A study memo on jordan normal form of matricies

Proposition 1. Let
(S1) $m \in \mathbb{N} \cup[2, \infty)$
(S2) $f_{1}, \ldots, f_{m} \in \mathbb{C}[X] \backslash 0$.
(A1) f_{1}, \ldots, f_{m} don't have common divisor.
then there are $h_{1}, \ldots, h_{m} \in \mathbb{C}[X]$ such that

$$
\begin{equation*}
\Sigma_{i=1}^{m} h_{i} f_{i}=1 \tag{1}
\end{equation*}
$$

Case when $m=2$. When $\sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)=0, \operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)=1$. In this case, the the claim in this Proposition holds. We assume the claim in this Proposition holds when $\sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<K$. We can assume $\operatorname{deg}\left(f_{1}\right)>0$ There is $q, r \in \mathbb{C}[X]$ such that $f_{1}=q f_{2}+r$ and $\operatorname{deg}(r)<\operatorname{deg}\left(f_{1}\right)$ By the assumption of our mathematical induction, there are $h_{1}, h_{2} \in \mathbb{C}[X]$ such that $h_{1} r+h_{2} f_{2}=1$. Because $r=q f_{2}-f_{1},-h_{1} f_{1}+\left(q+h_{2}\right) f_{2}=1$.

Case when $m>2$. We assume the claim in this Proposition holds when $m=K$. Let us set q is a maximum diviser of f_{1}, \ldots, f_{K} and $g_{i}:=\frac{f_{i}}{q_{i}}(i=1,2, \ldots, K)$. Clearly, g_{1}, \ldots, g_{m} don't have common divisor and f_{K+1} and q don't have common divisor. By the assumption of mathematical induction, there are $h_{1}, \ldots, h_{K}, h_{K+1}, s \in \mathbb{C}[X]$ such that

$$
\begin{equation*}
\Sigma_{i=1}^{K} h_{i} g_{i}=1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
s q+h_{K+1} f_{K+1}=1 \tag{3}
\end{equation*}
$$

Then $\Sigma_{i=1}^{K} h_{i} f_{i}=q$. Consequently,

$$
\begin{equation*}
\Sigma_{i=1}^{K} s h_{i} f_{i}+h_{K+1} f_{K+1}=1 \tag{4}
\end{equation*}
$$

Theorem 1. Let
(S1) $A \in M(n, \mathbb{C})$
then the followings hold.
(i) There is $P \in G L(n, \mathbb{C})$ and $\alpha_{1}, \ldots, \alpha_{K} \in \mathbb{C}$ such that

$$
P^{-1} A P=\left(\begin{array}{cccc}
J\left(\alpha_{1}\right) & O & \ldots & O \\
O & J\left(\alpha_{2}\right) & \ldots & O \\
\ldots & \ldots & \ldots & \ldots \\
O & & \ldots & J\left(\alpha_{K}\right)
\end{array}\right)
$$

Here, for each i, there are $j_{1}, \ldots, j_{n_{i}}$ such that

$$
J\left(\alpha_{i}\right)=\left(\begin{array}{cccc}
J_{1}\left(\alpha_{i}\right) & O & \ldots & O \\
O & J_{2}\left(\alpha_{i}\right) & \ldots & O \\
\ldots & \ldots & \ldots & \ldots \\
O & & \ldots & J_{n_{i}}\left(\alpha_{i}\right)
\end{array}\right)
$$

and $J_{k}\left(\alpha_{i}\right)$ is a j_{k}-th square matrix

$$
J_{k}\left(\alpha_{i}\right)=\left(\begin{array}{ccccc}
\alpha_{i} & 1 & & & O \\
O & \alpha_{i} & 1 & & O \\
\ldots & \cdots & \ldots & \ldots & \ldots \\
O & & & \alpha_{i} & 1 \\
O & & & & \alpha_{i}
\end{array}\right)
$$

We call $J_{k}\left(\alpha_{i}\right)$ is a Jordan block.
(ii) If $\alpha_{i} \neq \alpha_{j}$ (for any $i \neq j$), A is diagonalizable.
(iii) For any W_{1} and W_{2} such that W_{1} and W_{2} are $J_{k}\left(\alpha_{i}\right)$-invariant subspaces and $\mathbb{C}^{\nu}=W_{1} \oplus W_{2}, W_{1}=\mathbb{C}^{\nu}$ or $W_{2}=\mathbb{C}^{\nu}$ 。

STEP1. Existence of the minimal polynomial of A. Because $E, A, A^{2}, \ldots, A^{n^{2}}$ are linearly dependent, there are $a_{0}, a_{2}, \ldots, a_{n}$ such that

$$
\begin{equation*}
\sum_{i=0}^{n^{2}} a_{i} A^{i}=0 \tag{5}
\end{equation*}
$$

So there is a $\varphi_{A} \in \mathbb{C}[X]$ such that

$$
\begin{equation*}
\operatorname{deg}\left(\varphi_{A}\right)=\min \{\operatorname{deg}(\varphi) \mid \varphi \in \mathbb{C}[X] \text { and } \varphi(A)=0\} \tag{6}
\end{equation*}
$$

STEP2. Decomposition of \mathbb{C}^{n} into generalized eigenspaces. By fundamental theorem of algebra, there are distinct $\alpha_{1}, \ldots, \alpha_{K} \in \mathbb{C}$

$$
\begin{equation*}
\varphi_{A}(x)=\Pi_{i=1}^{K}\left(x-\alpha_{i}\right)^{m_{i}} \tag{7}
\end{equation*}
$$

We set $f_{i} \in \mathbb{C}[X]$ by $f_{i}(x):=\frac{\varphi_{A}(x)}{\left(x-\alpha_{i}\right)^{m_{i}}}(i=1,2, \ldots, K)$. By Proposition($)$, then there are $h_{1}, \ldots, h_{m} \in \mathbb{C}[X]$ such that

$$
\begin{equation*}
\Sigma_{i=1}^{K} h_{i}(A) f_{i}(A)=E \tag{8}
\end{equation*}
$$

We set $W_{i, j}:=\left\{x \in \mathbb{C}^{n} \mid\left(A-\alpha_{i} E\right)^{j} x=0\right\}$ and $W_{i}:=W_{i, m_{i}}\left(j=1,2, \ldots, m_{i}\right)$ For any $x \in \mathbb{C}^{n}, x=\Sigma_{i=1}^{K} h_{i}(A) f_{i}(A) x$. For each $i, h_{i}(A) f_{i}(A) x \in W_{i}$. So

$$
\begin{equation*}
\mathbb{C}^{n}=\Sigma_{i=1}^{K} W_{i} \tag{9}
\end{equation*}
$$

STEP3. Showing $W_{i, k} \cap W_{j, l}=\{0\}(i \neq j)$. We assume $k=l=1$. Let us fix arbitary $x \in W_{i, 1} \cap W_{j, 1}$. Because $0=A x-A x=\alpha_{i} x-\alpha_{j} x=\left(\alpha_{i}-\alpha_{j}\right) x$, $x=0$. So $W_{i, 1} \cap W_{j, 1}=\{0\}(i \neq j)$. Nextly we assume if $k+l \leq K$ then $W_{i, k} \cap W_{j, l}=\{0\}(i \neq j)$. Let us fix arbitary i, j, k, l such that $i \neq j$. Let us fix arbitary $x_{0} \in W_{i, k} \cap W_{j, l}$. We set $s: \mathbb{C}^{n} \ni x \mapsto[x] \in \mathbb{C}^{n} / W_{1,1}$. Because $A W_{1,1} \subset W_{1,1}, \tilde{A}: \mathbb{C}^{n} / W_{1,1} \ni[x] \mapsto[A x] \in \mathbb{C}^{n} / W_{1,1}$ is well-definied and linear. We set $\tilde{W}_{i, k}:=\tilde{A} s\left(W_{i, k}\right)$ and $\tilde{W}_{i, l}:=\tilde{A} s\left(W_{i, l}\right)$ We can assume $k>1$. Clearly $\tilde{W}_{i, k} \subset\left\{[x] \in \tilde{W}_{i, k} \mid\left(\tilde{A}-\alpha_{i}\right)^{k-1}[x]=0\right\}$. So by the assumption of mathematical induction, $\tilde{W}_{i, k} \cap \tilde{W}_{j, l}=\{0\}$. This implies that $W_{i, k} \cap W_{j, l} \subset W_{i, 1}$. Similarly, $W_{i, k} \cap W_{j, l} \subset W_{j, 1}$. So $W_{i, k} \cap W_{j, l} \subset W_{i, 1} \cap W_{j, 1}=\{0\}$.

STEP4. Showing $\Sigma_{i=1}^{K} W_{i}=\oplus_{i=1}^{K} W_{i}$. By STEP3, $\Sigma_{i=1}^{2} W_{i}=\oplus_{i=1}^{2} W_{i}$. We assume if $K \leq K_{0}$ then $\Sigma_{i=1}^{K} W_{i}=\oplus_{i=1}^{K} W_{i}$. We will show if $K=K_{0}+1$ then $\Sigma_{i=1}^{K} W_{i}=\oplus_{i=1}^{K} W_{i}$. By the assumption of mathematicalinduction,

$$
\begin{equation*}
\Sigma_{i=1}^{K_{0}} W_{i} / W_{K_{0}+1}=\oplus_{i=1}^{K} W_{i} / W_{K_{0}+1} \tag{10}
\end{equation*}
$$

Let us fix arbitary $w_{i} \in W_{i}\left(i=1,2, \ldots, K_{0}+1\right)$ such that $\Sigma_{i=1}^{K_{0}+1} w_{i}=0$. By (10), $w_{i} \in W_{i} \cap W_{K_{0}+1}\left(i=1, \ldots, K_{0}\right)$. By STEP3, $w_{i}=0\left(i=1, \ldots, K_{0}\right)$. So $w_{K}=0$.

STEP5. Constructing a basis of W_{i}. Let us fix i. There is $\nu \leq m_{i}$ such that

$$
W_{i, \nu-1} \subsetneq W_{i, \nu}=W_{i}
$$

If $\nu=1$, then we take a basis of $W_{i, 1}=W_{i}$. If $\nu>1$, there are $w_{1}, \ldots, w_{r_{\nu}}$ such that $\left\{w_{j}+W_{i, v-1}\right\}_{j=1}^{r_{\nu}}$ is a basis of $W_{i, \nu} / W_{i, v-1}$. Clearly $A_{i} w_{1}, \ldots, A_{i} w_{r_{\nu}}$ are containd in $W_{i, \nu-1}$. Here,

$$
A_{i}:=A-\alpha_{i} E
$$

We will show $\left\{A_{i}^{j} w_{k}\right\}_{k=1, \ldots, r_{\nu}, j=0, \ldots, \nu-1}$ are linear independent. Let us fix any $\left\{a_{i}^{j} w_{k}\right\}_{k=1, \ldots, r_{\nu}, j=0, \ldots, \nu-1} \subset \mathbb{C}$ such that

$$
\sum_{k=1}^{r_{\nu}} \sum_{j=0}^{\nu-1} a_{k, j} A_{i}^{j} w_{k}=0
$$

Then

$$
\sum_{k=1}^{r_{\nu}} a_{k, 0} w_{k}=-\sum_{k=1}^{r_{\nu}} \sum_{j=1}^{\nu-1} a_{k, j} A_{i}^{j} w_{k}
$$

Because the right side is contained in $W_{i, \nu-1}$ and $\left\{w_{j}+W_{i, v-1}\right\}_{j=1}^{r_{\nu}}$ are linear independent,

$$
a_{k, 0}=0(\forall k)
$$

So,

$$
\sum_{k=1}^{r_{\nu}} \sum_{j=0}^{\nu-1} a_{k, j+1} A_{i}^{j+1} w_{k}=0
$$

This implies that

$$
\sum_{k=1}^{r_{\nu}} a_{k, 1} w_{k}+\sum_{k=1}^{r_{\nu}} \sum_{j=1}^{\nu-1} a_{k, j+1} A_{i}^{j} w_{k}=\sum_{k=1}^{r_{\nu}} \sum_{j=0}^{\nu-1} a_{k, j+1} A_{i}^{j} w_{k} \in W_{i, \nu-1}
$$

Because $\sum_{k=1}^{r_{\nu}} \sum_{j=1}^{\nu-1} a_{k, j+1} A_{i}^{j} w_{k}$ is contained in $W_{i, \nu-1}$,

$$
\sum_{k=1}^{r_{\nu}} a_{k, 1} w_{k} \in W_{i, \nu-1}
$$

Because $\left\{w_{j}+W_{i, v-1}\right\}_{j=1}^{r_{\nu}}$ are linear independent,

$$
a_{k, 1}=0(\forall k)
$$

Hereafter, by repeating this discussion,

$$
a_{k, j}=0(\forall k, j)
$$

We set

$$
U_{i, k}:=\left\langle\left\{A_{i}^{j} w_{k}\right\}_{j=0, \ldots, \nu-1}\right\rangle
$$

Clearly $U_{i, k}$ is A-invariant and the representation matrix of A respects to $\left\{A_{i}^{j} w_{k}\right\}_{j=0, \ldots, \nu-1}$ is the Jordan block whose order is ν.

We set

$$
V_{i}:=\sum_{k=1}^{r_{\nu}} U_{i, k}
$$

Because V_{i} is A-invariant,

$$
\tilde{A}: W_{i} / V_{i} \ni w+V_{i} \mapsto A w+V_{i} \in W_{i} / V_{i}
$$

is well-defined and linear. Because $\left\{w_{j}+W_{i, \nu-1}\right\}_{j=1}^{r_{\nu}}$ is a spanning set of $W_{i, \nu} / W_{i, \nu-1}$, for any $w \in W_{i, \nu}$,

$$
w+W_{i, \nu-1} \in V_{i}+W_{i, \nu-1}
$$

So,

$$
A_{i}^{\nu-1} w \in V_{i}
$$

This implies

$$
\left(\tilde{A}_{i}-\alpha_{i} E\right)^{\nu-1}=0
$$

By applying the above argument to $\tilde{A}_{i}, \tilde{A}_{i}$ is broken into Jordan blocks whose order is less than ν with respect to some basis.

STEP6. Showing (ii). (i) implies (ii).
STEP7. Showing (iii). We set $M:=j_{k}$ and $J:=J_{k}\left(\alpha_{i}\right)$ and $\alpha:=\alpha_{i}$ and $J_{\alpha}:=J-\alpha E$. There are $w_{1,1} \in W_{1}$ and $w_{1,2} \in W_{2}$ sucht that

$$
e_{1}=w_{1,1}+w_{1,2}
$$

Because

$$
J_{\alpha} e_{1}=0
$$

and W_{1} is J_{α}-invariant and W_{2} is J_{α}-invariant,

$$
J_{\alpha} w_{1,1}=J_{\alpha} w_{1,2}=0
$$

and the kernel of J_{α} is $\mathbb{C} e_{1}$, there are a_{1} and a_{2} such that

$$
w_{1,1}=a_{1} e_{1}, w_{1,2}=a_{2} e_{1}
$$

If $a_{1}=0$, then $a_{2}=1$ and $\mathbb{C} e_{1} \subset W_{2}$. If $a_{1} \neq 0$, then $\mathbb{C} e_{1} \subset W_{1}$. By replacing W_{1} by W_{2}, we can assume $\mathbb{C} e_{1} \subset W_{1}$. There are $w_{2,1} \in W_{1}$ and $w_{2,2} \in W_{2}$ sucht that

$$
e_{2}=w_{2,1}+w_{2,2}
$$

Because $J_{\alpha} e_{2}=e_{1}$,

$$
e_{1}=J_{\alpha} w_{2,1}+J_{\alpha} w_{2,2}
$$

Because $\mathbb{C} e_{1} \subset W_{1}$,

$$
J_{\alpha} w_{2,2}=0
$$

So,

$$
w_{2,2} \in W_{2} \cap \mathbb{C} e_{1}=\{0\}
$$

This implies $e_{2} \in W_{1}$. By repeating this argument, $e_{1}, e_{2}, \ldots, e_{M} \subset W_{1}$.
Proposition 2. We succeed notations in Theorem1. Let us assume

$$
f_{A}(x)=\Pi_{i=1}^{K}\left(x-\alpha_{i}\right)^{n_{i}}
$$

Then

$$
\operatorname{dim} W_{i}=n_{i}
$$

Proof. By the proof of Theorem1, the order of $J\left(\alpha_{i}\right)$ is $\operatorname{dim} W_{i}$. So,

$$
f_{A}=\Pi_{i=1}^{K} f_{J\left(\alpha_{i}\right)}=\Pi_{i=1}^{K}\left(x-\alpha_{i}\right)^{\operatorname{dim} W_{i}}
$$

So,

$$
\operatorname{dim} W_{i}=n_{i}
$$

By Theorem1, it is easy to show the following famous theorem.
Theorem 2 (Cayley-Hamilton theorem). Let
(S1) $A \in M(n, \mathbb{C})$.
(S2) f_{A} is the characteristic polynomial.
then

$$
\begin{equation*}
f_{A}(A)=O \tag{11}
\end{equation*}
$$

Proof. We will show this theorem by mathematical induction. If $n=1$, then this theorem holds. Because $f_{P^{-1} A P}=f_{A}$ for any $P \in G L(n, \mathbb{C})$, by Theorem1, we can assume A is an upper triangle matrix.

$$
\begin{aligned}
& f_{A}(A) \\
= & \Pi_{i=1}^{n}\left(A-\alpha_{i} E\right) \\
= & \left(A-\alpha_{1} E\right) \Pi_{i=2}^{n}\left(A-\alpha_{i} E\right) \\
= & \left(\begin{array}{ll}
0 & x \\
0 & X
\end{array}\right) \Pi_{i=2}^{n}\left(A-\alpha_{i} E\right)
\end{aligned}
$$

For any a_{1}, a_{2}, A and b_{1}, b_{2}, B there is c_{1}, c_{2} such that

$$
\left(\begin{array}{cc}
a_{1} & a_{2} \\
0 & A
\end{array}\right)\left(\begin{array}{cc}
b_{1} & b_{2} \\
0 & B
\end{array}\right)=\left(\begin{array}{cc}
c_{1} & c_{2} \\
0 & A B
\end{array}\right)
$$

So, there are d_{1}, d_{2} such that

$$
\Pi_{i=2}^{n}\left(A-\alpha_{i} E\right)=\left(\begin{array}{cc}
d_{1} & d_{2} \\
0 & O
\end{array}\right)
$$

This implies

$$
f_{A}(A)=\left(\begin{array}{cc}
0 & x \\
0 & X
\end{array}\right)\left(\begin{array}{cc}
d_{1} & d_{2} \\
0 & O
\end{array}\right)=O
$$

References

[1] Ichiro Satake, LINEAR ALGEBRA, ISBN-0 8247-1596-9.

