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4.2.4 Perfect formulation and Meyer’s Foundamental theorem

Proposition 4.24. Here are the settings and assumptions.
(S1) Ae M(m,n,Q), G€ M(m,p,Q), be Q™, ceR", h € RP.
(52) §:=A{(x,y) € (Z1)" x (Ry)Plg(2,y) := Az + Gy < b}
Then
(i)
sup{c'z + h'y|(z,y) € S} = sup{c'z + h'y|(z,y) € conv(S)}

Furthermore, there is (z,y) € S such that c'z + h'y = sup{ctz + hly|(z,y) € S} <= there is (z,y) €
conv(S) such that ¢tz + hy = sup{ctz + hly|(x,y) € S}

(i) ex(conv(S)) C S
Proof of the first part of (i). Because S C conv(S),
sup{c'z + h'y|(z,y) € S} < sup{c'z + h'y|(z,y) € conv(S)}

We can assume z* = sup{c'z + h'y|(z,y) € S} < oo. Let us set H := {(z,y) € R"*?|c'z + h'y < z*}. Because H is
convex and S C H, conv(S) C H. So,

sup{c'z + h'y|(z,y) € S} > sup{c'z + h'y|(z,y) € conv(S)}
O

Proof of the last part of (i). The part of = 1is clear. We set d := (¢, h). Let us assume there is Z = (Z,¥) such that
d'z = sup{ctz + hty|(z,y) € conv(S)}. Then there are Ay, ..., A > 0 and 2y, ..., z; € S such that 2 = Y% | \;z;. Clearly
dz; < d'z (Vi). Because d'z = Zle di)\;z;, there is i such that d'z; > d'z. So, d'z; = sup{ctx+hly|(z,y) € conv(S)}. O

Proof of (ii). Let us fix any v € ex(conv(S)). Because ex(conv(S)) C conv(S), there are Ay, ..., \p, € (0,1] and vy, ..., v, €

S such that v = >,_; \iw'. We can assume m > 1. We set v/ := Y., T v'. Then v' € conv(S). Because
— A1
v=XAwv1 + (1= A)v" and v € ex(conv(S)), v =v; € S. O

Proposition 4.25. Let r!,...,rX € R®. Then

K

conv(z Zyr%) = cone(ry, ..., ™)
i=1

Proof. We will show this by Mathematical induction. If K = 1, then this proposition holds. Let us fix any & € N and
assume this proposition holds for every K < k.

We set C' := conv(Zfill Z,r"). Clearly C C cone(r!,...,r**1). Let us fix * € cone(r!,...,r**1). Then there are
241
(24141
20p 17T = (1 — N0 + A[2up41]7**! € C. By Mathematical induction assumption, Zle 2u;r" € C. So,

Uis.ooy pr1 € Ry such that ¢ = Zfill pirt. We can assume pjyq > 0. We set \ := Because 0 € C,

k+1 1 k
Z/M” = 5(2,Ulc+17"k+1 + Z 2urt) e C
i=1 i=1
So, cone(r!,...,r*1) c C. O

Theorem 4.26 (Meyer(1974)[9] Fundamental Theorem). Here are the settings and assumptions.
(S1) Ae M(m,n,Q), Ge€ M(m,p,Q), be Q™, ceR", h € RP.
(S2) S :={(z,y) € P(A,G,b)|lx € Z"}.

Then there are A’ € M(m,n,Q), G' € M(m,p,Q), ¥ € Q™, c € R", h € R? such that

conv(S) = P(A",G")V)
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STEP1. Decomposition of S. We can assume S # ¢. Then by Proposition4.23, there are v*, ..., v* C Q"*? and r!,...,r? C
Z™*P such that
P := P(A,G,b) = conv(v', ...,v") + cone(r, ..., %)

We set

S q S q
T := {Z o' 4 Zujrj|0 < Aispy <1 (Vi,j),Z)\i =1} = conv(v', ..., v") + Z[O, 1]r;

i=1 j=1 i=1 j=1

Then T is bounded. There is M € Nand D € M(M,n + p,Q) such that
)\ S S
T={zecR"P3INcR?,Iu € RY s.t. D( ) <z <= n<—-1Lu<l1

{ | +5 + [ ; ; H }
By Fourier elimination method, there are C € M(M,n,R) and d € Q™ such that T = {& € R"|Cz < d}. So, by
Proposition4.23, T is a rational polytope.

Let .
Tr = {(z,y) € Z" x RP|(2,y) € T}, Ry :={)_ pjr’|p; € Zy (V4)}
j=1
We will show
S=Tr+ R;

Because Ty + Ry C T and i-th component of 77 + R; is integer for every i € {1,2,...,s}, T+ Ry C S.
Let us fix any (z,y) € Z" x RP such that (z,y) € S. Then there are Ai, ..., Ag, ft1, ..., ftg € [0,1] such that > 7_ A, =1

and .
(@,y) =Y '+ > pyr!
i=1 j=1
We set
s . q . q .
(@ y) =D A+ (g = L rdyr =) L)
i=1 j=1 j=1

Then (2',y') € Tt and r € Ry. So, (z,y) € Tr + R;. Consequently, S =T + R;. O

STEP2. Proof that conv(S) is a rational polyhedron. By Propositiond.21 and STEP1,
conv(S) = conv(Tr) + conv(Ry)

Because conv(Ry) = conv(rt,...,r?), by Proposition4.25, conv(Ry) is a rational polyhedral cone. So, it is enough to show
conv(Ty) is a rational polytope

Since T is bounded, X := {x € Z"|Jy € R? such that (z,y) € T} is bounded and so is a finite set.
For each x € X, we set T, := {(x,y)|Jy € R? such that (z,y) € Tr}. For any T € X,

T: ={(z,y) e R" xRP|z =Z and (x,y) € T}

Because T is a rational polytope, T; is a rational polytope. We denote th set of all vertices of Tz by V; for any z € X.
We set V' := U,exV,. V is a finite set. We will show

conv(Tr) = conv(V)
Because T7 = Uzex T, = Uzexconv(V,) C conv(V), conv(Tr) C conv(V). Because V = U,exVy C Uzexconv(V,) =
UzexTw = conv(Tr), conv(V) C conv(Tr). So, conv(Tr) = conv(V). Consequently, conv(T7) is a rational polytope. O
By the proof of Theorem4.24, the following holds.

Theorem 4.27. Here are the settings and assumptions.

(S1) A€ M(m,n,Q), G € M(m,p,Q), b€ Q™, ce R", h € RP.

(52) S :={(z,y) € P(A,G,b)|x € Z"}.
Then there are

ay,...,ar € P(A,G,b)NZ" x QP = S

and
T1, .1 € ZVTP

such that
conv(S) = conv(ay, ..., a) + cone(ry, ..., ;)
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4.2.5 Sharp MILP Formulation

Definition 4.28 (MILP Formulation). Here are the settings and assumptions.
(S1) Ae M(m,n,Q), G € M(m,p,Q), Be€ M(m,t,Q), b€ Q™.
(52) S Cc Q.
(S3) T(A,G,B,b) := {(z,y,2) € Q" x QP x Z'|Az + Gy + Bz < b}.

We say (A,G, B,b) is a MILP formulation for S if and only if S is equal to the image of
pn: T(A,G,B,b) 3 (z,y,2) — 2z €Q"
Clearly the following holds.

Proposition 4.29. Here are the settings and assumptions.

(S1) A€ M(m,n,Q), G € M(m,p,Q), be Q™, c€ R", h € RP.
(52) S :={(z,y) € P(A,G,b)|z € (Z)"}.

(58) We set
A G B b
A E’ﬂ L O”;P R . _En 7. On
A= 0, G = F B = 0, b= 0,
On,n On,p _En On

Then (A, G, B,b) is a MILP formultation for S.
Definition 4.30 (Sharp MILP Formulation). Here are the settings and assumptions.

(51) A€ M(m,n,Q), G € M(m,p,Q), B € M(m,t,Q), be Q™.
(52) S Cc Q.
(Aq) (A,G,B,b) is a MILP formulation for S.

We say (A, G, B,b) is sharp MILP formulation for S if and only if conv(S) is equal to the image of
Dn T(A,G,B,b) 3 (z,y,2) —»zeQ”

Here, T(A,G,B,b) is a LP relazation of T(A, G, B,b).

Theorem 4.31. Here are the settings and assumptions.

(S1) S c Q™.
(A1) There are A € M(m,n,Q), G € M(m,p,Q), B € M(m,t,Q), b € Q™ such that (A,G, B,b) is a MILP
formulation for S.

Then there there are M € N and A € M(M,n,Q), Ge M(M,p,Q), Be M(M,t,Q), be QM such that (fl, é,B,I;) s a
sharp MILP formulation for S.

Proof. We set
Tr:={(z,y,2) € Q" x QF x Z'|Ax + Gy + Bz < b}

and py : Ty 2 (x,y,2) — x € Q™. Because (A, G, B,b) is a MILP formulation for S,
pi(Tr) =8
By Theoremd4.2.4, there are M € N and A € M(M,n,Q), Ge M(M,p,Q), Be M(M,t,Q), b € QM such that
Ty = {(z,y,2) € Q" x Q x Z'|Az + Gy + Bz < b}
conv(Ty) = {(x,y,2) € Q" x QP x Q'|Azx 4+ Gy + Bz < b}
Because conv(S) = conv(p1(Tr)) = p1(conv(TT)),
conv(S) = p1(conv(TT))

So, (A,G, B, B) is a sharp MILP formulation for S. O
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4.2.6 Review

Meyer theorem states that the convex hull of the feasible region of MILP is a rational polyhedron. So, the feasibility and
the optimal value of MILP are equivalent to the feasibility and the optimal value of some LP, respectively. By methods
such as simplex method, we can find this LP solution in extreme points of feasible reasion. By Proposition4.24, this
extreme point is a solution of original MILP problem.

I think there are the following three ideas that are important in the proof of Meyer theorem.

1. Fourier elimination method

2. Expressing the feasible region of MILP or LP in terms of the Minkowski sum of bounded and unbounded
parts

3. Going back and forth between integer and continuous parts of a polyhedron

Fourier elimination method plays an important role throughout this section. Fourier elimination method is a method
of solving linear inequalities
Az <b (4.2.1)

focusing on the sign of the coefficients of a certain variable and using only non-negative multipliers to eliminate the variable.
(4.2.1) corresponds to another two linear inequalities. If there is a solution of (4.2.1), then there is U € M (mg, n,R) such
that U > 0 and UA = 0 and

0<Ub (4.2.2)

By focusing on row vectors of U, if there is no solutions of (4.2.1), then there is v € R’} such that
Aty =0,u'b < 0,u >0 (4.2.3)

Correspondance between (4.2.1) and (4.2.3) is stated by Farkas Lemma.
For idea2 on LP feasible reasion P, we state this idea as Minkowski Weyl Theorem.

P = conv(v',...,v%) + cone(r!, ..., r9) (4.2.4)

By increasing the dimension of the solution space of the simultaneous inequalities by one as follows, Minkowski Weyl
Theorem is boil down to the case in P is a polyhedral cone.

P=PNR" x {1}, P := {(x,y) € R" x R|(A, —b) (g) <0} (4.2.5)
By Fourier elimination method and Farkas Lemma, any polyhedral cone is equivalent to finite generated convex cone.
Meyer theorem is the following.
Theorem 4.32. Here are the settings and assumptions.
(S1) Ae M(m,n,Q), Ge€ M(m,p,Q),be Q™, ceR", h € RP.
(52) S :={(z,y) € P(A,G,b)|x € Z"}.
Then conv(S) is a rational polyhedron.

In the proof of Meyer theorem, we focus on Polyhedron P := P(A, G, b) which is containing S. By Minkowski Weyl
Theorem, we get
P = conv(v',...,v%) + cone(r!, ..., r?)

We focus a bounded part of P
q
T = conv(v',...,v%) + Z[O, 1r;

j=1
We denote a integer part of 7' by T and denote a integer part of cone(r?,...,r%) by Rr. Then we get
S=Tr+ R;

So,
conv(S) = conv(Tr) + conv(Ry)

Because conv(T7y) is a rational polytope and conv(Ry) is a rational polyhedral cone, conv(S) is a rational polyhedron.
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4.3 MILP formulation
4.3.1 Minimal formulation
Definition 4.33 (Implied equations, redundant inequalities, and facet). Here are the settings and assumptions.
(S1) Ae M(m,n,Q), be Q™, P:={x € Q"|Azx < b}. a; is the i-th row vector of A..
Then
(i) We say F C P is a face of P if and only if F = {z|alz =b; (Vi € L)} for some L C {1,2,...,m}.
(ii) We say F C P is a proper face of P if and only if F is a face and F # ¢ and F # P.
(i1i) We say F C P is a facet of P if and only if F is a proper face and maximum with respect to inclusion.
(iv) We say a;x < b; (i € L) is implied equations of P if and only if a;x < b; (Vi € L) for any x € P.

(v) We say a;x < b; (i € L) is facet defining inequalities of P if and only if F := {z|a;x < b; (Vi € L)} is a
facet of P.

(vi) We say a;x < b; (i € L) is redundant inequalities of P if and only if there is a subset I C {1,2,...,m}
such that P = {z|a;x <b; (Vie I\ L)}.

(vii) We say L C {1,2,...,m} is a minimal formulation of P if and only if P = {x|a;x < b; (Vi € L)} and
there is mo iL such that a; < b is a redundant inequality of P.
4.3.2 Locally ideal formulation
Proposition 4.34 (Standard equity form for LP). Here are the settings and assumptions.
(S1) A e M(m,n,Q), b Q™.
(52) S :={z € Q"|Az < b}.

(S3) We set for x € S,
O(z) = (y",y " 2)

Here,
y = max{z;,0} (i =1,2,...,n)

y; =max{—xz;,0} (i=1,2,..,n)

(84) §:={("y .2 € QAW —y7) +2 < b}
Then ® is a bijective from S to S. We call S the standard equity form of S. We call each zj a slack variable.
Definition 4.35 (Basic feasible solution for LP.). Here are the settings and assumptions.

(S1) A e M(m,n,Q), b Q™.
Then

(i) Forx € Q™, we say T is a basic solution of Ax = b if and only if {a;|a; is the i-th column of A and ; > 0}
are linear independent.

(ii) For x € Q}, we say T is a basic feasible solution of
Ax =b,z >0
if and only if x is a basic solution of Az =b.

Proposition 4.36. Here are the settings and assumptions.

(S1) A e M(m,n,Q), b Q™.

(52) x is a solution of Ax < b,z > 0.

(S8) z = (z1,..,2m) are nonzero slack variables for Az + z = b,z,z > 0.
(S4) I:=1{ie{1,2,...m}alz =b;}. Here a; is the i-th row vector of A.
(S5) J:={j€{1,2,....,n}xz; #0}.
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Then (x,z) is a basic feasible solution iff {{a; ;}icr}tjes are linear independent.

Proof. We set I' := {i € {1,2,...,m}lalz < b;}. (x,2) is a basic feasible solution iff {a’};c; U {e;}icrr are linear
independent. Here a’ is the j-th column of A. This is equivalent to {a’ =, ;, a; je;}jesU{ei}ier are linear independent.
So, (x,z) is a basic feasible solution iff {{a; ;}icr};ecs are linear independent. O

Definition 4.37 (Locally ideal). Here are the settings and assumptions.
(Sl) AGM(m7n’Q)7 GGM(m7p7Q)f BEM(m7t5Q)7 be(@m‘
(52) S Cc Q.
(S3) T(A,G,B,b) :={(z,y,2) € Q" x QP x Z'|Az + Gy + Bz < b}.

(84) S == {w e QM|Cw = ¢,w > 0} is a standard equity form of S and ® is the bijection from S to S in
Proposition4.34.

We say (A, G, B,b) is a locally ideal MILP formulation for S if and only if S has at most one basic feasible solution and
for any basic feasible solution of S w, ®~(w) € QP x Zt.

We will show an example of MILP formulation which is not locally ideal but sharp.
Example 4.38. Here are the settings and assumptions.
(S1) S=Ul_ P;. P:={zcQ"||z;] <1,z; =0 (j#4)} (i =1,2,...,n).
Then
(i) The following is a MILP formulation for S.
yy—1<az;<1-y; i=1,2,..,n,j #1), (4.3.1)
y; >0, (i=1,2,..,n),

n

> yi=1 (4.3.3)

i=1
yez

(ii) conv(S) = {z € Q" 327, |zi| < 1}

(iii) Equalities and Inequalities in (i) and the following is a sharp MILP formulation for S.

irixi <1 (re{-1,1}") (4.3.4)

(iv) If n =3, the formulation in (iii) is not locally ideal.
(v) The following is a sharp and locally ideal MILP formulation for S.

—yi <z <y (1=1,2,..,n), (4.3.5)
y; >0, (1=1,2,.,n), (4.3.6)
Dowi=1 (4.3.7)
i=1
yez"
Proof of (i). It is clear. O

Proof of (ii). The part of C is clear. Let us fix any x in the right side. We take s > 1 such that Y ;" s|x;| = 1. Then
S,
- — 3 r (2
So, x € conv(S). O
Proof of (iii). We set T := {(z,y) € Q™ x Q"|(x,y) satisfies equalities and inequalities of (i)}. Clearly p;(T) C conv(S).
Clearly T is convex. Because P; x {e;} C T (¥i), S C p1(T). So, conv(S) C T. O
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1
Proof of (). Clearly 1 = 23 = y1 = y2 = —,x3 = y3 = 0 is a feasible solution. We will show this is a basic feasible
solution. By Proposition4.36, it is enough to show the column vectors of

ry T2 Y
r1<l—yp 1 0 0
Z‘QSI—yQ 0 1 1
y1+y2=1 0 0 1
1'1+£L'2:1 1 1 0

—

oro~g

are linear independent. Because this matrix is nonsingular, the column vectors of this matrix are linear independent. [

Proof of (v). By the same argument as the proof of (iii), we can show this formulation is sharp. For locally ideal property,
it is enough to show for any basic feasible solution (z*,z7,y,z2) there is #{ily; # 0} = 1. Because Y . ,y; = 1,
#{ily; # 0} > 1. For aiming contradiction, let us assume #{i|y; # 0} > 1. So, there are i; # iy such that y;,,y;, > 0.
We can assume i1 =, io = 2. We will show in each case of the followings.

casel |z1| <y or |xa| < ya.
case2 |z1| = y1 and |z2| = yo.
In casel, we can assume |z1| < y;. If |22] < y2, then By Proposition4.36, the clumns vectors of the following matrix are

linear independent.

Yy Y2
* 0 0
* 0 O

duyi=1 1 1
This is contradiction. So, |z;,| = y;,. By Proposition4.36, the clumns vectors of the following matrix are linear independent.

Y1 Y2 T3
* 0o 0 O
* 0O 0 O

Gay2 +1222 <0 0 g2 T2
Soy=1 1 1 0

Here, goro # 0. So, the clumns vectors of the following matrix are linear independent.

Y1 Y2 x5

* 0O 0 0

* 0O 0 O

Goy2 + 1222 <0 0 0 1o
S=1 1 0 0

This is contradiction.
In case2, By Proposition4.36, the clumns vectors of the following matrix are linear independent.

* O 0 0 0
qy1+rz1 <0 ¢¢ 0 r;p O
@y +1222 <0 0 g 0 7o

Here, q171927m2 # 0. So, the clumns vectors of the following matrix are linear independent.

Y1 Y2 T T
* 0 0 0 O
% 0 0

q1y1 +rizr <0
q2y2 + 122 <0

Ziyizl

- o oo
—_o oo
=
o
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This is contradiction.
Consequently, #{i|ly; # 0} < 1. 0

Memo 4.39. We measured execution times in three formulations in Example4.38. Here are the settings.
Version of SCIP: SCIP9.0.0.0
Target Machine: Ubuntu Desktop 22.04
Host Machine: Windows10

CPU:Inter Core 17-6700T@2.8GHz
DRAM: 32GB

Here are the problem.

mazimize E cx;, Tt €8
i=1

For n = 1000, the execution times are below.

Simple formulation(i) : 119sec
Locally ideal formulation(v) : 0.028sec

For sharp formulation(iii) and n = 17, the execution time is 229sec. See [10] for sample code.
Proposition 4.40. Here are the settings and assumptions.

(S1) A e M(m,n,Q), b Q™.

(52) S :={x e Q™ x Qm|Ax < b}.

(S3) T(A,G,B,b) :={(z,y,2) € Q" x QP x Z'|Az + Gy + Bz < b}.

(54) S = {w € QM|Cw = c,w > 0} is a standard equity form of S and ® is the bijection from S to S in
Proposition4.34.

Then

(i) For any x € ex(S), ®(x) is a basic feasible solution.

(i) For any x € S\ {0} such that ®(x) is a basic feasible solution, ®(z) € ex(S).
(iii) Let us assume S C [0,00)" "2, Then for any x € S such that ®(z) is a basic feasible solution, x € ex(S).

Proof of (i). Let z is a slack variable for Az <b. I,, := {i|z; # 0}. Jy := {j|z; = 0}. If Jy = ¢, then Az < b. So, there is
xt, 22 € Q™ t € (0,1) such that ArtAx? < b and z = tz' + (1 — t)22. This is contradiction. So, Jy # ¢. If z = 0, ®(x) is
clearly basic feasible solution. So, we can assume x # 0. It is enough to show {{a; ;}ic1,|j € Jo} are linear independent.
For aiming contradiction, let us assume {{a; ;}icr,|j € Jo} are linear dependent. We set k := #1I,, and

A= A{aijtier, jepo,.. my A = {aijbigr, jeqra,. .y, V= {bitier,, 0" := {bi}igr,
Then there is a ¢ € Q™ \ {0} such that
¢; =0 (Vi ¢ 1,),x+ scis a solution of A’z =V (Vs € R)

Because A”x < b”, there is s > 0 such that A”(z + sc) < b and A”(x — sc) < b”. This means that « ¢ ex(S). This is
contradiction. O

Proof of (ii). Let us fix any x € S\ {0} such that ®(x) is a basic feasible solution. We can assume |z1], .., |zx| > 0, 2541 =
.. =z, =0 and

a1,1C1 + ... + a1 kT = by

aj 121+ ...+ a T = b
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and
ail ... Qik
rank | ... .. .. =k

ap alk

So, the equation

a11%1 + ... + a1 T = by

121+ ...+ T = b

has the unique solution.
For aiming contradiction, let us assume that ®(z) ¢ ex(S). Then there are z! := (2" 2b7,2) and 2? :=
(>, 2%, 2%) and t € (0,1) such that 2 = tz' + (1 — t)z%. So, 27" = 2}~ =0 (Vi > k,j = 1,2) and 2} =

5+7sign(m)x{’+ (Vi <k,j5=1,2) and m37 = 04 sign(zn @) (Vi < k,j =1,2). This implies (mi’smn(ml), ...,x,lc’Sign(xl)) and

2,sign(z2) 2,sign(z2)
(z3 ey T )

s satisfies the equation

a11%1 + ... + a1 pT = by

121 + ...+ aEpxE = b

This is contradiction.
Proof of (). (iii) is followed by the same argument of the proof of (ii).
Definition 4.41 (Affine combination, Affine independent).

(i) For xy,...,x, € Q",

Y >\i1"h>\17~~~7>\m S Q, v N=1
> >

i=1
1s called an affine combination of x1,...,ZTy,.

(ii) We say x1,...,xn € Q" are affinely independent if for any Ai,...,\p € Q such that >."; \; = 0 and

Definition 4.42 (Dimension). For S C R",
dim(S) := max{#A|A is a finite subset of S and A is affinely independent} — 1
Definition 4.43 (Pointed set). We say convex subset S C R™ is pointed if and only if ex(S) # ¢.

Proposition 4.44. Here are the settings and assumptions.
(S1) Ae M(m,n,Q), b e Q".
(S2) P:={x € Q}|Az < b}.
(A1) P # ¢.

Then P is pointed.

Proof. For y € P, We set
N(y) = #{ily: # 0}, M(y) = #{jlaTy = b5}
Here, a; is the j-th row vector of A. We set
K := max{N(y)|ly € P}

If K = n, clearly 0 € ex(P). So, we can assume K < n. We set
L :=max{M(y)ly € P,N(y) = K}

Because K < n, L > 0. There is x € P such that N(z) = K,M(x) = L. We set k := n — K. We can assume
T1y .y T > 0,241 = ... = 2, = 0 and
Az’ =V
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Here, A" :={a; j}i=1,..L.j=12,..n, & = (T1, ..., xx), ' := (b, ...,br)". For aiming contradiction, let us assume rank(A’) <
n. there is 7 € QF such that
A" +tr) =V (Vt e R)

So, there is y € P such that N(y) > N(x) or M(z) < M(y). This is contradiction. So, rank(A’) = n. From this,
x € ex(P). O

Definition 4.45 (Edge). Let P be a nonempty polyhedron in R™. We call a face of P whose dimension is 1 an edge of
P.

Proposition 4.46. Here are the settings and assumptions.
(S1) ay,...,arQ™.
(A1) For any i, a; & conv(a1, ..., @i—1, i1, -, Qf)-
Then
ex(conv(ay,...,ax)) = {a1,...,ar}

Proof. By Propositiond.24, it is enogh to show supset part. Let us assume there is ¢ such that a; &€ ex(conv(ay, ..., ax)).
We can assume ¢ = k. So there are A1, ..., \g, M1, ..., Mk, t € (0,1) such that Zle A; = 1 and Zle n; = 1 and a; =
thzl Xia; + (1 —1) Zle n;a; and Zi;l Aia; # ap and Zle nia; # ag. So, tAr + (1 —t)nr < 1. This implies
k—1
tA; 1—1%)n;
a =3 + (-t a
1—tAe — (1= t)m

i=1
So, ay, € conv(ay,...,ar—1). This is contradiction. O
Proposition 4.47. Here are the settings and assumptions.

(S1) P C R™ is a Poryhedron.
(52) ai,...,ag,r1,...,71Q™ such that P = conv(ay, ..., ar) + cone(ry,...,r;).

(A1) For any i, a; & conv(aq, ..., ai—1,@it1, .., k).

Then
ex(P) C {a1,...,ar}

Proof. By Propositiond.24, it is enough to show ex(P) C conv(ay,...,ax). Let us fix any « € P\ conv(ay,...,ax). There
are y € conv(ay,...,ar) and z € cone(ry,...,r;) \ {0} such that x = y + 2. Because 22,0 € cone(ry,...,1), y,y + 2z € P.

1
So, z = §(y + y 4 2z). This means = ¢ ex(P). Consequently, ex(P) C conv(ay, ..., ax). O

Proposition 4.48. Here are the settings and assumptions.

(§1) P C R™ is a Poryhedron.
(A1) P is pointed.

Then there are ay,...,a,71,...r; € Q™
P = conv(ay, ..., a) + cone(ry, ...,1y), ex(P) = {a1, ...,ar },0 & cone(ry, ..., 1)
Proof. By Minkowski-Weyl Theorem, Then there are a, ..., ag,71,...r € Q"
P = conv(ay, ...,ax) + cone(ry, ..., 1)

For aiming contradiction, let us assume 0 ¢ ex(cone(r1,...,77)). The there are z; # 22 € cone(ry,...,r;) such that

1
0= 5(21 + 29). For any i,
1
a; = 5((04 + Zl) + (ai + 22))

This implies a; € ex(P). By Propositiond.47, ex(P) = ¢. This is contradiction. So, 0 € ex(cone(ry, ..., r;)).
By dropping some elements if necessary, we can assume that for each ¢

a; & conv(ay, ..oy Qi—1, i1, .y ax) + cone(ry, ..., my)
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For aiming contradiction, let us assume a; ¢ ex(P). We can assume ¢ = k. Then there are y1,ys € conv(as,...,a) and
21, 23 € cone(ry, ..., r), t € (0,1) such that

ar =t(y1 +21) + (1 —t)(y2 + 22),y1 + 21 # ak, Y2 + 22 # ai,

There are A1, ..., Ak, M1, -, Mk, t € (0, 1) such that Zle A =1and Ele n; =1and y; = Ele Aia; and yo = Zle nia;. If
Y1 = Y2 = ag, 0 = tz1+ (1 —1t)z2. This contradicts with 0 & ex(P). So, y1 # ax or y2 # ag. This implies t\+ (1 —1t)n, < 1.
So,

k
1
- th + (1= tni)a; +tz1 + (1 —t
ai 1_W_(l_t)nkg( + (1= tn)as + 121 + (1 1))
This means ay, € conv(as, ..., ax—1) + cone(ry, ...,r;). This is contradiction. O

Proposition 4.49. Here are the settings and assumptions.

(S1) S Cc Q.
(A1) (A, B, D,b) is a locally ideal MILP formulation for S.
(52) We set

P:={(z,u,y) € Q" x Q x Q'|Az + Bu + Dy < b}, Pr := {(x,u,y) € Ply € Z'}
p: P> (z,u,y)—»xeQ”
(A2) P is pointed.
then (A, B, D,b) is a sharp formulation for S.
Proof. By Proposition4.48, there are a1, ...,ag,r1,...1; € Q"

= conv(ay, ..., ar) + cone(ry,...,r;),ex(P) = {a1, ...,ar },0 & cone(ry, ..., 7),
a; = (24,09 (i=1,2,...,k),r; = (37,@,57) € Z" x Z° x 7' (j = 1,2,...,1)

By the assumption of locally idealness and Proposition4.40, ¢ € Z! (Vi).
Let us fix any (z,u,y) € P. There are A1, ..., \g, 01, ..., Mk € [0,1) € Q such that Zle A; = 1 and Zle n; =1 and

k l

(@u,y) = N(@ a9 + >y (@, 3, )

i=1 j=1

We set
(.T " 7y Z)\ ’L '\’L Az

Because y! € Z! and (A, B, D, b) is a MILP formulation for S, 2 € S. Without loss of generality, we can assume A; > 0.
There is a € Z N (1, 00) such that < 23:1 n; € Z'. We set

A
k . . . l . . .
(@0, 9%) = N(@, 08 97) +a Y n (@i, 5)
i=1 j=1
Then
k
(22, u?,y?) = M (@Y at, Y an a0 +Z)\ (&%, 4, 9") € conv(a, ..., ax)
i=2
1 1
So, 2% € conv(p(P)). So, x = (1 — =)zt + —22 € conv(p(P)). Consequently, (A, B, D,b) is a sharp formulation. O
a a

Proposition 4.50. Here are the settings and assumptions.

(S1) A€ M(m,n,Q), b€ Q™.
(S2) S:={x € Q) x Z\?|Ax < b}.
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i (A A
(53) A= ( ol

Om,ng . b
vector of A. B := <—En2>’ b:= <0n2>

(A1) Q= {z € Q" x Q'*|Ax < b} has at least one basic feasible solution.

). Here Ay = (at,...,a™) and Ay := (a™ 7T, ....a") and each a’ is the i-th column

Then (A, B, I;) is a locally ideal formulation for S iff (A,B,i)) is a sharp formulation for S.

Proof. Proposition4.44 and Propositon4.49, it is enough to show ‘if* part. Let us assume (/1, B, IN)) is a sharp formulation
for S. Then
CO?’L’U(S) — p({(x/7xll7y) c in X Qng X Qn|<$/7$//) c Q7x// — y}) — Q

By Theorem4.27, there are ai,...,a; € S and 71, ...,7; C Z" such that
Q = conv(ay,...,ar) + cone(ry, ..., ;)

We can assume aq, ..., a; are distinct. Let us fix any z which is a basic feasible solution of ). By Proposition4.40,
x € ex(Q). We will show = € S. There are A1, ..., Ag, 01, ...,m € [0, 1] such that Zle i = 211:1 n; = 1 and

k l
xr = Z)\Zaz + Z’I]j?"j
i=1 j=1

For aiming contradiction, let us assume there is j such that n; > 0. We can assume j = 1. Then We set
k 1 1 k 3 l
! = ;Azaz +gmry+ ;mmw = ;)\za’z +5mr+ ;m%

1
Then 2! # 2% and z = 5(351 + 2?). This contradicts with z € ez(Q). So,

k
xr = E )\iai
i=1

For aiming contradiction, let us assume there is i1 # i2 such that A;;, A;, > 0. We can assume i1 = 1,i5 = 2. We set

k k
yl = ()\1 + )\2)0,1 + Z )\iai,yz = ()\1 + )\2)&2 + Z)\Zal

=3 =3

N

N /\Qy + N +2)\2 y2. This contradicts with x € ex(Q). So, = € S. O

Because a; # as, y' #y?. And z =

4.4 Cutting Plane

Definition 4.51 (Valid Inequality). Let P C R",c € R",§ € R. We say the inequality ¢z < § is invalid if cT'x < 6 for
any x € P.

4.5 Semidefinite Bounds
T.B.D

4.6 Reformulation and Relaxation
4.6.1 Lagrangian Relaxation
Definition 4.52 (Lagragian Relaxation). Here are the settings and assumptions.
(S1) c e Q™.
(52) b Q™.
(S3) Ae M(m,n,Q).
(54) p € Nen.
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(S5) F:={x €7 x Q(Zon—p)mx < b}.

(S@) my € N§n7m2 =m-—mj.

ay am1+1
(S7) Ay = ... |, Az := . Here, a; is the i-th row vector of A (i =1,2,...,mn+ p).

Ay Qm

(58) Q :={x e R |Azz <b*,x; €Z (j =1,2,...,p)}.
We call

27 = maxcr
zEF

—
27 = maxcx
Az <b
2 €7 (j=1,2,....p)
z; € Q>0 (j=1,2,...,n)

the original problem. And, for A € RTj, we call

zrr(N) == max(cx + A\(b' — A1)

T€Q
—
zr = max(cx + \(b' — A1)
Aqz < b2
z; €Z (j=1,2,...,p)
z; € Q>0 (7 =1,2,...,n)

LR(\), lagrangian relazation.

Proposition 4.53. We take over notations and settings in Definition4.65. Then
ZLR()\) > 25 (V)\ € R?&)

Definition 4.54 (Unimodular Matrix). Let A € M(m,n,Z). We say A is unimodular if rank(A) = m and for every
m-th squared submatriz B
det B =0,+1

Definition 4.55 (Totally Unimodular Matrix). Let A € M(m,n,R). We say A is totally unimodular if for every squared

submatrix B
det B=0,%+1

Clearly the following holds.
Proposition 4.56. For any totally unimodular matric A € M(m,n,R), each a; ; =0 or 1.
Theorem 4.57. We take over notations and settings in Definition].65. And
(A1) {z|A1z < bz € conv(Q)} # ¢.

Then
zrp = max{cr|Aix < b,z € conv(Q)}

Corollary 4.58. We take over notations and settings and assumptions in Theorem4.57. Then
zr < zpp < zZLp
Here, z1p is an optimal solution of the continuous relaxation of the original problem.

Corollary 4.59. We take over notations and settings and assumptions in Theorem.57. And

61



(A2) conv(Q) = {z € RL,|Agz < b°}.

Then
ZLD = ZLP

Corollary 4.60. We take over notations and settings and assumptions in Theorem4.57. And

(A2) As is totally unimodular.

(A3) b* is integer.
Then

ZLD = ZLP

4.6.2 Dantzig-Wolfe Reformulation
Definition 4.61 (Ray). Let a € R". We call [0,00)a a Ray of R™.
Definition 4.62 (Extreme Ray). Let C be a polyhedral cone. We call R C C' an extreme ray of C if R is an edge of C.

Proposition 4.63 (Dantzig-Wolfe Reformulation). We take over notations and settings and assumptions in Theorem4.65.
And

(S9) {vF}rex is a finite subset of conv(Q).

(510) We pick {vF rex € Q" and {u'}nemg C Q" such that conv(Q) = conv({v*}rer) + cone({u"}nerm).
Remark that such {vF}rex and {u"}nen exist by Meyer’s theorem.

Then

(i) The problem
max{cz|A;r < btz € conv(Q)}

1s equal to the following problem.

max( Z (™) A + Z (er™ )

keK heH
> (AN + > (A", < b
keEK heH
Z A =1
keK

K H
AeRES e RE]

The formulation is called Dantzig- Wolfe relazation ot the original proglem.

(i) The original problem is equal to the following problem. The formulation is called the Dantzi-Wolfe refor-
mulation of the original problem.

max( Z (™) A, + Z (er™ )

keK heH

D (A )+ > (A, < b

keEK heH

=1

keK

Do+ DY (M ez

keEK heH
#K #H
AGRBHMGRN

62



4.6.3 Column Generation

Example 4.64 (Dantzig-Wolfe Reformulation and Column Generation). We take over notations and settings and as-
sumptions in Proposition4.63.

(i) K" C K,H C H.
(ii) We call the following problem master problem.

max( Z (™) A + Z (er™ )

keEK’ heH’

S (AP e+ > (A, < b

keK’ heH’

Z/\k=1

keK'

ST+ Y (M € 2"

keK' heH
K’ H'
AeRES peRE]

Then

(i) The master problem is unbounded, the Dantzig- Wolfe relazation is also unbounded.

(i) The dual of the master problem is the following.

min(rb* + o)
m(A0") +o > evf ke K
(At > e he H'
T eRYy,0€eR

(iii) Let us assume the master problem has an optimal solution, and (7,d) is an solution of the dual problem.

We set

Gy = cv® —w(A0*) — 5 (k € K),
e = cr" — (At (h e H)

Ife, <0 (Vk € K) and ¢, < 0 (Vh € H), then (7,5) is an optimal solution of the Dantzig-Wolfe

relazation.
(iv) We take over notations and settings and assumptions in (iii). We call the following problem the pricing

problem.

= —0 — 7A
¢ a—i—rgleaé((c TA)x

Then

(a) ¢ is unbounded if and only if there is h € H such that ¢, > 0.
(b) ¢ is bounded and ¢ > 0 if and only if there is k € K such that ¢ > 0.
(¢) ¢ is bounded and ¢ < 0 if and only if there is k € K such that ¢, < 0,6, <0 (Vh € H,Vk € K).

4.6.4 Benders Decomposition
Theorem 4.65 (Benders Theorem). Here are the settings and assumptions.
(S1) c€ Q.
(S2) h € Qr.
(S3) Ae M(m,n,Q).
(54) G € M(m,p, Q).
(85) F:={(z,y) € Z%, QgO|Ax+Fy < b}.
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(S6) We call

max {cx +h
(Jna A y}

=
max{cz + hy}
Az + Gy <b
T €73,

ye@go

the original problem.
(87) Q == {u € RZ[u"G > h}.

(S8) We pick {uF}rex C Q™ such that conv(Q) = conv({uF}rex). Remark that such {uF}ncx exist by
Meyer’s theorem.

(89) C = {u € RZ|u"G > 0}.
(510) We pick {r'}je; C Q™ and {r'};e; C Q™ such that C = cone({ri};c;). Remark that such {ri};c; and

{Tj}jeJ exist by Meyer’s theorem.

Then the original problem is equal to the following problem.

max{n + cx}

n < uf(b— Az) (Vk € K)
(rHT(b— Az) >0 (Vj € J)
T €73,
nelR

64



5 Event graph analysis

5.1 Max-plus algebra
Definition 5.1 (Semi-ring). Here are the settings.

(S1) R is a set.
(S2) ®,® are binomial operators on R.

We say (R, ®,®) is a semi ring if
(i) For any x,y,z € R,

(i) For any x,y,z € R,
rdy=ydx

(i1i) For any x,y,z € R,
2R (YP2z)=zrQydrz

(iv) R has the unit element e with respect to &.
(v) R has the unit element e with respect to @.
(vi) eQr=xR¢€=c¢.
We say R is commutative if ® is commutative. We say R is idempotent if ® is idempotent.

Definition 5.2 (R,,..). Here are the settings.

(51) Rppaz := RU{—00}. We set e:= —oc0 and e := 0.

(S52) For z,y € Ryan
x @y = max{z,y}

TQRQyY:=x+yY
We call Rimaz := Rimaz, D, ®) the maz-plus algebra.
Clearly the following holds.

Proposition 5.3. R.,q: s a commutative and idempotent semi ring.

5.2 Petri net and Event graph
Definition 5.4 (Petri net, place, transition). Here are the settings.
(S1) (N, A) is a directed graph.
We say (N, A) is a petri net if there is (P, Q) which is a pair of disjoint subsets of N satisfying the following two

conditions.
(i) N=PUQ,PNQ=¢.
(1)) ACPxQUQxP.
We denote this petri net by (N, P, Q, A).
We call each element of P a place and call each element of Q a transistion. Let us fit p € P and g € Q. We say p is
the input place of the transition q and q is the output place of the transition p if (p,q) € A. We say p is the output place
of the transition q and q is the input place of the transition p if (p,q) € A.

We denote the set of all input place of q by w(q) and denote the set of all input transition of p by w(p).
We denote the set of all output place of ¢ by o(q) and denote the set of all output transition of p by o(p).

Definition 5.5 (Event graph). Here are the settings.
(S1) (N,P,Q,A) is a petri net.
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We say this petri net is an event graph if for each p € P there is the unique ¢1 € Q such that (p,q1) € A and there is the
unique qa € Q such that (ga,p) € A.

Definition 5.6 (Enability and Firing in petri net). Here are the settings.
(S1) (N,P,Q,A) is a petri net.
(52) w: A— N>q1. We call w(a) is the weight of a € A.
(S3) My : P — Zxo. For each p € P, we say p is marked with M (p) tokens.

(S4) q € Q.
Then
(i) We say q is enable if each input place p of q is marked with at least w(p,q) tokens.
(ii) Let us assume q is enable. We set for each p € P
Mi(p) := Mo(p) + Xo(q)(P)0(4,P) — X (q) (P)w(p; q)

We call My the firing of My with respect to q.

Definition 5.7 (Liveness, Autonomous, Time event graph). Here are the settings.
(S1) G := (N, P,Q, A, w, My) is an event graph with weight and token.

Then

(i) We say G is liveness if for any cycle ¢ of G there is p € P whose output transition is enable.
(i) For each q € Q, q is a supplier transition if w(q) = ¢.
(i) We say G is autonomous if G is no supplier transitions.

() Let T: P — Z>o and v : ANP x Q — Z>¢ such that

v(p, @) < 7(p)
Then (G, T,7) with time event graph.
Definition 5.8 (Enability and Firing in Time event graph). Here are the settings.
(S1) G := (N, P,Q, A, w, My, T,7) is a time event graph.
(A1) For any q1,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.
(A2) w=1 on A.
(52) q € Q.
Then

(i) We say q is enable if each input place p of q is marked with at least w(p,q) tokens and 7(p) < v(p,q).
We denote the all enable transitions by E(G).

(i) Let us assume q is enable. We set for each p € P
Mi(p) := Mo(p) + Xo(q) (D)W (P ) = Xn(q) (P)w(P, 2),71(p) := 0
We call (My,71) the firing of (Mo, o) with respect to q.
Clearly the following holds.
Proposition 5.9. Here are the settings.

(S1) Go := (N, P,Q, A, w, My, T,70) is a time event graph.

(A1) For any qi,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.

(A2) w=1 on A.

(58) We set
My (p) := Mo(p) + XE(Go)(01) — XE(Go) (22)

Here 1 € m(p) and q2 € o(p). And

(p,q) == Y(p,q) +1 My(p) > 0 and q is not enable
=00 otherwise
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(54) We set Gy := (N,P, QA w, M1,T»’Yl)-
Then G is a time event graph.
Definition 5.10 (Firing time). Here are the settings.

(S1) Go := (N, P,Q, A w, My, T,70) is a time event graph.

(A1) For any q1,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.
(A2) w=1 on A.

(S3) We define {G+}2, inductively by the procedure defined in Proposition5.9.

Then
2q(k) = {to € Zsolk = #{t < tola € E(G)}} (g € Q. € No)

We call z4(k) the k-th firing time of q. We set
‘T(k) = (qu (k)a -'-va#Q)T (k € Nzl)
Definition 5.11 (System Matrix). Here are the settings.

(51) {Gt == (N, P, Q, A, w, My, T,7¢) }rez-, is a sequence of time event graphs by the procedure defined in
Proposition5. 9.

(S2) {z(k)}32, is the sequence by Definition5.10.

(§3) We denote the mazimum number of tokens at any one place in {Gi}iez.., by M.
Then for each m € {0,1,..., M}

aj1 pju exists and p;; has m tokens in Gg (.1

[Amlja = { € otherwise =12,...#Q)

Here pj; is the place such that (qj,p;,1), (pj1, @) € A.

Proposition 5.12. We succeed notations in Definitiond.11. And let us assume any Gy is autonomous. Then

2(k)=Ag@z(k)® Ay @a(k—1) & .0 Ay @k — M) (k=M +1,M+2,..)
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