A study memo on popular probability distributions

Contents

1 General topics on random variables 2
2 Probability generating function 3
3 Bernoulli distribution 4
4 Binomial distribution 4
5 Geometric distribution 6
6 Negative binomial distribution 8

1 General topics on random variables

By the definition of independence, the following clearly holds.
Proposition 1.1. Let
(S1) $\left(\S_{i}, \mathscr{S}, P_{i}\right)(i=1,2, \ldots, N)$ is a sequence of probability spaces.
(S2) (Ω, \mathscr{F}, P) is the probability spaces which is direct product of $\left(\S_{i}, \mathscr{S}, P_{i}\right)(i=1,2, \ldots, N)$
(S3) X_{i} is a random variable on $S_{i}(i=1,2, \ldots, N)$.
(S3) We set $Y_{i}:=X_{i} \circ \pi_{i}(i=1,2, \ldots, N)$.
then Y_{1}, \ldots, Y_{N} is a sequence of independent random variables.
The following clearly holds.
Proposition 1.2. Let P is probability measure on $\left(\Omega:=\mathbb{N} \cup\{0\}, 2^{\Omega}\right)$. Then $i d_{\Omega}$ is random variable on Ω and $i d_{\Omega} \sim P$.

By Fubini's theorem(see [5]), the following two propositions clearly holds.
Proposition 1.3 (Marginal distribution). Let
(S1) $\left(\Omega_{i}, \mathscr{F}_{i}, P_{i}\right)$ is a probability spaces $(i=1,2)$.
(A1) $P_{1} \times P_{2}$ has a density function $f_{P_{1}, P_{2}}$.
Then for almost everywhere $x \in \mathbb{R}, f_{P_{1}, P_{2}}(x, \cdot)$ is measurable and

$$
f_{P_{1}}(x):=\int_{\mathbb{R}} f_{P_{1}, P_{2}}(x, y) d P_{2}(y)
$$

exists and $f_{P_{1}}$ is measurable and

$$
\int_{\mathbb{R}} f_{P_{1}}(x) d P_{1}(x)=1
$$

Proposition 1.4 (Conditional probability density function). Let
(S1) $\left(\Omega_{i}, \mathscr{F}_{i}, P_{i}\right)$ is a probability spaces $(i=1,2)$.
(A1) $P_{1} \times P_{2}$ has a density function $f_{X, Y}$.
(S2) $x \in \mathbb{R}$ such that $f_{X, Y}(x, \cdot)$ is measurable and $f_{X}(x)>0$.
(S3) Set

$$
f_{P_{2} \mid P_{1}(x)}(y):=\frac{f_{P_{1}, P_{2}}(x, y)}{f_{P_{1}}(x)}(y \in \mathbb{R})
$$

We call $f_{P_{2} \mid P_{1}(x)}$ the conditional probability density function of P_{2} given the occurrence of the value x of P_{1}.

Then

$$
\int_{\mathbb{R}} f_{P_{2} \mid P_{1}(x)}(y) d P_{2}(y)=1
$$

The following definitions are based on [6].
Definition 1.1 (Probability model, True distribution, Prior probability). Let
(A1) Q is a probability borel measure on \mathbb{R}^{N} and Q has the density function q. We call q a true distribution.
(S1) W is a Borel set of \mathbb{R}^{d}.
(A2) Φ is a probability borel measure on W has the density function ϕ. We call ϕ a prior probability.
(A3) $Q \times \Phi$ has the densition function p.
(S2) set $p\left(\cdot{ }_{1} \mid \cdot 2\right)$ by for $w \in W$ such that $p_{Q}(w)>0$

$$
p(x \mid w):=p(x \mid \Phi(w))(x \in \mathbb{R})
$$

We call $p\left(\cdot{ }_{1} \mid \cdot{ }_{2}\right)$ the a probability model. Or, we denote $p\left(\cdot{ }_{1} \mid \cdot{ }_{2}\right)$ by $p(x \mid w)$.

2 Probability generating function

Definition 2.1 (Probability generating function). Let
(S1) $\left(\Omega=\mathbb{N} \cup 0,2^{\Omega}, P\right)$ is a probability space.
then we set

$$
\begin{equation*}
G_{P}(z):=\sum_{i=0}^{\infty} P(i) z^{i}(z \in \mathbb{C}) \tag{1}
\end{equation*}
$$

Proposition 2.1. The followings hold.
(i) Radius of convergence of $G_{P}(z)$ is not less than 1.
(ii) If $G_{P}=G_{P^{\prime}}$ then $P=P^{\prime}$.
(iii) If Y is a random variable on any probability space such that $Y \sim P$ then $G_{P}(z)=E\left(z^{Y}\right)$ for any $z \in D(0,1)$.
(iii) If Y_{1}, Y_{2} is a random variable on any probability space such that Y_{1}, Y_{2} are independent then $G_{P_{Y_{1}+Y_{2}}}=G_{P_{Y_{1}}} G_{P_{Y_{2}}}$.
proof of (i). Because $0 \leq P \leq 1$, (i) holds.
proof of (ii). By (i) and definition of G_{P} and G_{P}^{\prime}, (ii) holds.
proof of (iii). Let us fix any $z \in D(0,1)$. For any $N \in \mathbb{N}$,

$$
\begin{align*}
E\left(z^{Y}\right) & =\sum_{i=0}^{N} \int_{\{Y=i\}} z^{Y} d Q+\int_{\{Y>N\}} z^{Y} d Q \\
& =\sum_{i=0}^{N} P(i) z^{i}+\int_{\{Y>N\}} z^{Y} d Q \tag{2}
\end{align*}
$$

So

$$
\begin{equation*}
\left|E\left(z^{Y}\right)-\sum_{i=0}^{N} P(i) z^{i}\right| \leq\left|\int_{Y>N} z^{Y} d Q\right| \leq Q(\{Y>N\}) \tag{3}
\end{equation*}
$$

Consequently (iii) holds.
proof of (iv). It is enough to show (iv) by (iii).

3 Bernoulli distribution

Definition 3.1 (Bernoulli distribution). We call a probability distribution P on $\{0,1\}$ the Bernoulli distribution if for some $p \in[0,1] P(\{1\})=p$ and $P(\{0\})=1-p$.

Proposition 3.1 (Expectation and Variance of Bernoulli distribution). Let us assumel a probability distribution P on $\{0,1\}$ is the Bernoulli distribution with $P(\{1\})=p$.
(i) $E(P)=p$
(ii) $V(P)=p(1-p)$,
(i). It is trivial.
(i). $V(P)=\int_{\{0,1\}} x^{2} d P-E(P)^{2}=\int_{\{0,1\}} x d P-p^{2}=p-p^{2}=p(1-p)$

4 Binomial distribution

Definition 4.1 (Binomial distribution). For some $p \in[0,1]$ and $n \in \mathbb{N}$ we call a probability distribution $B(n, p)$ on $\{0,1, \ldots, n\}$ the Binomial distribution if $\left.B(n, p)(\{i\})={ }_{n} \operatorname{Cip}^{i}(1-p)^{(} n-i\right)(i=0,1, \ldots, n)$.

Clearly the following holds.
Proposition 4.1. Let
(S1) (Ω, \mathscr{F}, P) is a probability space.
(S2) $\left\{X_{i}\right\}_{i=1}^{n}$ be independent random variables.
(A1) The distribution of X_{i} is the Bernoulli distribution B with $B(\{1\})=p(\forall i)$.
then the distribution of $\sum_{i=1}^{n} X_{i}$ is $B(n, p)$.
By Proposition Proposition1.2 and Proposition1.1, Random variables like the one above exist.

$$
E(B(2, p))=1 \cdot{ }_{2} C_{1} p(1-p)+2 \cdot{ }_{2} C_{2} p^{2}=2 p+0 \cdot p^{2}=2 p . E_{B(2, p)}\left(x^{2}\right)=2 p+2^{2} p^{2}-2 p^{2} . E(B(3, p))=
$$ $1 \cdot{ }_{3} C_{1} p(1-p)^{2}+2 \cdot{ }_{3} C_{2} p^{2}(1-p)+3 p^{3}=3 p+0 \cdot p^{2}+0 \cdot p^{3}=3 p . E_{B(3, p)}\left(x^{2}\right)=3 p+3^{3} p^{2}-3 p^{2}+0 \circ p^{3}$. We can extend these fact to the following lemma and the following proposition.

Lemma 4.1.

(i) $\sum_{k=1}^{l} k_{l} C_{k}(-1)^{k}=0(\forall l \geq 2)$.
(ii) $\sum_{k=1}^{l} k^{2}{ }_{l} C_{k}(-1)^{k}=0(\forall l \geq 3)$.
(i). $L(x):=(1-x)^{l}=\sum_{k=1 l}^{l} C_{k}(-1)^{k}(-1)^{k} x^{k}$.
$L^{\prime}(x)=l(1-x)^{l-1}=\sum_{k=1}^{l} k_{l} C_{k}(-1)^{k}(-1)^{k} x^{k-1}$.
So, if $l \geq 2$, then

$$
\begin{align*}
0 & =L^{\prime}(1) \\
& =\sum_{k=1}^{l} k_{l} C_{k}(-1)^{k}(-1)^{k} \tag{4}
\end{align*}
$$

(ii). $L(x):=(1-x)^{l}=\sum_{k=1 l}^{l} C_{k}(-1)^{k}(-1)^{k} x^{k}$.
$L^{\prime \prime}(x)=l(1-x)^{l-1}=\sum_{k=1}^{l} k(k-1)_{l} C_{k}(-1)^{k}(-1)^{k} x^{k-2}$.
So, if $l \geq 3$, then

$$
\begin{align*}
0 & =L^{\prime \prime}(1) \\
& =\sum_{k=1}^{l} k(k-1)_{l} C_{k}(-1)^{k}(-1)^{k} \\
& =\sum_{k=1}^{l} k^{2}{ }_{l} C_{k}(-1)^{k}(-1)^{k}-\sum_{k=1}^{l} k_{l} C_{k}(-1)^{k}(-1)^{k} \tag{5}
\end{align*}
$$

By (i), $\Sigma_{k=1}^{l} k_{l} C_{k}(-1)^{k}(-1)^{k}=0$. So $\Sigma_{k=1}^{l} k^{2}{ }_{l} C_{k}(-1)^{k}(-1)^{k}=0$.
Proposition 4.2 (Expectation and Variance of Binomial distribution).
(i) $E(B(n, p))=n p$
(ii) $V(B(n, p))=n p(1-p)$
proof1 of (i). Let us take $\left.\left\{X_{i}\right\}_{\{ } i=1,2 .,,,, n\right\}$ in Proposition4.1. $E(B(n, p))=E\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right)=$ $n p$
proof1 of (ii). Let us take $\left.\left\{X_{i}\right\}_{\{ } i=1,2 .,,,, n\right\}$ in Proposition4.1. $V(B(n, p))=\sum_{i=1}^{n} V\left(X_{i}\right)=n p(1-$ p)
proof2 of (i).

$$
\begin{align*}
E(B(n, p)) & =\sum_{k=1}^{n} k_{n} C_{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{l} k_{n} C_{k} p^{k} \sum_{i=0}^{n-k}{ }_{n-k} C_{i}(-1)^{i} p^{i} \\
& =\sum_{l=1}^{n} \sum_{k=1,2 \ldots, l,,}{ }_{i=0,1, \ldots, n-k, k+i=l} k_{n} C_{k} p^{k}{ }_{n-k} C_{i}(-1)^{i} p^{i} \\
& =\sum_{l=1}^{n} p^{l} \sum_{k=1,2 \ldots, l, i=0,1, \ldots, n-k, k+i=l} k_{n} C_{k n-k} C_{i}(-1)^{i} \\
& =\sum_{l=1}^{n} p^{l} \sum_{k=1}^{l} k_{n} C_{k} \cdot{ }_{n-k} C_{l-k}(-1)^{l-k} \\
& =\sum_{l=1}^{n}(-1)^{l} p^{l} \sum_{k=1}^{l} k_{n} C_{k} \cdot{ }_{n-k} C_{l-k}(-1)^{k} \\
& =\sum_{l=1}^{n}(-1)^{l} p^{l} \sum_{k=1}^{l} k \frac{{ }_{n} P_{l}}{k!(l-k)!}(-1)^{k} \\
& =\sum_{l=1}^{n}(-1)^{l} p^{l} \sum_{k=1}^{l} k \frac{{ }_{n} C_{l} \cdot l!}{k!(l-k)!}(-1)^{k} \\
& =\sum_{l=1}^{n}(-1)^{l} p^{l}{ }_{n} C_{l} \sum_{k=1}^{l} k \frac{l!}{k!(l-k)!}(-1)^{k} \\
& =\sum_{l=1}^{n}(-1)^{l} p^{l}{ }_{n} C_{l} \sum_{k=1}^{l} k_{l} C_{k}(-1)^{k} \tag{6}
\end{align*}
$$

By Lemma4.1, for any $l \geq 2, \sum_{k=1}^{l} k_{l} C_{k}(-1)^{k}=0$. So $E(B(n, p))=n p$.
proof2 of (ii). By the proof2 of (ii),

$$
\begin{equation*}
E_{B(n, p)}\left(x^{2}\right)=\sum_{l=1}^{n}(-1)^{l} p^{l}{ }_{n} C_{l} \sum_{k=1}^{l} k^{2}{ }_{l} C_{k}(-1)^{k} \tag{7}
\end{equation*}
$$

By Lemma4.1, for any $l \geq 3, \sum_{k=1}^{l} k^{2}{ }_{l} C_{k}(-1)^{k}=0$.
So $E_{B(n, p)}\left(x^{2}\right)=\sum_{l=1}^{2}(-1)^{l} p^{l}{ }_{n} C_{l} \sum_{k=1}^{l} k^{2}{ }_{l} C_{k}(-1)^{k}=n p(1-p)+n^{2} p^{2}$. By $(\mathrm{i}), V(B(n, p))=E_{B(n, p)}\left(x^{2}\right)-$ $E(B(n, p))^{2}=n p(1-p)$.

5 Geometric distribution

Definition 5.1 (Geometric distribution). Let $p \in(0,1)$.

$$
\begin{equation*}
P(k):=(1-p)^{k-1} p(k=1,2, \ldots) \tag{8}
\end{equation*}
$$

We call P is Geometric distribution with p
Clearly P is a probability measure on $\{1,2, \ldots, n, \ldots\}$.
Proposition 5.1. Let P is Geometric distribution with p. Then

$$
\begin{equation*}
G_{P}(z)=\frac{p z}{1-(1-p) z} \tag{9}
\end{equation*}
$$

Proof.

$$
\begin{align*}
G_{P}(z) & =\sum_{k=1}(1-p)^{k-1} p z^{k} \\
& =p z \sum_{k=1}(1-p)^{k-1} p z^{k-1} \\
& =p z \frac{1}{1-(1-p) z} \tag{10}
\end{align*}
$$

Proposition 5.2. Let P is Geometric distribution with p. Then

$$
\begin{equation*}
E(P)=\frac{1}{p} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
V(P)=\frac{1-p}{p^{2}} \tag{12}
\end{equation*}
$$

proof1 of (11).

$$
G_{P}^{\prime}(z)=\frac{p(1-(1-p) z)+p z(1-p)}{(1-(1-p) z)^{2}}
$$

So

$$
\begin{align*}
E(P) & =G_{P}^{\prime}(1)=\frac{p(1-(1-p) 1)+p 1(1-p)}{(1-(1-p) 1)^{2}} \\
& =\frac{\left.p^{2}+p-p^{2}\right)}{p^{2}}=\frac{1}{p} \tag{13}
\end{align*}
$$

proof2 of (11).

$$
\begin{equation*}
\frac{1}{1-x}=\sum_{k=0}^{\infty} x^{k} \tag{14}
\end{equation*}
$$

By calculating the derivative,

$$
\begin{equation*}
\frac{1}{(1-x)^{2}}=\sum_{k=1}^{\infty} k x^{k-1} \tag{15}
\end{equation*}
$$

So

$$
\begin{equation*}
E(P)=p \sum_{k=1}^{\infty} k(1-(1-p))^{k-1}=p \frac{1}{(1-(1-p))^{2}}=\frac{1}{p} \tag{16}
\end{equation*}
$$

proof of (12). By calculating the derivative of (17),

$$
\begin{equation*}
\frac{2}{(1-x)^{3}}=\sum_{k=2}^{\infty} k(k-1) x^{k-2} \tag{17}
\end{equation*}
$$

So

$$
\begin{align*}
& E_{P}(x(x-1))=p \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-1} \\
&=p(1-p) \sum_{k=2}^{\infty} k(k-1)(1-p)^{k-2} \\
&=p(1-p) \frac{2}{\left(p^{3}\right.}=\frac{2(1-p)}{p^{2}} \tag{18}\\
& V(P)=E_{P}(x(x-1))+E_{P}(x)-E_{P}(x)^{2}=\frac{2(1-p)}{p^{2}}+\frac{p}{p^{2}}-\frac{1}{p^{2}}=\frac{1-p}{p^{2}} \tag{19}
\end{align*}
$$

6 Negative binomial distribution

Definition 6.1 (Negative binomial distribution). We call a probability distribution P on $\{1,2, \ldots\}$ the Negative binomial distribution if for some $p \in[0,1] P(\{k\})=p_{r+k-2} C_{r-1}(1-p)^{k-1} p^{r-1}$. We denote this distribution by $N B(r, p)$.

Proposition 6.1.

$$
\begin{equation*}
G_{N B(r, p)}(z)=\frac{p^{r} z}{(1-(1-p) z)^{r}} \tag{20}
\end{equation*}
$$

Proof. Because

$$
\begin{equation*}
\frac{1}{1-z}=\sum_{i=0}^{\infty} z^{i} \tag{21}
\end{equation*}
$$

the following holds by $r-1$ times derivative.

$$
\begin{equation*}
\frac{(r-1)!}{(1-z)^{r}}=\sum_{i=r-1}^{\infty} i(i-1) \ldots(i-r+2) z^{i} \tag{22}
\end{equation*}
$$

Proposition 6.2. Let X_{1}, \ldots, X_{r} are independent random variables and for any $i P_{X_{i}}$ is the geometric distribution. Then the distribution of $\sum_{i=1}^{r} X_{i}-(r-1)$ is $N(r, p)$.

References

[1] Tadahisa Funaki, Probability Theory(in Japanese), ISBN-13 978-4254116007.
[2] Shinichi Kotani, Measure and Probability(in Japanese), ISBN4-00-010634-1.
[3] A study memo on a proof of the central limit theorem
https://osmanthus.work/?p=607
[4] Tatsuya Kubota, Foundations of modern mathematical statistics(in Japanese), ISBN978-4-320-11166-0.
[5] Seizo Ito, Introduction to Lebesgue Integral(in Japanese), ISBN978-4785313180.
[6] Sumio Watanabe, Theory and Methods of Bayesian Statistics(in Japanese), ISBN978-4339024623.

