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Chapter 1

Introduction

1.1 About me and the note

I'm a Japanese older man who studies Lie group and representation theory as a hobby. Currently, I'm interested in the the-
ory and its applications. For Lie group and representation theory, I'm interested in harmonic analysis and invariant metrics
on homogeneous spaces. For the applications, I'm cuorious the application to statistics and mathematical programming
and dynamic system. This note is the result of studying facts based on [1], [4]. T assume that the readers have knowl-
edge of set theory[21], topological space[21], linear algebra[20], group theory and ring theory[22], calculus[18][19], complex
analysis[16][17], the Lebesgue integral[15], differential manifold[23], Functional Analysis[12]. Except for this knowledge,
I make efforts to make this note as self-contained as possible. However, I use some facts without proofs because I don’t
have enough time to provide proofs for them. For those facts, I give references to the proofs. Also, I introduce some facts
without strict definitions and proofs for further study in the future. I mark the sections where all facts are of this kind
with a star, x. To be honest, I have never read the note again. Therefore, there may be many mistakes. I hope you
understand.

1.2 My Motivation for Studying Lie Group and Representation Theory

In my mind, many mathematical problems can be clearly solved by ingenious tools that are not easily conceived by most
people, myself included, such as expansions in terms of convenient functions, families of probability distributions that are
easy to compute, handy metrics, and matrix decomposition formulas. For such expansion, the examples are Fourier series,
expansion from spherical harminic functions, inverse formulas from Fourier transformation and wavelet transformation,
and others. Exponential families are famous examples of families of probability distributions. Poincare metric is a good
example of handy metrics. Jordan normal form is a popular example of decomposition formula of a matrix.

What is the mechanism behind these tools? Although I'm not a genius like Fourier or Poincare, when I encounter a
new mathematical problem, is there a method I can use to invent or apply the appropriate tools?

When there is a group which is represented as the set of transformation the space in your problem, it is probably that
you can get the tools by using group and representation theory. Therefore, I'm studying Lie group and representation
theory.

1.3 Structure of Chapters in the Note

Chapter 2 is the priliminaries for the all chapters. Chapter 3 contains basic topics for Lie groups and Lie algebras. In
Chapter 4, I introduces the theory of irreducible decomposition of unitary representation of general Lie group. In Chapter
5, I show the theory of irreducible decomposition of unitary representation of compact Lie group. Chapter 6 contains basic
topics for homogeneous spaces where a Lie group is represented as the set of transformation the spaces. In Chapter 7, I
show the classification theory of irreducible representation of compact Lie groups. In Chapter 8, I show the classification
theory of irreducible representation of compact Lie groups. In the chapters after Chapter 9, I introduces the theories
which apply Lie group and representation theory.
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Chapter 2

Preliminary

2.1 Linear algebra

2.1.1 Some facts without proof

For the proof, see [13].

Theorem 2.1.1 (Hahn Banach Theoreml). Let
(S1) (V,{pn}nen) is a semi-normed space.

(52) x,y € V such that x # y.

Then there is real-valued continuous linear function f such that f(x) # f(y).

2.1.2 Tensor Space

Clearly the following holds.

Proposition 2.1.2 (Tensor Space). Here are the settings and assumptions.
(S1) K denotes one of Q,R,C.
(52) V,W are K-vector spaces.

(S3) By VYV WY denote by the set of all K-linear functionals of V,W , respectively.

(S4) Forv e V,weW, we set
vaw(f,g) = fv)glw) (fe VY geW)

Then, for anyv € V,we W, v w € B(V,W). We set
VVeWY = {vewveV,weW})
Proposition 2.1.3. Here are the settings and assumptions.

(S1) K denotes one of Q,R,C.
(52) V,W are K-vector spaces.
(83) wi, ..., w, € W are linear independent.

(54) Vlyeey Um € Vv \ {0}
Then, {v; ® w; }1, are linear independent.

By Hahn-Banach Theorem,

Proof. there are f1,..., fm € WY such that f;(w;) =, ; (Vi,j) and there are g1, ..., g, € W such that g;(v;) # 0 (Vi)
Let us fix any ay, ...a,, € K such that >0, a;v; @ w; = 0. Since 0 = Y7, a;v; @w;i(gy, fj) = a; (V4), {v; @ w; }7, are

linear independent.

11
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2.1.3 Jordan Normal Form and Cayley-Hamilton Theorem
Proposition 2.1.4. Let

(S1) m e NU[2,00)

(52) f1,..r fm € C[X]\ 0.

(A1) f1,..., fm don’t have common divisor.

then there are hq, ..., hy, € C[X]| such that
Yilihifi =1 (2.1.1)

Case when m = 2. When X deg(f;) = 0, deg(f1) = deg(f2) = 1. In this case, the the claim in this Proposition holds.
We assume the claim in this Proposition holds when X7, deg(f;) < K. We can assume deg(f1) > 0 There is ¢,r € C[X]
such that f; = qfe +r and deg(r) < deg(f1) By the assumption of our mathematical induction, there are hy, hy € C[X]

such that hir + haofo = 1. Because r = qfs — f1, —h1f1 + (¢ + ha)fo = 1. O
Case when m > 2. We assume the claim in this Proposition holds when m = K. Let us set ¢ is a maximum diviser of
fi,-- [ and g; := fi (i=1,2,...,K). Clearly, g1, ..., gm don’t have common divisor and fx 1 and ¢ don’t have common

(3
divisor. By the assumption of mathematical induction,
there are hq,...,hi, hit1,s € C[X] such that

2K higi =1 (2.1.2)
and
sq+hgt1fr1 =1 (2.1.3)
Then ©K  h; f; = q. Consequently,
S shifi + b1 fre =1 (2.1.4)
O

Theorem 2.1.5. Let
(§1) A e M(n,C)
then the followings hold.

(i) There is P € GL(n,C) and aq, ...,ax € C such that

J(O[l) O O
P_lAP _ O J(O[Q) O
0 J(ak)
Here, for each i, there are ji, ..., jn, such that
Ji(a;) o o)
J(az) _ O Jg(Ozi) O
and Ji(«;) is a jg-th square matriz
(67 1 o
O o; 1 O
O a; 1
O Q5

We call Ji(e;) is a Jordan block.
(1t) If o # o (for any i # j), A is diagonalizable.

(iii) For any W1 and Wy such that Wi and Wy are Ji(«;)-invariant subspaces and C¥ = Wy @ Wy, W; = C¥
or Wy =C>.
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STEP1. Ezistence of the minimal polynomial of A. Because E, A, A2, ..., A" are linearly dependent, there are ag, as, ..., an
such that

57 a At =0 (2.1.5)

So there is a ¢4 € C[X] such that
deg(ip4) = min{deg(p)lp € CIX] and p(4) = 0} (2.1.6)
O

STEP2. Decomposition of C™ into generalized eigenspaces. By fundamental theorem of algebra, there are distinct oy, ...,ax €

C

oalz) =15 (z — a;)™ (2.1.7)
We set f; € C[X] by fi(x) := m (i=1,2,...,K). By Proposition(), then there are hq, ..., h,, € C[X] such that
K hi(A)fi(A) = B (2.18)

We set W; ; :={x € C"|(A — a;E)iz =0} and W; := W, n,, (j =1,2,...,m;) For any z € C", x = SK  h;(A) f;(A)z. For
each i, h;(A)f;(A)z € W;. So
c =xK w; (2.1.9)

O
STEP3. Showing Wi, "\ W;; = {0} (i # j). We assume k = | = 1. Let us fix arbitary x € W; 1 N Wj;. Because 0 =

Ar — Az = oz — ajz = (0 — o)z, * = 0. So W1 N W;1 = {0} (¢ # j). Nextly we assume if k + 1 < K then
Wix N W, = {0} (¢ # j). Let us fix arbitary 4,7, k,[ such that ¢ # j. Let us fix arbitary xo € W, N W;;. We set

5:C" 3>z [z] € C"/Wy 1. Because AW, C Wiq, A: C"/Wi, 3 [z] — [Az] € C"/W,; is well-definied and linear.
We set W, := As(W; ;) and W, = AS(WH) We can assume k > 1. Clearly W, ;, C {[z] € W, x|(A — a;)F~[z] = 0}.
So by the assumption of mathematical induction, WZ N W]l = {0}. This implies that W, N Wi, C Wi1. Similarly,
Wz,k N Wj’l C W’ So Wz,k N W]’l C W1’1 NW; 1= {0} O

STEP}. Showing LK W, = ok 1VV By STEP3 Y2 W; = @2, W,;. We assume if K < Ky then 3K W, = ok W,.
We will show if K = Kg + 1 then ©£ W, = K | W,. By the assumption of mathematicalinduction,

S Wi/ Wio 1 = S5 Wi/ Wiy 11 (2.1.10)

Let us fix arbitary w; € W; (i = 1,2, ..., Ko + 1) such that EiKz"f'lwi =0. By (11.16.21), w; € W; N Wk,11 (i =1, ..., Ko).
By STEP?)7 w; = 0 (Z = 1, ...,K()). So WK = 0. O

STEPS. Constructing a basis of W;. Let us fix ¢. There is v < m; such that
Wiv1 SWi =W,

If v = 1, then we take a basis of W;; = W;. If v > 1, there are wy, ..., w,

such that {w; + Wi’v,l};”zl is a basis of
Wi /Wi y—1. Clearly A;wn, ..., A;w,, are containd in W; ,_;. Here,

v

Ai = A—aiE

We will show {Agwk}kzl,,__my, j=0,...v—1 are linear independent. Let us fix any {a{wk}kzl,__,rl,, j=0,...v—1 C C such
that

r, v—1
E E ak’jAfwk =0
k=1 35=0
Then
ry, v—1
E ap,0Wg = — E E aij Wi
k=1 j=1

Because the right side is contained in W; ,_; and {wj + Wi,v—l}j"zl are linear independent,

ak.o = 0 (Vk)
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So,
r, v—1
}:2: j+1
ak,jHAf w
k=1 j=0
This implies that
r, v—1 r, v—1
E a1 Wk + E g ak,JHA Wy = E E ak,j+14] wi, € Wi—1
k=1 j=1 k=1 j=0

Because Zk 1 Z 1 a;wHA wy, is contained in W; ,_1,

Zaklwk EWlI/ 1

k=1
Because {w; + Wm,l};”:l are linear independent,
ak.71 = (Vk)
Hereafter, by repeating this discussion,
Qg 5 = 0 (Vk‘.a.])
We set

Clearly U, i, is A-invariant and the representation matrix of A respects to {Af Wk }j=0,....v—1 is the Jordan block whose
order is v.
We set

Vii=Y Ui
k=1
Because V; is A-invariant, }
AW /Visw+ V= Aw+V, e W;/V;
is well-defined and linear. Because {w; + Wiﬂ,_l};”:l is a spanning set of W ,/W; ,_1, for any w € W, ,,
w + Wi,ufl S V; + WZ‘,V*I

So,
A;’flw eV

This implies ~
(Ai — OéiE)”_l =0

By applying the above argument to A;, A; is broken into Jordan blocks whose order is less than v with respect to some
basis. O

STEPG6. Showing (ii). (i) implies (ii). O

STEP7. Showing (ii). We set M := j and J := Ji(a;) and o := a; and J, := J — aE. There are w11 € Wi and
wi 2 € Wy sucht that
e1 = wi,1 +wi2

Because
Jael =0

and Wy is Jy-invariant and Ws is J,-invariant,
Jawl’l = Jawm =0
and the kernel of J, is Ceq, there are a; and as such that
wi1,1 = ai1€1,wWi,2 = az€1

If a; = 0, then as = 1 and Ce; C Ws. If a; # 0, then Ce; C W;. By replacing Wy by W5, we can assume Ce; C Wh.
There are wp 1 € Wi and wa 2 € W5 sucht that
€2 = Wa1 + W22
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Because J,es = ey,
e1 = Jowa 1 + Jowa o

Because Ce; C W,
Jaw272 =0

So,
W2 € WonNCey = {0}

This implies es € W;. By repeating this argument, eq, es,...,ens C Wi.
Proposition 2.1.6. We succeed notations in Theorem4.3.14. Let us assume
fa(e) = T (x — ;)™

Then

Proof. By the proof of Theorem4.3.14, the order of J(«;) is dimW;. So,
Fa =15 fray = TE  (z — a;)dimW:

So,

By Theorem4.3.14, it is easy to show the following famous theorem.
Theorem 2.1.7 (Cayley-Hamilton theorem). Let
(S1) Ae M(n,C).
(S2) fa is the characteristic polynomial.

then
fa(A)=0

15

(2.1.11)

Proof. We will show this theorem by mathematical induction. If n = 1, then this theorem holds. Because fp-14p = fa

for any P € GL(n,C), by Theorem4.3.14, we can assume A is an upper triangle matrix.

fa(A)
= 1L (A-akE)
= (A — OélE)H?:Q(A — OélE)

0 =« "
= <0 X) Hi:2(A — OéZE)

For any a1, as, A and by, bo, B there is ¢y, co such that
ap asz by by [ C2
0 A 0 B/ \0 AB

" di d
ro(A—aE) = (Ol 02>

So, there are dy, dy such that
II

This implies

o= (6 (G 4)-0
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2.1.4 Kronecker Product
Definition 2.1.8 (Kronecker Product). Let K denotes one of Q,R,C and A € M(m,n,K) and B € M(p,q,K). Then

a1,1b171 a1,1b1,q al’gblyl al,gbl’q al’nbl’l al’nbl’q
a1,1b21

alylbpﬂ alvlbpﬂ a172bp71 CLLpr,q al,nbl,q alvnbnq
a2,1b1,1

A® B = {Cithjt1 = aijbri}ijkien =

a271b 1 . .

am71b1,1 am,lbl,q am72b171 am72b171 am,nbl,l ammbp,q
(lm71bp71 ampr,q am72b a1 . am,gbp,q ammbp,l am,nbp,q

We call A® B the Kronecker Product of A and B.

Proposition 2.1.9. Here are the settings and assumptions.
(S1) K =Q,R,C.
(SQ} Ae M(ml,mg,K),B S M(mg,m4,K)7C S M(nl,ng,K),D S M(n3,n4,K).
(Al) mo =MN1,Myg = N3.

Then
(A®B)- (C@D)=(A-C)®(B-D)

Proof. For any 41,12, j1, jo,

(A® B) - (C® D)y in),(1.52) = Z (A® B)(iy i), (k1,k2) (C ® D) (ks k2), (1 2) = Z iy ey Dig ko Chey 2 D o
k?l,k}Q k17k2

= Z Qi1 ,k1 Ck1,j1 Z bi27k2bk2,j2 = (A : C)i1,j1 (B : D)i27j2 = ((A . C)@(B : D))(il,i2)1(jl7j2)
k?l k2

Proposition 2.1.10. Here are the settings and assumptions.

(S1) Ae M(m,C),B € M(n,C).

(52) M1, ..., \m are the eigenvalues of A.

(S8) w1, ..., bn are the eigenvalues of B.

(A1) Nipj (1 =1,2,...,m,j =1,2,...,n) are distinct.

Then
/\i//fj (Z = 1,2, ...,m,j = 1,2, ,n)

are the all eigenvalues of A ® B.

Proof. Let x; denote an eigenvector of A with respect to A; (i = 1,2,...,m) and y; denote an eigenvector of B with
respect to p; (j = 1,2,...,n). By Proposition2.1.9, the vector z; ® y; is an eigenvector of A ® B with respect to A;p;
i=1,2,..,m,j=12 .. n. O

Proposition 2.1.11. Here are the settings and assumptions.
(S1) Ae M(m,C),B € M(n,C).

Then
det(A x B) = det(A)det(B)

Proof. By applying triangulization of matrices, we can show that there are {A;}5°, C M(m,C),{B;}2, € M(m,C) such
that A;, B; satisfies the settings and the assumptions in Proposition2.1.10 for any i and

1—>00 i—00
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So,
lim det(A; ® B;) = det(A® B), lim det(A;) = det(A), lim det(B;) = det(B)
1—>00 1— 00 1—00
By Proposition2.1.10,
det(A; ® B;) = det(A;)det(B;) (Vi)

Consequently,
det(A ® B) = det(A)det(B)
O
2.2 Topological Space
2.2.1 The Case of General Metric Space
Definition 2.2.1 (Totally bouded metric space). Let
(S1) (X,d) is a metric space.
(X, d) is totally bounded if for any € > 0 there are finite points {a:l}fvzl such that X = UY | B(z;, ).
Proposition 2.2.2. Let
(S1) (X,d) is a metric space.
then the followings are equivalent.
(i) (X,d) is a totally bounded metric space.
(ii) For any sequence {x;}32, C X there is a subsequence {x,(;)}i2, which is a cauchy sequence.
(i) = (ii). Tt is easy to show. O

(ii)) = (i). Let us assume (X,d) is not totally bounded. Then there is ¢ > 0 such that for any finite subset {z;}}¥;

Let us fix x1 € X. Because X 2 B(w1,¢€). Let us fix x5 € X \ UL, B(%;,€). By repeating the procedure in the same
way below, there is {z;}$2; such that @, 1 ¢ UP,B(x;,€) (Vn). Clearly {z;}$2, does not contain subsequence which is a
cauchy sequence. O

Proposition 2.2.3. Let
(S1) (X,d) is a totally bounded metric space.
(X,d) is separable.
Proof. For each n € N, {xnl}f:(?) such that X = Uf:(?)B(acnyi, 1), Clearly {z, iln € N, 1 <i < p(n)} is dense in X. O
Proposition 2.2.4. Let
(S1) (X,d) is a separable metric space.
(X,d) is secound countable.

Proof. Let us fix a countable dense set {z,}72; in X. Let us arbitary open covering {Ux}xea.
We set B := {B(zy, =|n € N and m € N such that there is B(z,,, = C Uy for some X € A}.
There is ¢ : B — A such that
bC Uw(b) (Vb S B) (221)

Clearly {U,)|b > B} is countable.
Let us arbitary € X. There is A € A such that # € Uy. There is n € N such that B(x, 2) C Uy. There is m such

n

that d(z, ) < % We set b := B(zp, %) Clearly z € b C Ux. So x € b C U,y Consequently, X = UpepUp, 1) O
Proposition 2.2.5. Let
(S1) (X,d) is a metric space.

then the followings are equivalent.
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(i) (X,d) is compact.
(i) (X,d) is sequentially compact.
(i1i) (X, d) is totally bounded and complete.
(i) = (ii). It is easy to show.
(i) <= (iii). It is easy to show.
(i11) and (i) = (i). We assume X is totally bounded and complete and X is not compact.
By Proposition2.2.4 and Proposition2.2.3, X is second countable.

So there is a open set covering {U;}$2; such that for any finite subset A C N X 2 U;caU;. Then {z;}$2; such that
Tpy1 ¢ Up_ U;. By (ii), there is a subsequence {x,;)}$2; such that

Zlgglo ooy = v € X (2.2.2)

exists.
There is n such that € U,. There is ¢ > 0 such that B(z,e¢) C U,. By (2.2.2), there is ¢(m) > n such that
Tym) € B(x,€) C Uy. Because xymn) ¢ Ufz(T)_l D Un, Ty(m) € Up and 240y ¢ Uy,. It implies contradiction. O

Proposition 2.2.6. Let

(S1) (X,d) is a metric space.
(A1) A C X is dense and totally bounded.

then (X, d) is totally bounded.

Proof. Let fix arbitary sequence {z;}°; C X. By (Al), there is a sequcence {a;}°; C A such that d(z;,a;) < * (Vi). By
(A1) and Proposition2.2.2, there is a cauchy sequence {a(i)}2; C A. Let fix arbitary e > 0. There is ng € N such that
7710 < £ and d(ayp(), ap(j)) < § Vi > ng, ¥j > ng. For any i > ng and any j > ng

d2o(i), To(i) S ATe(i), Qi) + dap (i), Bp()) + A0, To(s)
e, 1
e 3 e()
< €
So {z,(i)}2, is a cauchy sequence. Consequently X is totally bounded. O

Proposition 2.2.7. Let us set X :=[0,1]". Let us define d : X x X — [0,00)

|yi —$i|

d($7y) = Ezoil 9i

(2.2.3)

then (X, d) is a compact metric space.

Proof. Clearly (X,d) is a metric space. By Proposition2.2.5, it is enough to show X is sequential compact. Let us fix
arbitary {z;}5;, C X. There is a subsequence {z,(1,)}{2; and y; € [0,1] such that lim; o Zy(1,4),1 = y1. There is
a subsequence of {z,(1,:)}21 {Tp(2,4)}i2; and yo € [0,1] such that lim; oo Tp(24),: = ¥ (¢ = 1,2). By repeating the
procedure in the same way below, we get ©(1,4)}nien. We set Ty 1= 2y, (for i € N) and y := (y1,y2,...). Clearly
{@yi) }52, converges to y. O

Proposition 2.2.8. Let
(S1) (X,d) is a separable metric space.
there is a metric d such that (X,d) is homeomorphic to (X,d) and (X,d) is totally bounded.

Proof. (X,min{d,1}) is a metric space and (X, min{d, 1}) is homeomorphic to (X, d). So we can assume (X, d) satisfies
0<d<1.

Let us fix {z;}22, C X which is dense in X. We set i : X > x = (d(z,2;))2,[0,1]N. Clearly i : X — i(X) is
homeomorphism. By Proposition2.2.5 and Proposition2.2.7, i(X) is totally bounded. O

Proposition 2.2.9. Let

(S1) (X,d) is a separable metric space.
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then there is a compact metric space (X,d) and an homeomorphic mapping i : (X,d) — i(X) C X such that i(X) is dense
mn X
Proof. This proposition is proved by Proposition2.2.8 and Proposition2.2.6 and Proposition2.2.5 and Proposition11.5.8.

O
Proposition 2.2.10. Let
(S1) (X,d) is a metric space.
(52) AC X.
(S3) r > 0.
Then there is f € C(X) such that 0 < f <1 on X and fl[A=1 and supp(f) C {z|d(z,A) <r}.
Proof. We set f:R 2z 1— tmin(r,d(z, A)) € [0,1]. f satisfies the above condition. O

By Proposition, the following holds.
Proposition 2.2.11. Let
(S1) (X,d) is a metric space.
(A1) AC X and B C X and d(A,B) > 0.

then thre are f € C1(X) and g € C(X) such that 0 < f <1l on X and0<g<1on X and flJA=1 and g|B =1 and
d(supp(f), supp(g)) > 0.

2.2.2 The Case of Compact Metric Space
Proposition 2.2.12. Let

(S1) (X,d) is a compact metric space.
then C(X) is separable.

Proof. By Proposition11.5.11, C(X) C Cp(X). So it is enough to show {f € C(X)|0 < f <1 on X} is separable. By
Proposition2.2.5, X is totally bounded. So for each n € N, there are x,, 1, % 2, ..., Ty ,(n) such that X = Uf:(T)B(xn,i, %)
By Proposition2.2.1, for each n and i and m € N there is f,, ; m € C4+(X) such that

1
fn,i,m|B(xn,ia 5)

1 (2.2.4)

and supp(fmi,m) C B(‘rn,ia 1 + %) and

n

0< fnim<1 (2.2.5)

on X.

We set A := {(n,i,m,q) € N> x Qi < p(n)}. For each A which is a finite subset of A, g := maz{qfn.im|(n,i,m,q) €
A}. Then B := {gx|\ a finite subset of A} is a countable set.

We will show B = {f € C.(X)|0 < f <1on X}. Let us fix arbitary f € {f € C,.(X)[0< f <1on X} and € > 0. By
Proposition11.5.10, there is N € N such that

€
[f(z) = f)l < 5 (2.2.6)
(for any z,y such that d(z,y) < ). There are ¢; € QU [0, 1] such that
€ .
|4 = f@ana)l < 5 (Vi) (2.2.7)

We set g := max{q;fan,ionli =1,2,...,0(2N)}. Clearly g € B.
Let us fix arbitary z € X. Because X = UfﬁN)B(ng,i, 75 ), there is i such that © € B(2an,;, 55 )-
By (2.2.4) and (2.2.6) and (2.2.7)

fx) =

€
b < flxan

€
< q7;+§

€
< gifonyion(z)+ B

< glz)+ % (2.2.8)
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So
f(z) —e<g(x) (2.2.9)

There is j such that g(z) = ¢; fon jon(z). By (2.2.5) and (2.2.6) and (2.2.7),

gifonjon(z) < gj
€
< f(ZL'QN,j) + 5
< flx)+e (2.2.10)
So
|f(z) —g(z)] <€ (2.2.11)
Consequently, B={f € C;(X)[0 < f <1lon X}
O
2.2.3 Baire Category Theorem
Theorem 2.2.13 (Baire Category Theorem I). Let
(S1) X is a complete metric space.
(52) {An}S2, is a sequence of closed sets of X such that A, C An11 (Vn € N).
(A1) X =UX  A,.
Then there is n € N such that AS, # ¢.
Proof. Let us assume
A° = ¢ (Vn € N) (2.2.12)

Let us fix z9g € A;. In this proof, for each z € X and ¢ > 0 we denote B(z,¢) := {y € X|d(x,y) < €}. Since
xg ¢ AS, B(xo,1) ¢ A;. Then there is 1 € B(zg,1) \ A;. Because A§ is an open set, there is ¢(1) € N > 1 such that

1
D(z1,——) C A N B(xg,1). If you repeat this procedure in the same way below, there is ¢ : N = N and {z,}52, C X

(1)
1 1
such that ¢ is narrow sense monotonically increasing and D(x,, ﬁ) C AS N B(zp-1, (71)) (Vn € N). Because
pn P =
clearly {z,}52, is a cauchy sequence, Zo, := lim x, exists. By (Al), there is n € N such that z,, € A,. Because
n—oo
1 1
ZTm € D(n, —) C AS (Vm > n), £ € D(n,——) C A%. This is contradiction. O
p(n) p(n)

Theorem 2.2.14 (Baire Category Theorem II). Let

(S1) X s a locally compact space.
(52) {A,}°2 is a sequence of compact sets of X such that A, C Apy1 (Vn € N).
(A1) X = U2 A,.

Then there is n € N such that A; # ¢.

Proof. Let us assume
A? = ¢ (Vn €N) (2.2.13)

Since X is locally compact, there is a relative compact nonempty open subset V in X. Since V ¢ A and A, is compact
and X is locally compact Hausdorff, there is a relative compact nonempty open subset Vi € V' \ A;. If you repeat this
procedure in the same way below, there is a sequence of relative compact nonempty open subsets {Vj}ren such that
Vig1 C Vi C V (Vk € N). Since V is compact, oo, € NgenVi exists. By (A1), there is n € N such that x,, € A,. Because
Vi C AS (Ym > n), Too € NgenVi C AS. This is contradiction. O
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2.2.4 Miscellaneouses

Proposition 2.2.15. Let X and Y are topological space and i : X — Y is homeomorphism. And let U C X ando
V:i=i(u). Theni|U : U — V is homeomorphisim.

Proof. For any closed set in X A and any closed set in Y B, i "{(BNV) =i 1(B)NV and i(ANU) = i(A)NV.
Soi~ (BN V) is closed set of X and i(ANU) is closed set of Y. O

Proposition 2.2.16. Let X is a topological space and U C U’ C X. Let us assume the topology of U’ is the relative
topology respect to X. The relative topology of U respect to U’ is equal to the relative topology of U respect to X.

Proof. Because for any open set Ain X ANU = ANU’'NU, the Proposition holds. O

Proposition 2.2.17. Let X be a Housdorff space and C' C X be a compact subset. Then C is a closed subset of X.

Proof. Let us fix any « € X \ C. For each y € C, there are U, and Vj, such that U, is an open neighborhood of = and
Vy is an open neighborhood of y and U, NV, = ¢. Because C' is compact, there are V,,...,V;, ~such that C' C U2, V.
Because N}, U,, is an open neighborhood of « and N2, U,, NU~,V,, = ¢, x ¢ C. Consequently, C'is a closed subset. [

Definition 2.2.18 (Locally path-connected space). Here are the settings and assumptions.
(S1) X is a topological space.

We say X is locally path-connected if for any U € O(X) and x € U, there is V such that V is a path-connected open
neighborhood of x and V C U.

The following clearly holds.
Proposition 2.2.19. Any topological manifold is locally path-connected.
Definition 2.2.20 (Covering Space). Here are the settings and assumptions.

(S1) E, B are path-connected and locally connected topological space.

(§2) p: E — B is a surjective continuous map.

We say (E, B, p) is a covering space if for any b € B there is U such that U is an open neighborhood of b and any connected
component of 71 (U) V satisfies 7|V : V — w(V) is a homeomorphism. We call E the total space, B the base space, p
the projection.

Definition 2.2.21 (Finite covering Space). Here are the settings and assumptions.
(S1) (E,B,p) is a covering space.

We say (E, B, p) is a finite covering space if there is m € N such that for any b € B #p~1(b) = m. We call m the covering
degree of (E, B,p).

2.3 Calculus

2.3.1 Inverse function theorem
Lemma 2.3.1. Let
(S1) I := (—=b,b)"* and J, := (—b,b)".
(S2) a € I.
(A1) f € CY(Iy,R).
(42) f(a) = 0.
(A3) a = infrer, 2L (x)) > 0.

then r € CY(Jy,R) such that
fr),y) =0 (Vy € Jp) (2.3.1)
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Proof. By (A3), for any y € J, there exists only one r(y) € (=b,b) such that f(r(y),y) = 0.
Let us fix arbitary y € J, and fix arbitary ¢ € {2,,...,n}.
For z € R such that |z| is sufficient small,

0 = 0-0
= f(r(y+zei),y + ze;) — f(r(y + zei),y)
+f(r(y + zei),y) — f(r(y),v)

1
d
= /*f(r(y'i‘zei),y-i-tzei)dt
o dt

d

1
+/O af(r(y) +t(r(y + ze;) —r(y)), y)dt

1 8f
= Z/o axi(r(y—f—zei),y—i—tzei)dt

1
0
+rly+2e) =) [ G0 + 40l + 2€0) 1)) (232)

By (2.3.2), (r(y + ze;) —r(y)) < |z|ésupfb|g—i|. So r is continuous on Jp.

By (A1) and (A3), [} 2L (r(y) + t(r(y + ze:) — 7(y)), y)dt > 0. So, by (2.3.2),

(r(y +ze) —r(y) _ Uy GL(r(y+ze:).y + tzei)dt (2.3.3)
: 0 i (r(y) +1(r(y + ze) = r(y)), y)dt
By (A1) and continuity of r and (2.3.3),
g et zed 210 O 1)) 2L ), (23.4)
Consequently r € C*(J,, R). O
Theorem 2.3.2 (Inverse function theorem). Let
(S1) U is open set in R™.
(S2) a€U.
(A1) f e CYU,R").
(A2) det(Jf(a)) >0 on U.
then there is V. .C U such that V and f(U) are open set and f : V — f(V) is injective and f=* € CH(f(V),V).
STEPI1: case when n = 1. It is easy to show. O

STEP2-1: fis locally injective(case when n > 1). Let us fix arbitary ny € N. We assume the above theorem is true if
n < ng. Let us assume n = ng + 1. By (A2), for any i € {1,2,...,n} there is u; € R™ such that Jf(a)u; = e;. By setting
for sufficient b > 0 g : (=b,b)" 3 t — f(ol_ t;v;) € R™, We can assume a = 0 and f(0) = 0 and [—¢,¢|™ C U for some
c¢>0. and ]
oft
8(Ei

>0on I.:=(—c,c)” (Vi >0) (2.3.5)

By (2.3.5), clearly f is injective on I..
O

STEP2-2: f is locally open map(case when n > 1). Next, we will show f is open map in I.. for sufficient small ¢ > 0. And
by Lemma2.3.1, there is ¢’ € (0,¢) and r : C*(J/,R) such that fi(r(y),y) = 0 (Vy € Jo). Here, J. := (=c,¢/)™. By
resetting ¢ to be sufficient smaller, we can assum that ¢ = ¢/.

el dr
= x el el

We set f = (fa,..., fu). Let usset g: J. >y — f(r(y),y)R™. Jg(0) = | 3 1| = E,,. By the assumption in
el el

n no
mathematical induction, there is ¢’ € (0, ¢) such that g(J.) is an open set in R™ and ¢ is injective on J.». By resetting

¢ to be sufficient smaller, we can assum that ¢ = ¢”.
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Let us fix arbitary connected open interval (z1,z2) x J C I.. We set I := (z1,22). We will show f(I x .J) is open set.
Let us fix arbitary point f(zg,y0) € f(I x J). Because (2.3.5), For any y € J, f(x1,y) < f(z0,y) < f(z2,y). Because J
is compact, by (2.3.5), there is d; and ds such that

filz1,y) < di < fi(zo,y) < ds < fi(za,y) (Vy € J) (2.3.6)

We set W := (dy,ds2) x g(J). Cleary f(z,y) € W. Because g is open map, W is open set. We will show W C f(I x J).
Let us fix arbitary (u,g(y)) € I x W. Because f1(+,y) is continuous and (2.3.6), by intermediate value theorem, there is
x € I such that fi(x,y) =u. So f(z,y) = (fi(z,y),9(y)) = (u,g(y)). This means W C f(I x J). Consequently, f is open
map in I..
We replace f by f|I.
O

-3: For each 1, —71 exists(case when n > 1). Let us fix arbitary (ug,vo) € W. Let us set (x,y) := f*(uo, vo).
STEP2-3: For each i, %4
By using an approach is same with one in STEP2-1, it is enough to show that for any i %(mo, Yo) exists we can assume

that Jf(l‘o,yo) =E,.
Let us fix arbitary i € {1,2,...,n}. Let us pick up j € ({1,2,...,n} \ {i}. By swaping x; by z; and swaping f; by fi,
we can assume j = 1. By using an approach is same with one in STEP2-2, there is R € C'(J.,R) such that

fi(R(y),y) = u (Vy € J) (2.3.7)

and G : J. 3y — f(R(y),y) € G(J.) is injective and open map and class C' and G~ is class C*.
For any ¢ such that |¢| is sufficient small,

FH(u,v) +te) = (R(G™H((u,v) + te;), G H((u,v) + te)) (2.3.8)
The right side of (2.3.8) is differentiable at ¢ = 0.
%(wo,yo) exists. O

STEP2-4 f~1 is class C* (case when n > 1). Lastly, we will show f~! € CY(W, I,.).

By STEP2-3,
ffHw) =w (Ywe W) (2.3.9)
So,
af* 11 ‘
. (w)=Jf(f(w) e (Vi,Yw € W) (2.3.10)
The right side of (2.3.10) is continuous with respect to w. So f~! is class C. O

Remark 2.3.3. There is a map which does not have global inverse map and has nonsingular Jacobi matriz at every point.

f:(0,00) xR (r,0) —r <;Z?jgzg> € R?\ {0} is a example of such maps.

Remark 2.3.4. [35] gives a sufficient condition for existence of global inverse map.
The following proposition is easily proved by inverse mapping theorem.

Corollary 2.3.5. (S1) U is open set in R™.
(52) a€U.
(A1) f e CYU,R").
(S3) V is open set in R™ such that f(U) C V.
(A2) g € CH(V,R").

(A3) go f=1idy.
then there is f(U) is open set.
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2.3.2 Implicit function theorem

Theorem 2.3.6 (Implicit function theorem). Let

(S1) U is open set in R™T™,
(52) a = (a1,as,...,am) and b := (by,ba,...,b,) and ¢ := (a,b).
(88) ceU.
(A1) fe CYUR™).
(A2) f(e) =0,
Ofi
(A3) det({3=(a)}1<ij<m) # 0
8(Ej
then there is an open subset in R™ V and r € CY(V,R™) such that b € V and r(b) = a and

(r(y),y) CU and f(r(y),y) =0 (Vy € V) (2.3.11)

Ofi
8xj
Let us set g : U 3 (z,y) — (f(x),y) € R™™". Because det(Jg(c)) # 0, by inverse function theorem, there is an
open neighborhood of ¢ U’ := B(a,¢) x B(b,e) C U such that g(U’) is open subset and g : U’ — g(U’) is class C*
homeomoriphisim.
We set 7 : B(b,e) 2 g71(0,y) € U’. Clearly r satisfies the conditions in the above theorem. O

Proof. By resetting Bf for B = { (a)}1_<1i.j<m7 we can assume.

2.3.3 Method of Lagrange multiplier
Theorem 2.3.7 (Method of Lagrange multiplier). Let
(S1) U is open set in R™T™.
(S2) a = (a1,az,...,am) and b := (by,ba,...,b,) and c := (a,b).
(S3) ceU.
(S4) g € CHU,R).
(A1) f e CYU,R™).
(A2) f(c)=0.
(A3) rank(Jf(c)) = m.

(A4) a is a mazimum point of g in U.

then there is A € R™ such that
dg(a) = X% A\idfi(a) (2.3.12)
Proof. By swapping variables, we can assume (A3) in Theorem?2.3.6. We pick r in Theorem2.3.6. We define (s1, $2, ..., Sn)
by (81,82, ..., 8n) i= <J£,(b)> Clearly dim < 81,82, ..., 5, >= n. So dim < 51,83, ...,5, >1-=m Because f(r(-),-) =0 in
n

U, < df1,dfa, ..., dfr, >C< 51, 82,...,8, >+. By (A3), < df1,dfs, ..., dfm, >=< 51,82,...,8, >. Because g(r(-),-) achives
maximum at b, dg €< s1, S, ..., s, >+. Consequnently, there is A € R™ such that

dg(a) = XiZ Aidfi(a) (2.3.13)
O

2.4 Differential Manifold

Definition 2.4.1. Let M is a n-dimensional manifold and p € M. Let f and g be C* function in some neighborhood of
p. We define f ~ g if f = g in some neighborhood.

Definition 2.4.2. Let

(S1) M is a n-dimensional manifold.
(S2) pe M.
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(53) Denote F(p) be the quotient set defined by equivalent relation in Definition.

We call v : F(p)* is a tangent vector if

v(fg) = v(f)g(p) + f(p)v(g) (Vf,g € F(p)) (24.1)
We denote the set of all tangent vectors by T(p).
Proposition 2.4.3. Let us fix arbitary f € §(p) such that df (p) = 0. Then for any v € T(p), v(f) =0

Proof. Let us fix a local cordinate ¢ := (x!,...,2™) such that ¢(0) = p. We set ¥ := (y1,¥2, ..., yn) := ¢~ '. By fundamental
theorem of calculus, there are C°° functions in some neighborhood of 0 {¢;}" ; such that f(z!,...,2™) = £7  y;9; and
¥;(0) =0 (Vi). By (2.4.1), v(f) = 0. O

2.5 Functional Analysis
2.5.1 L} (R™)
Proposition 2.5.1. Let us fix € > 0. Then there is j. € C.(R™) U CL(R™) such that
(i) je is a probability density function on R™.
(i) supp(je) C B(0,€).
The following proposition is easy to show.
Proposition 2.5.2. Let
(S1) je is the function in Proposition2.5.1.
(S2) f € L*R").
Then
(1) jex [ € C(R")
(1) supp(je * ) C {z € R"[d(x, supp(je * f)) < €}
(iit) [lje* flln < [If1h
(iv) im_o jc * f = f in L'(R").
(i) and (ii). It is easy to show. O
(iii) and (iv). Tt is enable to show by an approach which is similar to the approach in the proof of Proposition2.5.6. O
By (iv) of Proposition2.5.2 and Proposition11.5.12, the following holds.
Proposition 2.5.3. C°(R") is dense in L'(R").
Proposition 2.5.4. Let

(S1) {fn}, C LY(R") and f € L*(R™).
(A1) lim, oo fr = f in LY(R™).

then lim,, o frn = f (almost everyware pointwise convergence).

Proof. Let us fix arbitary m € N. We set
1
= N — >
E, ={zeR |n151;o|fn(x) f(x)] > m} (2.5.1)

It is enough to show E,, is zero set.

S (Bn) <l flh =0
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2.5.2 Fourier Transform

Definition 2.5.5. Let € > 0 and n € R.

1 |z n
Ge(z) == (27762)%%]0(_@) (x e R™) (2.5.2)
Proposition 2.5.6. The followings hold.
(i) Gc >0 on R™ (Ve > 0).
(i) [gn Gedz =1.
(i1i) For any & > 0, lim. o f\w\>5 Gedr = 0.

(iv) For any f € L'(R"), ||Ge* fll < [If]l1-
(v) For any f € LY(R™), lim 0 G * f = f in L'(R™).
(vi) FHF(Ge)) = G (Ve >0)

(i) and (ii). Because G, is the probability denity function of N(0,€eE,), (i) and (ii) hold. O

(iii). Because [\ s Ge(z)dz = [, s Gi(x)dz, (iii) holds. O

(iv). By (i) and (ii),

IN

/ G # g(a)|de

T

Q
)

)

|
=
=
<
N—
Y
=
Y
3

Il
%\
s
o
—
NS
-
QL
<

(v). By (iv) and Proposition11.5.12, we can assume f € C.(R"™).
By Lebesugue’s convergence theorem and (iv), it is enough to show G, * f pointwize converges to f.
Let us fix arbitary € > 0. Because f is uniform continuous on R, | f(z) — f(y)| < § (for any z,y such that |z —y| < J).
By (#i1), there is 79 > 0 such that flw\>5 Grdz < sam=D (for any 7 < 719).

By (ii), for any € R

Gex f(z) = f(x)] = || Ge(y)(f(z—y)—f(z))dy|

Rn

/| Gl =) = Sy

IN

+ /IxzéGe(y)lf(w—y)—f(w)dy

€
< g2l [ Gy
|z] >0
< ¢ (2.5.3)
O
(vi). By Proposition11.5.2, (vi) holds. O

Proposition 2.5.7 (Inverse formula). For any f € L'(R") such that Z(f) € L*(R"),

f=7717() (2.5.4)
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Proof. By (v) in Proposition2.5.6 and Proposition2.5.4, it is enough to show G, * f pointwize converges to .# ~(Z(f))

on R™.

By (vi) in Proposition2.5.6 and Proposition11.5.2, for any = € R™

Gex f(x)

By Lebesuge’s convergence theorem,

(2m)

FHF(GY) * f(x)
/ FHF (G (@ — ) fy)dy

n

L F G ©eantila — neyderwiy

! / F(G)(€)eap(it)exp(—iye)de f (y)dy

—
)
3

=

wl3
=

)
QD

Neaptize) [ o rern(-iye) f(u)duds

3

T
}3
Q

)()exp(ixg) F (f)(§)dE

577 L @0EFCHOF (D) Eernline)de
1 €
oot L = GIERZ () @ erpline)de

62
| ean=GIeR)F (D ©eantiaeyic - #7(F(D)(a)

Proposition 2.5.8 (Differential formula). Let

(S1) fe CERM).
(52) a € Z" U [0, 00)"™.
(S3) m:=X7  q;.
Then
(i) D*f € C=(R") and

(i) F(f) € L*(R").

F (DY) = (i) F(f)

(i). It is enable to show by using integration by parts.

(ii). It is enable to show by (i).

2.5.3 Schwarz’s Inequality

I will show a roundabout proof of Schwarz’s Inequality. For a short proof, see([12]).

Theorem 2.5.9. H is a inner product space. Then

[(u, 0)[ < [[ul[lo]| (Vu € H,Vv € H)

We can gave a proof of the above theorem without the following assumption

u # 0 then |ju|| #0 (Vu € H)

(2.5.5)

(2.5.6)

(2.5.7)

(2.5.8)

Firstly, the above theorem is obviously true when (u,v) = 0. So we can assume (u,v) # 0. Let 8 € [0,27) be a
argument of (u, v) and let «’ := exp(i(—0))u. exp(i(—0))(u,v) is a real positive number. So, if u’, v satisfies Shuwartz’

inequality, u, v satisfies the one since

|(u, v)| = |exp(i(=0))(u, v)|
= eap(i(=0))(u, v)
= (u,v)
< kIl

= [lulllfol|

(2.5.9)
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maximum point of f
when t=(1/2)

u+t(v-u) (utv)

V] v+t(u-v)
lu+t(v-u)| Vi

v+t(u-v)|

unit sphere

Figure 2.1: Image of poins on unit sphere

So we can assume

(u,v) € R and (u,v) >0
Hereafter, on these assumptions, we will show
o If ||u||||v]| # 0, the above theorem is true

o lulllof] # 0

2.5.3.1 The theorem is true when u and v have not zero norm

u

In this case, we can assume u, v is in unit sphere. The above theorem claims that ( Tull?

1 when « = v on unit sphere {u € H| ||u]| = 1}. By seeing Figure2.5.3.1 so we can guess

(u+tv—u),v+tu—0ov))
(Ilu +t(v —w)[)([[v + t(u — v)][)

f:0,1] 3t~ eR

reachs the maximum value 1 at ¢t = %
The following is true

f(0) = (u,v)
It is enought to show the following proposition
Proposition 2.5.10.

fp:[0,1] 5t (u+t(v —u),v+t(u—v))

eR

(e + t(v = w)|[ + p)([[v + t(u = v)[| + p))

reachs the mazimum at t = % for allp > 0.

Actually, if Proposition2.5.10 is true, then f,(0) < f,(3) (¥p > 0). So

pllu+ol?

(3llu+ vl +p)(5l[u+ vl +p)

(u,v)
(1+p)?

<( ) (Vp>0)

Since (u,v) > 0, ||u + v|| > 0. Reaching p — 0, we get Shwartz Inequality

(u,v) < 1= [[ul[[|v]]

CHAPTER 2. PRELIMINARY

(2.5.10)

ﬁ) reachs the maximum value

(2.5.11)

(2.5.12)

(2.5.13)

(2.5.14)

(2.5.15)
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So, hereafter, we will show Proposition2.5.10.
We define
a:Rot— (u+tlv—u),v+tlu—v)) eR (2.5.16)
So, we get
a(t) = —||u —v|[2t* + ||u — v||*t + (u,v) (Vt € R) (2.5.17)

So a reachs the maximum at ¢ = % We notice a reachs the maximum at t = % even if w, v is not in unit sphere.

lJu+t(v —w)|* = ||Jv+ tlu —v)||> = |Jv — ul|[*t? + (2(u,v) — 2)t + 1 (2.5.18)
and
lo = ul]* = = (2(u,v) - 2) (2.5.19)
So if we define
bRt (([[ut+tlv—uw)|+p)(|[v+tu—0)|]+p) R (2.5.20)

then b reachs the minimum at ¢ = . So the theorem is true when |[u]|||v|| # 0.

2.5.3.2 u and v have not zero norm

We will show ||ul|||v]| # 0. Firstly we assume ||u|| = [|v|| = 0. Then
1 1
a(3) = 5 (u,v) 2 a(0) = (v, v) (2.5.21)

So (u,v) = 0, this contradicts with (2.5.10). Secondly we assume ||u|| = 0, ||v|| # 0. We can assume [|v|| = 1. We define
for positive number p
ap :R3t— (pu+tlv—pu),v+tlpu—v)) €R (2.5.22)

Similarly to the above discussion a, reachs the maximum at ¢ = %

1 1
< —) — = —_ ) — = —
0< aﬁ(Q) a(0) =1 2(u,v) (u,v) 1 (2.5.23)
This is a contradiction. So ||ul|||v]| # 0.
2.5.4 Projection
Proposition 2.5.11 (Bessel Inequality). Let
(S1) V is a inner product space.
(S2) {vi}N., is a orthonormal system of V.
Then for any u € V,
N
D 1w )P < ul?
i=1
Proof. By (S2),
N N
0< flu =Y (uviuill* = |[ul® = I(u,03)?
i=1 i=1
This impliese the above inequality. O

Proposition 2.5.12. Let
(S1) V is a separable Hilbert space.
(52) {v;}52, is a complete orthonormal system of V.
Then
(i) Ifu eV and (u,v;) =0 (Vi), then u = 0.
(ii) For anyu €V, > 2 (u,v;)v; converges and

oo

u= Z(u, 0;)U;

i=1



30 CHAPTER 2. PRELIMINARY

(iii) Any complete orthonormal system of V' is countable.

Proof of (i). We set W := >, Cv;. There is a sequcen {w;}2; C W such that lim w; = u. So,

i—o00
l[ul[> = lim (u,w;) =0
i—o0
This implies v = 0. O
Proof of (ii). By bessel inequality, {Zf\il(u, v;)V; } Nen is a cauchy sequence in V. Because V is complete, Yo, (u,v;)v;

converges. Because (u— o<, (u,v;)v;,v5) = 0 (V4), by (i), (ii) holds.

Proof of (iii). Let us fix {wq}aea which is any complete orthonormal system of V. For each m,n € N, there is a finite
subset A,, ,, C A such that

1
d =
(v, Z Cwy) < -
a€lm.n
We set A* := Uy nAmpn. Clearly A* is at most countable and {wq}aea~ is a complete orthonormal system of V. So,
A* = A. O
Proposition 2.5.13 (Projection Theorem). Let
(S1) V is a Hilbert space.
(S2) W is a closed subspace of V.
then
V=WaeWw"t

So, for each v € V, there is a unique w € W such that v —w € W+, We call w is the orthogonal projection of v. We set
pw V=W by
pM:V9v|—>weVVs.t.v—wEVVl

We call pw is the orthogonal projection of W.

Proof in general case. Let us fix any v € W. We set

d:=d(v,W)
Then there is {w;}$2; C W such that
li_>m [lv—w;|| =d

We will show {w;}2, is a cauchy sequence. For any m,n € N,

l[wm _wnH2 = ||vm _wH2 — 2Re(wy, — w, wn, — w) + ||wp, — wH2

And
2Re(wm — w, wy, —w) = |[(wy — w) + (wp — w)|[* = |Jwm — w|[* = ||w, — w|[*
So,
Wy, + W

fem = w2+ 4“2 — ]2 = 2l — ]| + 2] — ]

Because
Wy + Wy,

[[wm —wnl* + 4| —wl|* > |[wm — wal|* + 4d?

2
lwm = wall* < 2[[wm — w||* + 2| |w, — w|]* — 4d?

So, {w;}$2, is a cauchy sequence. Because V' is Hilbert space,

w:= lim w,
n—oo
exists. Because W is closed, w € W.
[l = w|[? =lv = wp +wn = w|* = [Jv = wal[* + 2Re(v — wn, wy — w) + |[wn — w||?

So,
o = wlf? = a?
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We set
UI=0v—w

Let us assume u ¢ W=. Then there is wg € W such that (u,wp) > 0. So, for any § > 0
& < Jlu — bwol|? = d? — 26 Re(u, wo) + ] lwo

This implies
2Re(u,wp) < 6| |wol|?

2Re(u,wp)

So, if we take § < , a contradiction arises. So u € W+, O

Proof in case W is separable. Because W is separable, by Gram-Schmit orthogonalization method, there a {w;}$2; which
is a complete orthonormal system of W. Let us fix any u € V. By the same argument as the proof of Proposition2.5.12,
w =Y 2 (u, w;)w; converges. Because W is closed, w € W. Clearly v —w L W. O

By the argument in the proof of Propoisition2.5.13, the following holds.
Proposition 2.5.14. Let

(S1) V is a pre Hilbert space.
(52) W is a subspace of V.
(S3) veV.

(S4) {vn}nen CV such that
lim ||[v —v,|| = inf |jv— vl
then {vn }nen 8 a cauchy space.

Proposition 2.5.15. Let

(S1) V is a Hilbert space.
(S2) W is a closed subspace of V.
(A1) p:V — W is a surjective self adjoint linear operator such that p* = p.

then p is the orthogonal projection of W.

Proof. Let us set py the orthogonal projection of W. Let us fix any v € V and w := pw (v). Then, firstly, p(v) —w € W
and there is v’ € V such that p(v') = w.

p(v) = w = p(v) = p(v') = p(v) = p*(V') = p(v) — p(w) = p(v — w)
Because v —w € W, for any w’ € W,
(p(v) = w,w') = (p(v — w),w') = (v = w,p™w') = (v —w,p(w')) = 0
So, p(v) —w € W+, These imply p(v) = w. O
By Proposition2.5.15, the following holds.
Proposition 2.5.16. Let

(S1) V is a Hilbert space.
(S2) Wh,..., Wy, are closed subspace of V and W; L W; (Vi # Vj).
(A1) p; : V. — W; is the orthogonal projection to W; (i =1,2,...,m).

then
m
pi= pi
i=1
is the orthogonal projection of @, W;.
Proposition 2.5.17. Let
(S1) V is a Hilbert space.
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(52) {W;}ier is a family of closed subspaces of V.

(A1) W; LW; (Vi #Vy).

(A2) V = @ierW;.

(58) We denote the orthogonal projection of W; by p; (i € I).
then for any v € V

inf{|jv — ZPij |J C I: finite} =0
jed

Proof. Let us fix any v € V and € > 0. By (A2), there are J C [I:finite and {v;};cs such that v; € W; (Vi € J) and
[lv = > ;e vill <e. Weset p:=3"._; P. By Proposition2.5.16, p is the orthogonal projection of @®;c;W;. By the proof
of Projection theorem, |[v —p(v)[| < [[v =3 ;c yvill- So, [[v =32, ; Pyvl| <e. O

Proposition 2.5.18 (Riez representation theorem). Let
(S1) V is a Hilbert space.
(S2) feV*.

Then there is w € V such that

fC) = ()
Proof. We set W := Ker(f). We can assume f # 0. Let us take wg € W+ \ {0}. We can assume f(wg) = 1. Let us fix
v eV and u:=v— f(v)wy. Clearly u € W, so u L wp. This implies

(v,wo) = f(v)[Jwoll”

2.5.5 Unit Sphere

Proposition 2.5.19. Here are the settings and assumptions.

(S1) V is an inner product space.
(A1) {v € V||v|| =1} is compact.

Then dimV < cc.

Proof. Let us assume dimV = oo. Then there is a orthonormality {v;}{2, C V. Because there is no subsequence of
{v;}$2, which converges in V', {v € V|||[v|| = 1} is not compact. This is contradiction. O

Proposition 2.5.20. Let

(S1) V is a Hilbert space.
(52) {vi}iZy < {v e V|Jof| = 1}.

Then there is subsequence {v,(i)}52, and v € V' such that for any f € V*

Jim f(vp@) = f(v)
We denote this by

el v =
Proof. Because (v;,v;) € T1(Vi,4) and T, is compact, then there are subsequences {v,, (1) }7e, (n = 1,2,...) such that for
each n € N {v, ) }32, is a subsequence of {vy, ., (k) }re, and limg o0 (Ve (1), Vn) exists. We set

¥(n) = @n(n) (n € N)

Then for any n € N, flog) = (limkéoo(vn,_vlp(k)) exists. We set Vj be the minimum sublinear space which contains
{v;}2, and V; := V4. Let us fix any w € Vi. Then there is {w;}52, C Vp such that lim; ,. w; = w. Let us fix any
€ > 0. Then there is ng € N for any m,n > ng ||wy, — wa|| < e |fwm) — f(wn)| = | f(wm — wy)| < ||wm — wy|| < e So,
f(w) :==lim,, oo f(wy,) exists. Clearly ||f|] < 1. So f € Vi*. By Riez representation theorem, there is v € V; such that
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f = (). Let us fix any u € V; and € > 0. Then there is ' € V{ such that ||ju — u'|| < % There is ng € N such that for

any k > ng |(v',vyp)) — (v v)] < % So |(u, vyk)) — (u,v)| < €. This means

lim (u, vyr)) = (u,v) (2.5.24)

k—o0

Let us fix any g € V*. Then g|V1V}*. By Riez representation theorem, there is u, € V; such that g|Vi = (-,u4). So,
i = 2.5.25
i g(vyer)) = g(v) ( )

O

2.5.6 Miscellaneous

The following clearly holds.

Proposition 2.5.21. Any finite linear subspace of a Hilbert space is closed.

2.6 Topological group and representation

Definition 2.6.1 (Topological group). We call G is a topological group if G is a housdorff space and G is a group and
G x G > (x,y) — xy € G is continuous and G > x — x~! € G is continuous.

Proposition 2.6.2. Let G is a topological group. Then the followings hold.

i) i:G3x—x ! €@ isisomorphism.
(i)
1) For any g € G, L, : G 3 x — gzr € G is isomorphism.
g
11) For any g € G, R, : G > x — xg € G is isomorphism.
9

Proof of (i). For any open set U in G, i(U) =i~ 1(U). Because i is continuous, i is open map. So i is isomorhism. O

Proof of (ii). For any open set U in G, Ly(U) = L(g-1)-1(U). Because L,-1 is continuous, L, is open map. So L, is
isomorhism. 0

Proof of (iii). 1t is possible to show (iii) by the approach which is similar to (ii). O
Proposition 2.6.3 (Semidirectproduct of groups). Let

(i) G,H are groups.
(i) o : G — Aut(H) is a homomorphism of group.
(iii) We set
(91,h1) - (92, h2) := (9192, Mo (g1)(h2)) (91,92 € G, h1,he € H)
Then G x H is a group with -. We denote this group by G x, H.

Proof. Clearly (1, 1p) is the unit element of G x, H. Let us fix any g1, 92,93 € G and hq, ho, hs € H.

(91,h1) - ((92, h2) - (93, h3)) = (91, 1) - (9293, hao(g2)(h3)) = (919293, h1o(g1)(h20(g2)(h3)))
= (919293, h1o(g1)(h2)o(g1)(0(92)(h3)))) = (919293, h10(g1)(h2)o(g192)(ha))) = (9192, h1o(g1)(h2))(g3, ha)
= ((91, 1) - (g2, h2)) - (93, h3)

So, the associativity of - holds. For every (g,h) € G x, H, (g7*,0(g)(h)"th™1) is the inverse element of (g,h). Conse-
quently, G x, H is a group. O

Definition 2.6.4 (Representation of group). Let G be a group and V be a vector space on a field K. We call m : G —
Endgk (V) a representation of G if 1(1g) = idy and w(g192) = 7(g1)7(g92) (Vg1,92 € G).

Definition 2.6.5 (Continuous Representation of Group). Let G be a topological group and V be a Hilbert space on a field
K. We call m: G — Endg (V) a continuous representation of G if (w,V) is a representation of G and G x V > (g,v)
m(g)v € V is continuous.
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Definition 2.6.6 (Unitary Representation of Group). Let G be a group and V' be a Hilbert space on a field K. We call
m: G = Endg (V) a unitary representation of G if (w, V) is a representation of G and w(g) is a unitary operator for any
geaQqG.

Definition 2.6.7 (Subrepresentation). Let (m, V') be a continuous unitary representation of a topological group G and W
be an invariant closed subspace of G. We call (w|W, W) is a subrepresentation of w. We denote w|W by m1. We denote
this by m < w. And let (w2, Va) be a continuous unitary representation of a topological group G. We denote wa < 7 if mo
is isomorphic to a subrepresentation of G as continuous unitary representations.

Proposition 2.6.8. Let

(S1) G is a topological group.

(52) (m,V) is a finite dimensional continuous representations of G.

Then
G>g—m(g) € GL(V)

18 continuous.

Proof. Let us take {v;}7_; such that {v;}7_; is a orthonormal basis of V. For any g1, 92 € G and i, j

(7 (g1)vi, vs) = (w(g2)vi, vj)l| < [lm(g1)vi — 7(g2)vil]
So, (m(-)vs,v;) is continuous. O
Proposition 2.6.9. Let

(S§1) V is a vector space on K :=R or C.
(52) A€ Endg(V).
(§3) A*(f)(u) := f(Au) (f € V¥, ueV).
Then A* € Endg (V™).
Proof. For any a,b € K and f,ge V*and u €V,

A% (af +bg)(u) = (af +bg)(Au) = af (Au) + bg(Au) = a(A"f)(u) + b(A"g)(u) = (a(A"f) + b(A%g))(u)

Proposition 2.6.10 (Contragredient representation). Let

(S1) G is a topological group.
(52) (mw,V) is a representations of G.

Then
(i) The following ©* is a homomorphism as groups.
TG 3g (g ) € GLe(V)
We call 7 a the contragredient representation of .
(i) If (w, V) is a finite dimensional continuous representations of G, then 7 is continuous.

Proof of (i). For any g,h € G and f € V* and u € V|

©*(gh) f(u) = f(n(gh) ™ u) = f(r(h) "' (g) ™ u) = (7" (h) f)(m(g) " u) = 7 (g) (m" () f) (u)

Proof of (i). Let us fix {vy,..,v,,} an orhonormal basis of V. We set f; := (-,v;) (i =1,2,...,m).

m m m

w(9)f () = £ mlg™ (wsvi)vs) = 3 (w,0) Frw(g™ ) = 3 Flrlg™ )ou) filw)

i=1 i=1 i=1

So, 7* is continuous. O
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Definition 2.6.11 (Intertwining operator, G-linear map.). Let

(S1) G is a topological group.
(52) (m1, V1) and (72, Va) are representations of G.

We say T : Vi — Vb is an intertwining operator or a G-linear map if T is a linear and
Tom =mp0T
If my and o are continuous representations of G, we denote the set of all continous G-linear mapping from my to mo by
Homg(Vi,Va) or Homeg (1, m2)
Definition 2.6.12 (Equivalent between two continuous representations of G). Let

(S1) G is a topological group.

(S2) (m1, Vi) and (w2, Va) are continuous representations of G.

We say m, and 7y are equivalent if there is T : Vi — Vi such that T is a bijective continuous G-linear and T~ is a
continuous G-linear.

Definition 2.6.13 (Equivalent between two unitary representations of G). Let

(S1) G is a topological group.
(S2) (m1, Vi) and (72, Va) are unitary representations of G.

We say m and wo are equivalent if there is T : Vi — Vay such that T is a bijective unitary G-linear.
Definition 2.6.14 (G-linear map.). Let

(S1) G is a topological group.
(52) (m1, V1) and (w2, Va) are representations of G.

We say T : Vi3 — V4 is an intertwining operator or a G-linear map if T is a linear and
Tom =mgo0T
The following is clear.
Proposition 2.6.15. Let

(S1) G is a topological group.
(52) (mw,V) is a continuous unitary representations of G.
(52) W is a G-invariant subspace of V.

then W+ is also a G-invariant subspace of V.
Definition 2.6.16 (Completely reducible). Let

(S1) G is a topological group.

(52) (mw,V) is a continuous representations of G.

We say (w,V) is completely reducible if for any invariant subspace W1 there is an invariant subspace Wy such that
V=W, +W,.

Proposition 2.6.17. Let

(S1) G is a topological group.

(52) (mw,V) is a continuous unitary representations of G.
Then (mw, V') is completely reducible.
Proof. Because of (S2), for any invarian subspace of W, W+ is an invariant subspace. So, (7, V') is completely reducible. [J

Proposition 2.6.18. Let
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(S1) G is a topological group.
(S2) (m,V) is a continuous unitary representations of G.
(52) W is a G-invariant closed subspace of V.
then the orthogonal projection of W, denoted by Py, is G-linear.
By Proposition2.6.15, the following holds.

Definition 2.6.19 (Irreducible Representation). The followings are settings and assumptions.

(S1) G is a topological group.

(S2) (m,V) is a continuous representation of G.
We say (m,V) is irreducible if there is no closed subspace of VW #£ {0} such that W #V and W is G invariant.
Proposition 2.6.20. The followings are settings and assumptions.

(S1) G is a topological group.
(52) (mw,V) is a finite dimensional irreducible continuous representation of G with a Hilbert space V.
(S3) ve V\{0}.
Then
(r(Gyw)y =V

Proof. Since (V) is finite dimensional, (w(G)v) is finite dimensional. Since V' is Hilbert space, finite dimensional subspce
of V' is closed. So, (m(G)v) is closed. Clearly (w(G)v) is G invariant. That impliese (7(G)v) = V. O

Proposition 2.6.21. Let

(S1) G is a topological group.

(52) (mw,V) is a finite dimensional continuous unitary representations of G.
then (mw, V') has an irreducible decomposition.
Proposition 2.6.22 (Shur Lemma). Let

(S1) G is a compact Lie group.

(S2) (m;,V;) is a continous irreducible representation of G on C (i = 1,2).
(A1) Either Vq or Va is finite dimensional.

(52)

Then

Homa(vive) = { &} (77

Here T is an G-isomorphism from Vi to Vs.

STEP1. Proof of Homg(V1,Va) = {0} (w1 % m2). Let us assume Homeg(V1,V2) # {0}. There is f € Homg(Vh, V) \ {0}.
Because Ker(f) is closed G-invariant, Ker(f) = {0}. Because of (A1), Im(f) is finite dimensional. By Proposition2.5.21,
Im(f) is closed G-invariant subspace of V5. Becuase 7y is irreducible, Im(f) = V. So, V4 is finite dimensional and f is

bijective. Then Vj is finite dimensional. By Proposition2.5.21, f=! € Homg(Va, V2). So, f is an G-isomorphism from V;
to Va. O

STEP2. Proof of Homg(V1,Va) = CT' (w1 ~ m2). Let us fix any f € Homg(Vh,V2) # {0}. By STEPI, f is an G-
isomorphism from V; to V5.

By (A1), V1 and V5 are finite dimensional. So, becuase T o f has a eingenvalue A\, Ker(T~!o f — \id) # {0}. Because
71 is irreducible, Ker(T~' o f — Xid) = V. So, f = AT. O

Proposition 2.6.23. Let

(S1) G is a commutative topological group.

(52) (w,V) is a continous finite dimensional irreducible representation of G on C.

then dimm = 1.
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Proof. Let us fix v,w € V' \ {0}. Because 7 is irreducible, 7(G)v = V. So, there is g € G such that m(g)v = w. Because
G is commutative, A : V 3 u — w(g)u € V is continuous G-linear and I'mA # {0}. So, by Shur Lemma, there is A € C
such that A = Aidy. So, w = A\v. O

Definition 2.6.24 (Action of group.). Here are the settings and assumptions.

(S1) G is a topological group.
(52) X is a Housdorff space.

Then we say ® € C(G x X, X) is an action of group G on X if
D(e,z) =z (Vo € X)

and
(g1, (g2, 7)) = (9192, ) (V91,92 € G,Vx € X)

Unless there are no confusion, let use denote ®(g,x) by g - x.
Definition 2.6.25 (Transitive action of group.). Here are the settings and assumptions.
(S1) G is a topological group.

(52) X is a Housdorff space.
(58) G acts on X.

Then the action is transitive if for any x € X G-z = X.

Definition 2.6.26 (Isotropy group.). Here are the settings and assumptions.
(S1) G is a topological group.
(52) X is a Housdorff space.

(58) G acts on X.
(S4) x € X.

We call
H:={geGlg-z=ux}

the isotropy group regarding x.

2.7 Homotopy and Fundamental group

Definition 2.7.1 (Path). Let
(S1) X be a topological space.

We call each element of C([0,1],X) a path. For each ¢ € C([0,1],X), we call ¢(0) the start point of ¢ and c(1) the end
point of c. If ¢(0) = ¢(1) then we call ¢ a loop.

Definition 2.7.2 (Homotop of continuous maps). Let

(S1) X,Y be a topological space.
(82) f.g € C(X,Y).

We say [ and g are homotop or homotopy equivalent if there is ® € C([0,1] x X,Y) such that ®(0,-) = f and (1, ) = g.
We call ® a homotopy from f to g.

Definition 2.7.3 (Homotopy equivalent of continuous maps that have the same start point and end point). Let

(S1) X be a topological space.
(SQ} zo,T1 € X.
(588) c1,¢9 € C([0,1], X) such that ¢1(0) = c2(0) = zg and ¢1(1) = c2(1) = z1.
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We say c¢1 and ¢y are homotop or homotopy equivalent preserving xo and xy if there is ® € C([0,1] x [0,1] x X) such that
®(0,-) =1 and ®(1,) = cp and ®(0,t) = z¢ and ®(1,t) = z1 for any t € [0,1]. We call ® a homotopy preserving xo and
x1. When there is no risk of misunderstanding, we simply refer to ® as a homotopy.

Clearly, the following holds.
Proposition 2.7.4. We succeed notations in Definition2.7.3. Homotop on C(X,Y) is an equivalent relation on C(X,Y).
Definition 2.7.5 (Homotopy equivalent of topological spaces). Let
(S1) X,Y be a topological space.

We say X and Y are homotopy equivalent if there is ® € C([0,1] x X,Y) such that ®(0,-) = f and ®(1,-) =g. We call
® a homotopy.

Then, clearly, the followings hold.
Proposition 2.7.6 (Fundamental group). Let

(S1) X be a topological space.
(S2) xg € X.
(S83) Define
(i) Set
[([0,1],01), (X, x0)] := {c € C(I, X)|c(0I) C {xo}}
Here, I :=10,1].
(ii) For each c1,co € [(I,01), (X, x0)],

C1 ~ C2

if there is a homotopy ® from ¢q to co such that ®(t,-) € [(I,01),(X,x0)] (Vt € I).
(#ii) For each c1,c2 € [(I,01), (X, x0)],

0
Co - Cl(t) = 1
2

(iii) Set
m(X, xo) == [(1,01), (X, w0)]/ ~
(iv) For each [c1], [co] € m1(X, zo)

[ca] - [e1] = [c2 - c1]

Then ~ is a equivalent relation on [(I,0I), (X, x0)] and - on w1 (X, xo) is well-defined and w1 (X, o) is a group with respect
to -. We call m (X, x0) the fundamental group of X with base point xo. If X is path-connected and 71 (X, xo) = {e}, we
say X 1is simply connected.

Proposition 2.7.7 (n-th Homotopy group). Let

(S1) X be a topological space.
(52) xp € X.
(S3) n € N.
(S4) Define

(i) Set

[(I™,0I™), (X, x0)] :={c e C(I", X)|c(0I™) C {zo}}
Here, I := [0, 1]™.
(ii) For each cy1,co € [(I™,01), (X, x0)],

C1 ~ Co

if there is a homotopy ® from cy to ca such that ®(t,-) € [(I™,01), (X, zo)] (Vt € I).
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(iii) For each c1,cq € [(I :=10,1],01), (X, x0)],

1
Cl<2t1,t2, ...,tn) (O <t < 5)
e at) = 1
C2(2151 — 1,29, 7tn) (5 <t < 1)

(iii) Set
(X, o) = [(I",0I™), (X, z0)]/ ~
(iv) For each [c1],[c2] € mn (X, x0)

[co] - [e1] = [e2 - en]

Then ~ is a equivalent relation on [(I"™,0I),(X,x0)] and - on mp(X, o) is well-defined and m,(X,x0) is a group with
respect to -. We call m, (X, xq) the n-th homotopy group of X with base point xg.






Chapter 3

Lie Group and Lie Algebra

3.1 Lie Group

Definition 3.1.1 (Locally isomorphism between two topological groups). Let G and H are topological groups. We say
G and H are locally isomorphic if there is U C G and V C H and isomoriphism i : U — G such that U is a neighborhood
of g and V is a neighborhood of 1y and the followings hold.
(i) For any x,y € U such that xy € U, i(xy) = i(x)i(y).
(ii) For any x,y € U, xy € U <= i(z)i(y) € V.
Example 3.1.2. R and T are locally isomorphic.
Definition 3.1.3 (Lie subgroup of GL(n,C)). We say G is a Lie subgroup of GL(n,C) if the followings hold.
(i) G is a subgroup of GL(n,C)
(i) G is a topological group
(i1i) There is a neighborhood of e in G V' such that
(iti-1) The topology of V is relative topology of GL(n,C)
(iii-2) There is a neighborhood of e in GL(n,C) U such that if x; € V (j € N) and z; - z € U
then x € V.
(i4i-8) G has at most countable connected components.

Proposition 3.1.4. Let
(S1) G is a subgroup of GL(n,C).
(A1) G is a topological group.
(A2) G has at most countable connected components.
Then the followings are hold.
(i) G is a Lie subgroup of GL(n,C)

(ii) There is V' which is a neighborhood of 1¢ and is a closed subset of GL(n,C) and the topology of V s
relative topology of GL(n,C)

Proof of that (ii) = (i). We set U := G. V and U satisfies the condition (iii) in Definition3.1.3. O

Proof of that (i) = (ii). By the condition (iii-1) in Definition3.1.3, there is W such that W is an open subset of GL(n,C)
and V° = VNW. Clearly W is an open neighborhood of 15r,(»,c). There is Wy such that Wy is an open subset of GL(n,C)
and lg € Wy C Wy C UNW. We set V' := Wy N V. By the condition (iii-1) in Definition3.1.3, there is Z such that Z
is an open subset of G and VNWy, =V NZ. So V' = Wy NV is a neighborhood of 15 in G. Because Wy C U, by the
condition (iii-2) in Definition3.1.3, V"’ is closed subset of GL(n,C). O

Proposition 3.1.5. Let
(S1) G is a Lie subgroup of GL(n,C).

Then, for any W which is a neighborhood of 1¢ in G, there is V' such that V' is a closed subset of GL(n,C) and V' is a
neighborhood of 1¢.

41
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Proof. There is € > 0 such that B(lg,4e) NV C WNV. Because V C G,
B(1g,2¢)NV C B(lg,4e)NV C W

Clearly B(1g,2¢) NV is a closed subset of GL(n,C).

There is Z such that Z is an open subset of G and 1 € Z and Z C V. By Proposition2.2.15, Z N B(1g,€) is an open
subset of Z. So, there is open subset of G O such that Z N B(lg,e) = ZNO. So ZN O is an open subset of G and
1€ Zn0 C B(1g,2¢)NV. So, B(1g,2¢)NV is a neighborhood of 1. By Proposition2.2.15, The topology of B(1¢g,2¢)NV
is the relative topology to GL(n,C). O

Example 3.1.6. Let X be a irrelational number. Let G := exp(i2rA\Z) C GL(1,C). Le us assume G is a topological group
respects to the discrete topology. V := {1} is a neighborhood of 1 on G and V is a closed subset of GL(1,C). So, G is a
Lie subgroup of GL(1,C). Because T is compact, there is subsequence {exp(i2mAp(m))}s_y and x € T such that

m=1

li_r>n exp(i2mhp(m)) = x

Because X is irrelational, x ¢ G. So, G is not closed subset of GL(1,C).

Definition 3.1.7 (Linear Lie group of GL(n,C)). We call G € GL(n,C) is a Linear Lie group of GL(n,C) if G is closed
subgroup of GL(n,C)
Proposition 3.1.8. If G € GL(n,C) is a Linear Lie group of GL(n,C) then G is a Lie subgroup of GL(n,C)

Proof. Clearly G satisfies Definition3.1.3. Because G L(n,C) satisfies the second countable axiom, G satisfies the second
countable axiom. So G has at most countable connected components. O

Definition 3.1.9 (General Lie group). We say G is a Lie group if G is a topological group such that there is a Lie
subgroup of GL(n,C) which is locally isomorphic to G.

Proposition 3.1.10. Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).

(S2) V which is a neighborhood of 1¢, in G2 and U which is a neighborhood of 1, in G1 and isomorphism
1 : U — V satisfying the conditions in Definition3.1.1..

(S3) U C U and V' :=i(U’).
Then i|U’ satisfying the conditions in Definition3.1.1.
Proof of condition(i). It is trivial. O
Proof of condition(ii). Let us fix any x,y € U’. Let us assume xy € U’. Then by condition(i), i(z)i(y) = i(xy) € V'. Let
us assume i(z)i(y) € U'. Then zy € U. i(ay) = i(x)i(y) € U'. Soxy € V. O
Proposition 3.1.11. Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup G of GL(n,C).

Then there is V := GN B(lg,,€) for some € > 0 which is a compact neighborhood of 1, in Go and U which is a compact
neighborhood of 1a, in G1 and isomorphism 7 : U — V satisfying the conditions in Definition3.1.1.

Proof. Let us fix U and V and 7 : U — V such that U is a neighborhood of 14, and V is a neighborhood of 14, and
7 : U — V is isomorphism satisfying the conditions in Definition3.1.1. There is a open set By of GL(n,C) such that
V° = G2 N By. There is € > 0 such that B(1lg,,2¢) C B;. We set Vo := B(lg,,€) N Gy and Uy := 771(V3). Because
771G N B(1g,,¢€) is open set in the relative topology with G and subset of Uy, U; is the neighborhood of 1¢,. We set
n =71 Because G2 N B(lg,,e) C GaN By CV, Vo =V N B(lg,,€). So Va is a closed subset of V and Uj is a closed
subset of U.

By Proposition2.2.16 and Propositon2.2.15, 7|U; is homeomorphism. So U; is compact. Also, by Proposition3.4.1,

7|U; satisfies conditions in Definition3.1.1. O
In this note, unless otherwise stated, U and V are assumed to be the neighborhoods obtained in Proposition3.1.11.
Proposition 3.1.12. Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
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(S2) V which is a neighborhood of 1, in Go and U which is a neighborhood of 1g, in G1 and isomorphism

1: U — V satisfying the conditions in Definition3.1.1..

Then j :=i~' satisfying the conditions in Definition3.1.1.
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Proof of condition(i). Let us fix any z,w € V. Let us assume zw € V. Then i(j(z))i(j(w)) € V. So j(z)j(w) € U. By

condition(i), i(j(2)j(w)) = i(j(2))i(j(w)) = zw. So j(2)j(w) = j(zw).

Proof of condition(ii). Let us fix any z,w € V. Let us assume zw € V. By the proof of condition(i), j(z)j(w) € U.

Inversely, let us assume j(z)j(w) € U. Then by condition(ii), zw = i(j(2))i(j(w) € V.

3.2 Matrix exponential
Definition 3.2.1 (Operator Norm). For X € M(n,C),

1 Xllop := [ X :=  sup  [Xv]
||v]]|=1, veCn

Definition 3.2.2. For X € M(n,C),
1 XT[oo := sup{|zs;lli, 5 € {1,2, ..., n}}

Proposition 3.2.3. For X € M(n,C),
[1XTloo < [[X[lop < vl X|loo

Proof of || X||oc < ||X||op. For any i, € {1,2,...,n}, |z; ;| < |Xe;| < [|X]|.

O

O

O

Proof of || X||op < V1| X||ee. We set z; := (z;,;)}_, for each i. For any u € C” such that [u| = 1, by Schwartz’s inequality,

[Xul < |((z1]w), ., (Tn]u))] < \/ﬁi sup |z < v/nf|X] |

=1,2,...,n

Proposition3.2.3 implies the following.
Proposition 3.2.4. M (n,C) is banach space with the operator norm.
Proposition 3.2.5. Let
(S1) X € M(n,C)

Then for any eigenvalue X of X
Al < [1X]]

Proposition 3.2.6. Let
(S1) M :={X € M(n,C)| X is diagonalizable }
Then M is dense in M (n,C)

Proof. Because M is triangularisable(See 2), there is P € GL(n,C) such that
*

(€51
PtMmp =

We set for each 0 < s << 1

0 .. s"

Because P~1M P+ E(s) has not a duplicate eigenvalue, so P~ M P+ E(s) is diagonalizable. So M(s) := M+PE(s)P~!

is diagonalizable. lir% M(s) =M.
S—r

O
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Proposition 3.2.7. (S1) X € M(n,C)
(S2) f is a power series whose radius of convergence is not less than R > 0.
then

(i) If || X|| < R then f(X) exists.
(it) f(X) is a horomoriphic function for each variable x; ;.

Proof of (i). We set f(z) =: 0, ¢;X". By the definition of the radius of convergence,

o
D lall| X" < o0
i=1
This implies that {>"1 ; ¢; X;}52, is a cauchy sequence. By Proposition3.2.4, f(X) exists. O

Proof of (ii). We set f,(X) = X" ,¢; X" for each n € N. By Proposition3.2.3, for any K € (0, R), {X € M(n,C)|||X|| <
K} is compact. And,

sup || fn(X) = F(X)]| (3.2.1)
IXII<K

— s Y ex|

IxlI<K 57

i=n+1
— 0 (n— o0)
So {fn}52; uniformly converges to f on compact sets. By Weierstrass’s theorem(See [19]), this implies that f is holomor-
phic. O
Proposition 3.2.8. Let
(S1) X € M(n,C)
(S2) f,h are power series whose radius of convergence is not less than R > 0.
(S3) w is a power series whose radius of convergence is not less than R’ > 0.
(A1) ||X]| < R.
then the followings hold
(i) Ifu=f+h and R= R’ then u(X) = f(X) + h(X).
(i) If u= fh and R = R’ then u(X) = f(X)h(X).
(iir) If |[f(X)]| < R’ then uo f(X) = u(f(X)).

Proof. By Proposition3.2.5, clearly these Propositions hold in M.
By Proposition3.2.7, u, f + h, fh,uo f,u(f(-)) are continuous on M (n,C). So, by Proposition3.2.6, these Propositions
hold at X. O

Proposition 3.2.9. For any X € M(n,C)
det(exp(X)) = exp(tr(X)) (3.2.2)

Proof. Because det(exp(-)) and exp(tr(-)) are continuous, by Proposition3.2.6, it is enough to show (3.2.2) for any X €
M (n,C) such that X is diagonizable. Let us fix X € M(n,C) such that X is diagonizable. There is P € GL(n,C) such

M 0 .00 exp(A1) 0 0
that PXP-1=| 0 22 = O And cap(pxpPt) = 0 emp(he) .. 0 So
000 . A 0 0 . eap(hn)
det(exp(X)) = det(Pexp(X)P™1)

det(exp(PXP™1))
exp(Ar)exp(Aa)...exp(Ay,)

= eap(3_oN)

= exp(tr(PXP™1))
exp(tr(X)) (3.2.3)



3.2. MATRIX EXPONENTIAL

Proposition 3.2.10 (Exponential and Logarithm of matrix). Let

—1)(X — E,)!

(S1) log(X) := %52, ( A

for X € M(n,C) such that || X]|| < 1.

then
(i) exp(log(X)) = X for any X € M(n,C) such that || X|| < 1.
(ii) log(exp(X)) = X for any X € M(n,C) such that || X|| <1 such that || X|| < log2.
Proof. By (iii) of Proposition, (i) and (ii) hold.
The following Proposition says exponential map is locally isomorphism.

Proposition 3.2.11.

(i) exp(:) is C* isomorphism to some open set in some neighborhood of O.

(ii) log(E + ) is C™ isomorphism to some open set in some neighborhood of E.
Proof. See the corollary of inverse mapping theorem in Section2.

Proposition 3.2.12 (Basic properties about Exponential of matrix).

(i) exp(X +Y) = exp(X)exp(Y) for any X,Y € M(n,C) such that XY =Y X.
(ii) exp(X)™ = exp(mX) for any X € M(n,C) and m € N.

N tZXZ
(iii) exp(tX) = EZKO

+O(t5+) (t = 0) for any X € M(n,C) and K € N.

(iv) %escp(tX) =exp(tX)X = Xexp(tX)

proof of (i).
: ‘CiXin_i
exp(X +Y) = Z]‘?’;OELOJij'
P Xiyi—i
S8 A
0 4!
1 Xxiyi
— oy L
OG —a) 4!
For any M € N
Xi Vg gl Xiyii
||ZiMO ] ;\/107' - EMOEz 0 YR 4 ||
4! (j—oh! 7§
X'y
= ||20§z‘§M,0§j§M,i+j>ij,ll
- 5 XY
= 0<i<M,0<j<M,i4+j>M T
ilj!
X Y|
_ M, I ‘|| Zj”OH _H
1! 4!
j! XY |)i—t
g IXIIYI
05 — )l j!
pecanse X1 e VI
X||? Y
||53M f Mo 7 = exp(||X|[)ezp(|[Y]])
wnd XY
j. X 3 Y J—t
lim Y%7 || = exp(||X]] + [IY])

Mo oGl
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and exp(||X||)exp(||Y]]) = exp(]|X|| + ||Y]|), the following holds.

WX e [P 3 XY

. M M sJ
A Ziso S Hme T~ BjmoXing G — )l 51 0
50 X \ &
i J
exp(X +Y) = lim XM =M ~— — exp(X)exp(Y)
M=o0 i I g
O
proof of (ii). It is easy to show (ii) from (i) O
proof of (iii).
tX? - X
lean(t3) ~ B0l S Im R
. fi—K+1 i
S L P — |
K Kitgoo  JHTEHIX[TEH
< R X DR e, T
tli—K+1HX||z'—K+1
< X
= | | || H i=K+1 (Z—K—l)'
=[S THIX R el X 1) (3.2.4)
O
proof of (). By (i), for any t; € R
exp(tX) —exp(toX) = exp(toX)(exp((t —t9)X)—E)
= (exp((t —t0)X) — E)exp(teX)
By (ii),
exp((t —t0)X) — E = X + ot — tg)
So (iv) holds. 0

Proposition 3.2.13.

2[X,Y]

exp(tX)exp(tY) = exp(t(X +Y) + 2

+o(t?)

Proof.
exp(tX)exp(tY) = (E+tX + %t2X2 +O(t))(E +tY + %t2Y2 +0(t%))
= E+tHX+Y)+ %tQ(Xz +Y242XY) + o(t?)
So
loglexp(tX)exp(tY)) = (X +Y)+ %152(X2 +Y24+2XY) 4+ O(%)
—%(t(X +Y)+ %tz(XQ + Y24+ 2XY) +0(t*))?
+O(t%)
= HX+Y)+ %t2(X2 +Y?%4+2XY) — %tQ(X +Y)?
+O0(t%)
= HX+Y)+ %tQ(XY —YX)+O(t?)
By Proposition3.2.12,

exp(tX)exp(tY) = expt(X+Y)+ %t2(XY - YX)+0())



3.3. LIE ALGEBRA 47

Proposition implies the following.

Proposition 3.2.14.

exp(tX)exp(tY)exp(—tX)exp(—tY) = exp( !

3.3 Lie algebra
3.3.1 Definition of Lie algebra

Definition 3.3.1 (Lie algebra of Lie subgroup). Let G is a Lie subgroup of GL(n,C). We set
Lie(G) :={X € M(n,C)|exp(tX) € G (Vt € R)}
We call Lie(G) Lie algebra of G.

Definition 3.3.2 (Lie algebra of Lie group). Let Gy is a Lie group and Gz is a Lie subgroup of GL(n,C) such that Gy
is locally isomorphic to Gy. We set Lie(G1) := Lie(Ga).

By Proposition3.4.8, Lie(G1) is well-defined.
Definition 3.3.3 (General Lie algebra). Let

(i) K be a field.
(ii) L be a vector space on K.
(i1i) L has operation [-,-] which satisfies the followings.
(a)Alternativity. [X,X] =0 for any X € L.
(b)Jacobi’s Rule. [X,[|Y,Z]| +|Y,[Z,X]]+[Z,[X,Y]| =0 for any X, Y, Z € L.
(¢)Bilinearity. [aX + bY,cZ + dW] = ac[X, Z] + ad[X, W] + bc[Y, Z] + bd]Y, W] for any X, Y, Z, W € L
and a,b,c,d € K.

then we call L a Lie algebra on K.
Clearly, the followings hold.
Proposition 3.3.4. For any Lie albegra L,
[X,)Y]=-[V,X] (VX,Y € L)

Definition 3.3.5 (Lie subalgebra, ideal). Let L be a Lie algebra. We call L' C L a Lie subalgebra of L if L' is a
subvectorspace of L and [L',L') C L'. And, if L' is a Lie subalgebra and [L,L'] C L' then we call L' is an ideal of L. We
call {0} and L are trivial ideals.

The following clearly holds.

Proposition 3.3.6. Let g be a Lie algebra and by and by are ideals of g. We denote the minimam ideal containing by

and b2 by ([h1, ha]).
Proposition 3.3.7. Let g be a Lie algebra. Then 3:={X € g|[X,Y] =0 (VY €g)}

Definition 3.3.8 (Simple Lie algebra). Let g be a Lie algebra. We call g is a simple Lie algebra if g has no non-trivial
tdeals and g is not abelian.

By Proposition3.3.13, the following clearly holds.
Proposition 3.3.9. Let g be a simple Lie algebra. Then ([g,g]) = g.

Definition 3.3.10 (Direct sum of Lie algebras). Let L be a Lie algebra. And let gy, ..., ) be ideals of L and L = ©F_,g;.
Then we say L is the direct sum of g1, ..., §k-

Definition 3.3.11 (Abelian Lie algebra). Let g be a Lie algebra. We call g is an abelian Lie algebra if [g,g] = 0.
Proposition 3.3.12. Let 3 is the center of a Lie algebra and fix any X € 3. Then (X) is an ideal of g and irreducible.

By Proposition3.3.13, the following clearly holds.
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Proposition 3.3.13. Let g is a Lie algebra which is the direct sum of g1, ..., gr which are ideals of g. Then if i # j then

[9:: 9] = {0}

Proposition 3.3.14. Let g is a Lie algebra which is the direct sum of g1, ..., gr which are ideals of g. Let us fix any
i €{1,2,...,k}. For any b which is an ideal of g;, b is an ideal of g.

Proof. Let usfixany X € gandY € g;. Thereare X; € g; (j =1,2,.,,,.k) such that X = Zle X;. By Proposition3.3.13,
XY =X,Yeg
O

Definition 3.3.15 (Semisimple Lie algebra). Let g be a Lie algebra. We call g is a semisimple Lie algebra if g is a direct
sum of finite simple Lie algebras.

Definition 3.3.16 (Reductive Lie algebra). Let g be a Lie algebra. We call g is a reductive Lie algebra if g is a direct
sum of finite simple Lie algebras and an abelian Lie algebras.

Proposition 3.3.17 (quotient Lie algebra). Let g be a Lie algebra and b be an ideal of g. Let g/h be the quotient vector
space. We set for each X,Y € g
[X+b,Y+b=[X,Y]+b

[-,-] is the well-defined Lie bracket on g/h. So g/bh is a Lie algebra.
Proof. For any X,Y € g and hx,hy € b,
[X 4+ hx,Y +hy] = [X,Y]+ [X,hy] = [V + hy, hx]
So [X + hx,Y + hy] € [X,Y] + b. This means that [-, -] is the well-defined Lie bracket on g/b. O
Proposition 3.3.18 (Adjoint representation of a Lie algebra). Let g be a Lie algebra. We set for each X € g
ad(X)Y = [X,Y] (Y €g)

Then
ad(aX +bY)=a-ad(X)+b-ad(Y) (Va,¥b € R,VX € g,VY € g) (3.3.1)

and
ad([X,Y]) = [ad(X),ad(Y)] (VX € g,VY € g) (3.3.2)

We call ad the adjoint representation of g.

Proof. By linearlity of Lie bracket, (3.3.1) holds. And for any X,Y,Z € g
([X,Y], Z]

= _[Z’ [X7 Y”

Y, Z]] +

X, Y, 12, X1]
(X, [Y, Z]] - [V, [X, Z]]
(ad(X)ad(Y) — ad(Y)ad(X))Z
= [ad(X),ad(Y)|Z

So (3.3.2) holds. 0O

3.3.2 Basic properties of Lie algebra
Lemma 3.3.19. Let

(S1) A:N>nw— A(n) € M(n,C) and B:N>n+— B(n) € M(n,C).
(A1) B(m) = O(—)
(A2) S = supmen||A(m)||™ < o0

then
{A(m)(B + Bm))}"™ = A(m)" + O(-)
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Proof.

{A(m)(E + B(m))}™ = A(m)(E+ B(m))A(m)(E + B(m))...A(m)(E + B(m))

m

= A(m)™+)_ Ci(m)

k=1

Here, for each k € {1,2,...,m}

Ck(m) = | Z ‘ A(m)" B(m)A(m)™B(m)...A(m)™ B(m) A(m)™ " iz~
Then [|C(m)l| < mCell A" [BO)IF < 2mbO(—) = 0(—L)
So 357, 1Ck(m)l| = [Ca(m)| + Sy [C(m)| < O(-=) +mO(-45) = O(). .

Proposition 3.3.20. Let G is a Lie sub group of GL(n,C). Then Lie(G) is a R-vector space and for any X,Y € Lie(G)
[X,Y] € Lie(G).

Proof. There is W such that W is an open subset of GL(n,C) and 1 € W and WNG C V.
By the definition of Lie(G), For any X € Lie(G) and a € R, aX € Lie(G).
Let us fix any X,Y € Lie(G). By Proposition3.2,

exp(sX)exp(sY) = exp(s(X +Y) 4+ O(s?)) = exp(s(X + Y))(E 4+ O(s?)) (s = 0)

So
fep(-- (X + Y))(B +O(-3))" = explt(X + ) +O(-.)
This implies

t t

exp(t(X +Y)) + 0(%) = {eap(_ X)exp(-Y)}™ (m — o)

m

There is § > 0 such that exp(s(X +Y) € W (Vs € (—4,0)). Let us fix s € (—4,9). So for sufficient larget m € N
1

exp(s(X +Y)) + O(E) eEWNG. Soexp(s(X +Y))+ O(E) ev,

Because V is closed set, exp(t(X +Y)) € V. Consequently X +Y € Lie(G).

Also, by similar argument to the above one,

eap(t1X,Y]) = lim {eap(-X)eap(--Y)eap(— X)eap( 7))

Consequently [X,Y] € Lie(G). O

From the proof of Proposition, the following holds.

Proposition 3.3.21. Let G is a Lie subgroup of GL(n,C) and V is a closed subset of GL(n,C) and V is a neighborhood
of 1g. And we set

gy :={X € M(n,Clexp(tX) €V, |t| < 1}

Then gy is a R-vector space and for any X, Y € gy [X,Y] € gv.

3.4 The structure of ('“-class manifold of Lie group

3.4.1 Local coordinate system of Lie group
Lemma 3.4.1. For X1, Xo,..., X, € M(n,C),

m

exp(X1)exp(Xa)...exp(Xp) = E+ X1+ Xo+ ...+ X + O(Z [ X))

i=1
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Proof. For any i,
o([|X:ll) = o 1Xil])
i=1
So, by the definition of exponential of matrix and Lemma3.4.1

cap(Xy)eap(Xa)...cxp(X,)
= (E+ X1 +o([[X1|))(E + Xz + o(|[X2]])-..(E + Xm + of|| Xin]]))
= E+Xi+Xo+...+X,

m
+ > Xi, Xy Xiy, 0D |IXil])
2<k<m,i; <io<...<ip =1

= F+Xi+Xo+...+Xn
+ > o(Xi,) + o> IIXil])
1=1

2<k<m iy <in<...<ip

= F+X1+Xo+..+ X,

+ > oY 1IXil1) + o> 11X:ll)
2<k<m,i1<i2<...<ig i=1 =1
= E+Xi+Xo+ ..+ X+ 00> [1Xil])

=1

O

Lemma 3.4.2. Let us fix any subvectorspace V1 and V2 of C™ such that V1 ®Vy = C™. Then Vi and Va are closed subset.

Proof. There is P € GL(n,C) such that V; = P{w € C"|lw; =0 (j = 1,2,...,dimV;)} P~ and Vo = P{w € C"|w; =

0(j=dimVy +1,..,n)}P1
Lemma 3.4.3. Let
(S1) G = GL(n,C).
(S2) 91,92, ..., 8m are vector subspaces of Lie(G) such that
Lie(G2) = &2, 0
(S3) gi(e) :={X € Lie(G)|||X]| < €} (i =1,2,...,m,e > 0).

i ®il0i(c) - G
w w
(X1, Xo, .., X)) +—  exp(Xi)exp(Xa)...exp(X,y,)

then there is € > 0 such that i(®219i(€)) is an open set and i| ®, gi(€) is C¥-class isomorphism.

1=

Proof. We set
j:G — M(n,C)
w w

y — log(y)

By Lemma3.4.1,
joi(X1,Xo, ., X)) = X1+ Xo+ oo + X + o(|| X || + || X2 + - + [|Xl])

So, the jacobian of j o4 at O is non-singular. By inverse function theorem(see Section2), the proposition holds.

Lemma 3.4.4. Let
(S1) Gy is a Lie subgroup of GL(n,C).

Then for sufficient small € > 0,
GoNexp(B(0,€)) = exp(Lie(G2) N B(O,¢))

O
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Proof of the right side C the left side. It is trivial. O

Proof of the left side C the right side. There is a vector subspace q such that M(n,C) = Lie(G) @ q. Proposition3.4.3,
: Lie(G)®q 3 (X,Y) — exp(X)exp(Y) is locally homeomorphism. Let us assume there is {ex}32; C (0,1) such that
hm e = 0 and for each ¢ the left side C the right side. By Lemma3.4.3, there are Z, € B(O, ¢;) and Xy € Lie(G2) and

k— o0

Yi: € q (k=1,2,...) such that for any k
exp(Zy) = exp(Xy)exp(Yy)

and
k—oo k—oo
and
[Yxl| # 0
We can assume ||Y|| < 1 for any k. Because B(O, 1) is compact, there is a subsequence {Y,, (1)}, such that hm [HY G )||1 (k) =
Y. Clearly ||Y|| = 1. By Proposition3.4.2, Y € q. So Y ¢ Lie(G).
Because V is a neighborhood of 1¢,, there is € > 0 such that exp(B(O,€)) NGz C V. Let us fix any ¢ € (0, ¢).
erptY) = lim erptf - TV,00)
ke IV, ( e
. HT]J
Because r := [~ | = 00, t = lim . So
Yo (Rl koo Tk
[4
exp(tY) = hm exp( k] %Yo (k))
k— o0 Tk
- 1 Y [try]
Jimep(Yo)
For any k,
exp([tri]Yom)) = {ezp(wa(k))ezp(Zv(k))}HT’J € GyNexp(B(Oye)) CV
Because V is closed set, exp(tY) € V. So for any t € R
ft1 1
<1+
exp(tY) = exp( Y)d  €Gs
= 1
HE
So Y € Lie(G2). This is contradiction. O

Proposition 3.4.5. Let G be a topological group and Gy be a connected component of G which contains 1g. Then Gy is
closed normal subgroup of G.

Proof. Because G is connected, Gy = Gy. So Gy is closed. Because x + x~! is isomorphism, Gal is connected and
lg € Gal. So Gal C Gy. Because x — gz is isomorphism, for any g € G, gGq is connected and contains 1. So for any
g € Gy, gGo C Gy. This implies that Gy is subgroup of G. And for any g € Gg, gGog~! is connected and contains 1¢..
So for any g € Go, gGog~' C Gy. This implies that Gy is a normal subgroup of G. O

Proposition 3.4.6. Let
(S1) Gy is a connected Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) Gs.
(S2) Gy is a connected component of G1 which contains 1g, .

(A1) N is a connected open neighborhood of 1¢, .
(88) Ny, :={ning..nym|n; € N, i =1,2,...,m} for each m € N.

then

(i) Go is closed and open subset of G.
(ii) Gy = UX,N;.

(iii) Any connected component of Gy is closed and open subset of G1.
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(iv) Gy satisfies the second aziom of countability. Specially, Gy is paracompact.
(v) Gy is separable.
(vi) Gy is o-compact.

(vii) Gy is path connected.

Proof of (i) and (ii). By Lemma3.4.4, we can assume N = n(exp(Lie(G2) N B(O,¢))) for some € > 0 and N = N~!. We
set H := U2, N;. By continuity of multiple operation in G, for each ¢ € N, NN; is connected. Because 1¢, € N; for any
i € N, H is connected. So,

H C Gy

Because N,, is an open subset for each m € N, H is an open subset. Let us fix any g € H¢. If we assume gN N H # ¢, then
there is m € N and there are ng € N and n1, no, ..., nym € N such that gng = ninae..nym. So g € NyyN~! = N,,N = Npy1.
This implise g € H. This is a contradiction. So gNNH = ¢. This means H is a closed subset of G;. Because Go C HUH®
and H is open and H°€ is open and Gy is connected and Gy N H # ¢, Go N H¢ = ¢. This means

GoCH
So Gy = H. 0

Proof of (). Let us fix and set any connected component of Gy C. And let us fix gy € C. Clearly C = goGy. Because
Ly, is isomorphism, C is open and closed. O

Proof of (iv)(v). In the proof of (ii), we set N’ := n(exp(Lie(G2) N B(O,¢))). By (ii), Go = U2 N/. Because N},
is compact for any n € N, clearly, G satisfies the second axiom of countability. Because B(O,¢)) is separable, N’ is
separable. Because N is separable for any n € N| clearly, Gy is separable. And, by (S1) and (iii), G; satisfies the second
axiom of countability and G is separable. O

Proof of (vi). Let {X;}2, is a sequence of all connected components of G. Let fix {x;}$2, such that z; € X; (Vi). In
(A1), we can assume that IV is relative compact. Then G = U_; UL | 2Ny, and Uz N, is compact (Vm € N). So,
G is o-compact. O

Proof of (vii). (vii) is from (i). O
From the proof of Lemma3.4.4, by Proposition3.1.5, the following holds.
Lemma 3.4.7. Let

(S1) Gq is a Lie subgroup of GL(n,C).
(A1) W is a neighborhood of 1a, in Gs.
(52) gw :={X € M(n,Clexp(tX) e W |t| < 1}.

Then for sufficient small € > 0,
wn 6$p(B(O7 6)) = el’p(gw N B(O? 6))

Proposition 3.4.8. Let G is a Lie subgroup of GL(n,C) and W is a neighborhood of 1. Then
Lie(G) ={X € M(n,C)lexp(tX) e W (0 <t << 1)}

Proof. By Proposition3.1.5, there is V such that V is a closed subset of GL(n,C) and V is a neighborhood of 1¢ and
V C W. Clearly gy C gw and gy C Lie(G). We assume that there is X € Lie(G) \ gv. By Proposition3.3.21,
(X)Nngy = {0}. By Lemma3.4.3, there is 6 > 0 such that

(=4,8) x (B(O,6)Ngyv) 3 (t,Y) — exp(tX)exp(Y) € GL(n,C)

is injective. By Lemma3.4.7, {exp(tX)exp(gv N B(O,0))}ie(—s,5) is a family of neighborhood of some point of G. Because
{exp(tX)exp(gy N B(O,0))}te(—s,5) are disjoint, G does not satisfy the second axiom. This contradicts with Proposi-
tion3.4.6. -

By Lemma3.4.7 and Proposition3.4.8, the following holds.
Lemma 3.4.9. Let

(S1) Gy is a Lie subgroup of GL(n,C).
(A1) W is a neighborhood of 1a, in Gs.
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(52) gw :={X € M(n,Clexp(tX) e W |t| < 1}.

Then for sufficient small € > 0,
W Nexp(B(O,¢€)) = exp(Lie(G2) N B(O,¢€)) (34.1)

Theorem 3.4.10 (von Neumann-Cartan’s theorem I). Let
(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(52) 91,92, ..., 8m are vector subspaces of Lie(G2) such that

Lie(Gs) = o9 (3.4.2)

(53) gi(e) :={X € Lie(Go)|||X|| < €} (1 =1,2,...,m,e > 0).
(S4) For any x € Go
iyt Bt gi(e) — Go
w W
(X1, Xo2,.., X;m) = zexp(Xy)eaxp(Xa)...exp(Xpm) (3.4.3)

(S5) ¥ =i,
(S6) ¢ := exp(:)
then

(i) Gy is a C*¥-manifold and {n, o ¢}.cq, is a local coordinate system.
(ii) {n.ov}.eq, is a local corrdinate system which is equivalent to {n, o ¢}.cq, -

(i1i) There are open neighborhood of 1¢, U and open neighborhood of 1g, V and 7 : U — V is a C¥-class
homeomorphism.

STEP1. Showing i, is locally injective. We set

ijGQ — M(TL,(C)

w w
y +— log(z™ty) (3.4.4)
By Lemma3.4.1,
Jo 00 (X1, Xo, ooy X)) = X5 + Xo 4+ oo + Xop + o(J| X0 || + || X2|| + - + | X]]) (3.4.5)
So, the jacobian of j, o i, at O is non-singular. By inverse function theorem(see [?]), i, is locally injective. O

STEP2. Constructing local corrdinates system of Go. By Lemmad.4.9, there is € > 0 such that
Ve := exp(Lie(G) N B(0,¢)) =V Nexp(B(O,¢)) (3.4.6)

Clearly V. is an open neighborhood of 1¢,. By (3.4.6), for any Xy € Lie(G) N B(O,¢€) and ¢ > 0 such that B(Xy,d) C
B(0,e),
exp(Lie(G) N B(Xo,9)) =V Nexp(B(Xo,9)) (3.4.7)

Because the topology of V' is equal to the relative topology respect to GL(n,C), i. : Lie(G)NB(O,€) — GaNexp(B(O,¢))
is an continous and open map. By STEP1, i, is a homeomorphism.
And, for any = € Ga, i, : Lie(G2) N B(O, €) — V. is homeomorphism. O
STEPS3. Constructing local corrdinates system of G1. There is 6 > 0 such that
ViV Vs C V. (3.4.8)

Us :=n(Vs). For any o’ € Gy, ¢, : Lie(G2) N B(0,0) 3 X — a'n(exp(X)) € 2'Us. Clearly ¢/, is homeomorphism. By
Proposition, U, and V, satisfy the conditions in Definition3.1.1. O
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STEP}. Showing (i). Let us assume zUsNwUs # ¢ and let us fix any X € ¢ (2UsNwU;) and let us set Y := ¢, (¢, (X)).

Then
Y = log(t(w ™ zn(exp(X)))

There are ug,u, € Us and v, v, € Vs such that

Uz = Wiy
and
1(vs) = ug, N(vy) = uy
By (3.4.8),
v;l eV,
So

This implies

By (3.4.10),

So

Because v,z texp(X) € V,,
n(vyay nleap(X)) = n(vyay ' exp(X))

So
Y = log(vyz} texp(X))

Consequently, ¢! o ¢, is C¥-class.

STEP5. Showing (ii). It is possible to show (iil) by from STEP1. to STEPA4.

STEP6. Showing v~ o ¢ is locally C*-homeomorphism. It is possible to show STEP6 by STEP1.

STEP7. Showing (ii). If zUs NwUs # ¢,
¢_1OTwOﬂzO¢=¢_10¢0¢_107w077z01/10¢_10¢

and
w_lOTwOnzO¢:w_1o7—wo77zowo¢_1o¢

So by STEPS, (iii) holds.

(3.4.9)

(3.4.10)

(3.4.11)

(3.4.12)

O

Proposition 3.4.11. Let G be a Lie group. Then there is an open neighborhood U such that U has no subgroups without

{e}.

Case when Lie(G) = {0}. By von-Neumann Cartan theorem, {e} is an open neighborhood.

O

Case when Lie(G) # {0}. There is € > 0 such that Fxp : Lie(G) N B(0,2¢) 5 X — Exp(X) € Exp(Lie(G) N B(O, 2¢)) is
a diffeomorphism and Exp(Lie(G) N B(O, 2¢)) is an open subset of G. We set U := Ezp(Lie(G) N B(O,€)). Let us any

Xl
€

Ezp(X) € U such that X € Lie(G) N B(O,¢) \ {0}. We set g := Fxp(]|
This implies that U has no subgroups without {e}.

]X). Then e < |

[1X1]

€

|1 X]] < 2¢. So, g ¢ U.

O
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3.4.2 Analycity of Lie group

Definition 3.4.12 (One-parameter group). We call g € C(R,G) a one-parameter group of G if g(s +t) = g(s)g(t) (for
any s,t € R).

Proposition 3.4.13. Let Gy be a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C). Let us assume T is
a local isomorphism from G to Go. And let g € C(R,G) be a one-parameter group of G. Then there is € > 0 and such
that there is the unique X € Lie(G2) such that

T(g9(s)) = exp(sX) Vs € (—¢,¢) (3.4.13)

Ezistence. Let us fix 7 : U — V is a local isomorphism and € > 0 and i : Lie(G2) N B(O, 2¢) — G2 Nexp(B(O0, 2¢)) be a
homeomorphism and § > 0 such that g((—26,20)) C U. There is the one-parameter subgroup h such that h|(—24,25) =
7 o g|(—26, 29).

If h = 1¢g,, then O satisfies (3.4.13). Else if h = 1g,, there is tg € (0,6) and X; € Lie(G2) N B(O,¢€) such that

X
la, # h(ty) = exp(X1). We set Xg := Tl
0

There is Y1 € Lie(G2) N B(O,€) such that
t
M) = eap(vi)

Then exp(X1) = h(to) = exp(2Y7). Because 2Y; € Lie(G2) N B(O, 2¢), X1 = 2Y7. So,
1
h() = exp(5X))
And there is Y7 € Lie(G2) N B(O, €) such that
to
n(%) = eap(va)

t
Then exp(Y;) = h(§0) = exp(2Y2). Because 2Y;3 € Lie(G2) N B(O,2¢), Y1 = 2Y5. So,

t 1 1
h(zo) = exp(in) = ea:p(in)
So, by mathematical induction,
t 1
h(Q%) = exp(5; Xi) (Ym €N)

By calculating powers of both sides,

k k
h(tOQT,l) = exp(tOﬁXO) (Vk,m € N)

k k
Because {t0%|k, m € N such that om < 1} is dense in [0, ],
h(t) = eap(tXo) (vt € (~3,5))

O

Uniqueness. Let us fix any X,Y € Lie(G3) such that exp(tX) = exp(tY) (Vt € R). If there is a € R such that X = aY,
exp(t(a —1)Y) = FE (Vt € R). By (i) of Theorem3.4.10, a =1 or Y = 0.

If there is X and Y are linear independent, there are Zi, Zo, ..., Z, such that Z,, 25, ..., Z., X,—Y are the basis of
Lie(Gs). exp(tX) = exp(tY) implies exp(tX )exp(t(—Y)) = e. This contradicts with (ii) of Theorem3.4.10. O

Theorem 3.4.14. Let

(S1) G111 be a Lie group which is isomorphic to a Lie subgroup G1,2 of GL(n,C).
(52) Ga1 be a Lie group which is isomorphic to a Lie subgroup Ga 2 of GL(n,C).
(A1) ® € C(G1,1,G2,1) is a homomorphism.

then

(i) There is a homomorphisim of Lie algebras ¢ : Lie(G1,1) — Lie(Ga,.) such that

®(m (exp(tX)) = nz(exp(te(X))) (Jt] < 1) (3.4.14)



56 CHAPTER 3. LIE GROUP AND LIE ALGEBRA

(i) ® is C¥-class.

(iii) If @ is a local isomorphism, then v is an isomorphism.
STEP1. constructing ¢. For each X € Lie(G1 1), by Proposition3.4.13, there is only one Y such that
O (1 (exp(tX))) = na(exp(tY)) (any t such that |t| < 1)

We set «(X) =Y. O

STEP2. Showing ¢ is a linear. For any X € Lie(G1,1) and a € R, clearly ¢(aX) = au(X).
For any X, Y € Lie(G1,1) and t € R such that |[¢{] < 1,

D (exp(t(X +1))))
= ®(n( lim_(erp(-- X)eap(-¥))™)
= @ Jim i ((eap(-X)eap(-—-¥)™)

= Jim B ((erp(- X)eap(--¥)™)

= Jim_@(m((eap(EX)erp( Ly

= lim @(nl((exp(%X)exp(%Y))))m

= Jim (@ (eap(- X))@ (eap(—Y )"
= Jim {m(enp(-o(X)m(eap(—i(Y)}"
= lim {ma(erp(-u(X))erp(-u(Y))}"
= Jim_m({erp(i(X))eap(-oi(Y))")
= Jim {ep(-u(X))exp(-u(Y))}™)
= ) + (V)

So

X +Y)=uX)+(Y)

STEP2. Showing (i). Let v; is the local corrdinate of G; 2 in von Neumann-Cartan’s theorem(i = 1,2). By (i), for any
x € G171 and X € Lie(Gy,1) such that || X|| <« 1

© (1,1 097 (X)) = @(@)n2(v3 ' (1(X))
This implies
P2(To(@),2(2(ne1 0 ¥y (X)) = 1(X)

Because ¢ is a linear mapping, ® is C“. O
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STEPS3. Showing +([X,Y]) = [(X),(Y)]. By Proposition3.2.14, for any X, Y € Lie(G1,1) and ¢t € R such that [¢{| < 1,

O (exp(t([X, Y])))

®(n(Jim (cap(LLX)ern(Yyeap(~YE X)eap(~ ey

o tim_m((ern(L)ean(V v e~ Xean( Yy

im_ @m((ean( X)eap(Ly)eap(—Y Xyean(— Ly ym)

tim_ (o (e )ean(L Y yean(—Y X eap(— Yy

tim_ (o (e X)ean(L Y yeap(—Y X)eap(— Ve
Vi Vi

mlgnoo<I>(n1((e:vp(—X)ewp(gY)ewp(%/iX)exp(7 )™

S8

i (0 (ean(L X)) 00 ez V¥ )00 (ezp(~ Y X))@ (eap(— VL))

Ty

tim (na(eap(Lo0) ma(ean(L ) ma(ezp(— L)) ma(ep(— L a(r )y

Vit Vi Vit
) vt vt vt

m— L

Vi Vi Vit

el Jim {eap(Lo(x))eap(LL ())ean(— L) en(~ L (ry)ym)

12 (t[e(X), (Y)))

li 00{772(65617(gL(X))el‘p(EL(Y))@wp(*EL(X))BIP(*EL(Y)))}’"

li oonz({exp(gL(X))ezvp(T(Y))effp(—EA(X))GSUP(—*(Y))}”)

Proposition 3.4.15. Let

(S1) G111 be a Lie group which is isomorphic to a Lie subgroup G12 of GL(n,C).
(S2) Gz be a Lie group which is isomorphic to a Lie subgroup Ga 2 of GL(n,C).
(S3) Gs1 be a Lie group which is isomorphic to a Lie subgroup Gs o of GL(n,C).

(A1) f:G11 — Gaa is a homomorphism of Lie groups.
(A2) g: Go1 — G311 is a homomorphism of Lie groups.

(S4) By Proposition3.4.14, homomorphisms of Lie algebras derived from f o g, f,g, respectively. We define

then

O(fog),®(f),P(g) are homomorphisms of Lie algebras derived from f o g, f, g, respectively.

O(fog)=0(g) 0 P(f)

Proof. Let us fix any X € Lie(G1,1). Because for ¢ € R such that |¢{] < 1

n3(exp(t®(go f)X)
= go f(m(exp(tX)))
g(m2(expt®(f)X))
= n3(exp(t®(9)®(f)X))

O(fog)=2(g)0@(f)

By Theorem3.4.14, any inner automorphism of G is C“-class. By von-Neumann Cartan’s theorem, This implies the
following two Proposition.

Proposition 3.4.16. Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).

(3.4.15)

O
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(S2) For sufficient small open neighborhood of 1, V and z € Gy, we set u, : V 3 g— gz € Gy.
then

(i) {20 ¢}req, is a local corrdinate system of G1 which is equivalent to {n, o ¢},cq, -
(i1) {p. o ¥}.eq, is a local corrdinate system of G1 which is equivalent to {n, oV }.cq, -

Proposition 3.4.17. Let
(S1) G is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
then for any g € G,

(1) lg: G1 2 x — gx € Gy is C¥-class homeomorphism.
(it) rg : G1 3 x — xg € Gy is C¥-class homeomorphism.

These Propositions imply the following theorem.
Theorem 3.4.18 (von Neumann-Cartan’s theorem II). Let
(S1) G is a Lie group which is isomorphic to a Lie subgroup G of GL(n,C).
(52) g1, 92, -, 9m are vector subspaces of Lie(G2) such that
Lie(G2) = &2, 9
(S3) gi(e) :={X € Lie(Go)|||X|| < €} (:=1,2,...,;m,e > 0).
(S4) For any x € Gy

iy ®q0:(€) — Ga
w w
(X1, Xo, ..., X)) +—  zexp(Xq)exp(Xs)...exp(Xy)
then Gy x G1 > (z,y) — xy~! € Gy is C¥-class.
Proposition 3.4.19 (Exponential mapping of Lie algebra). Let
(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(S2) € >0 and exp(Lie(G1) N B(O,¢)).

X X
(5§8) For each X € Lie(Gy), set Exp(X) := n(exp(a))m for m € N such that — € B(O,e).
then the followings hold.

(i) Ezp is well-defined and continuous.

X

Proof of (i). Let us fix any m,m’ € N such that % € B(0,¢) and % € B(0O,¢). Then oy € B(O,¢) i =
0,1,...,maz(m,m’). By the Definition of locally isomorphism(Definition3.1.1),
Meap(-—-X))™ = nleap(—— X)) = nfep(— X))
m mm m
So Exp is well-defined. Because 1 and exp are continuous and G is topological group, Fxp is continuous. O

3.5 Correspondence between Lie groups and Lie algebras

3.5.1 Tangent space of Lie Groups
Proposition 3.5.1. Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(S2) For each X € Lie(G),

UX)(f) = S lemof(nleap(tX) (] € C=(16,))
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then 1(Lie(G1)) C Tig, (G1) and v : Lie(Gy1) — T, (G1) is a isomorphism of vector spaces.
STEPO:Proof of 1(Lie(G1)) C Ti,, (G1). By Leibniz product rule in calculas, ¢(Lie(G1)) C Ti4, (G1)- O

STEP1:Proof of linearity of v. Let us fix any X € Lie(G;) and a € R. For the formula of the compositition of f(n(exp(-X)))
and a-, t(aX) = a(X)
And let us fix any Y € Lie(Gy). By Lemma3.4.1,

Fn(w(t(X +Y)))) = fFn(e(e™ w(HX +Y))))) = fF(n(((tX, 1Y) + o(t))))

d
By the chain rule, «(X +Y)(f) = e F(n(e(tX,tY))). By applying the chain rulte to the composition of (u,w) —
t=0

F(n(p(uX,wY))) and ¢t — (tX,tY),
Because f(n(eap(t(X +Y)))) = f(n(exp(tX)exp(tY) + o(t)),

dth,of("(@(tX’ tY) = u(X)(f) + «(X)(f)

O

STEP2:Proof of that v is injective. Let us fin any X € Lie(G1) such that X # O. By linearity of ¢, it is enought to show
1(X) #0. There is Xo, X3, ..., X, € Lie(G1) such that X, X5, X3, ..., X, is a basis of Lie(G1). Here, r := Lie(G1). Let us

set fx (n((t1,te, ..., tr))) =11 for [t1] < 1,..., [t,] < 1. Clearly fx € C*®(1lg,) and «(X)(fx) = 1. So «(X) # 0. O
STEP3:Proof of that v is surjective. By Proposition3.4.10, dim Ty, = Lie(G1). By this and STEP1 and STEP2, ¢ is
surjective. 0

3.5.2 Homomorphism of Lie groups

Theorem 3.5.2. Let
(S1) G111 be a Lie group which is isomorphic to a Lie subgroup G1,2 of GL(n,C).
(52) Ga1 be a Lie group which is isomorphic to a Lie subgroup Ga2 of GL(n,C).
(A1) ® € C(G1,1,G2,1) is a homomorphism.
then
(1) d®.(i1(X)) = i2(t(X)) (VX € Lie(G1,1). Here, i; : Lie(G; 1) = Te(Gia1) (1 = 1,2) are isomorphisms of
two vector spaces.
(ii) ®(Bap(X)) = Eapliy (d®(i1(X)))) (VX € Lie(G1,1))
STEP1. Showing (i). Let us fix any X € Lie(Gy,1) and f € C*(1lg,,). Then
f(@(m(exp(tX)))) = f(me(expti(X))) (Vt: [t] < 1)
Differentiating both sides by ¢ and setting t = 0,

AP (11 (X))(f) = i2(«(X))(f)

O
STEP2. Showing (ii). Let us fix any X € Lie(Gh,1). For sufficient large m € N,
®(Exp(X)) = <I>(Exp(%x>)m

- (I)(m(exp(%X)))m

= m(eapu X))

= menpiz ia (- X))

_ nz(exp(d@e(il((%X»)))m

- Exp(d@e(il((%X))))m

- Exp(dée(il((m%X))))

= FBap(d®.(i1((X))))
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3.5.3 Invariant vector fields of Lie Groups
It is easy to show the following proposition.

Proposition 3.5.3 (Regular representation on C*°(G)). Let Gy be a Lie group which is locally isomorphic to a linear
Lie subgroup Gy. For g € Gy and f € C*(G1), we set

mr(9)f(x) == flg™'2), 7r(9)f(2) = f(zg), (x € G) (3.5.1)

Then wp, and mr are representation of G1. We call 7w, the left regular representation of G1 and mr the right reqular
representation of G

Proof. By

mr(91)mL(g2) f(2)
= w(92) flgr ')
flga i)
f((g192) ')
= 71(9192)f ()

and

Tr(91)TR(92) f(2)
mr(92) f(zg1)
f(zg192)

mr(9192) f ()

7, and g are representation of G. O

Definition 3.5.4 (Z(M)). Let M be a C*°-class manifold. Denote the set of all C*°-class vector fields by X. Denote the
algebra on R generated by C*°(M,R) and X(M) with the operation of Endc(C*(M)) by Z(M).

Definition 3.5.5 (Invariant vector field on a Lie group). Let Gy be a Lie group which is locally isomorphic to a Lie
subgroup Go. We call P € 2(G1) an left invariant differential operation if wr(g)P = Prr(g) for any g € G1. We call
P € 9(G1) an right invariant differential operation if nr(g)P = Prg(g) for any g € Gy. If P € X(G1) then we call P a
left invariant vector field on G1 by X1(G1). If P € X(G1) then we call P a right invariant vector field on G1. We denote
the set of all left invariant differential fields on G1 by by X (G1). We denote the set of all right invariant differential
fields on Gy by by Xr(G1).

The following clearly holds.

Proposition 3.5.6. Let Gy be a Lie group which is locally isomorphic to a Lie subgroup Go. Then X1(G1) and Xg(G1)
are algebras on R.

Proposition 3.5.7. Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(S2) For each X € Lie(G1),

e (X)(f) () = %\t:of(fm(exp(tX))) (f e C*(lg,, v € Gy)) (3.5.2)
and
tr(X)(f)(z) := %\t:of(n(exp(—tX))x) (feC>®(1g,, x € Gy)) (3.5.3)

then the followings hold.
(i) i1, is an isomorphism of Lie algebras between Lie(G1) and X1 (G1). In particular, for anly X,Y € Lie(Gy)

1 (X), ep(Y)] = 0o ([X, Y)) (35.4)

(i) tr is an isomorphism of Lie algebras between Lie(G1) and Xpr(G1).
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STEPI. 11,(Lie(G1)) C X1(G1). By analiticity of multiple operation of G; and the product rule in calculas, 1. (Lie(G1)) C
XL(Gy). For any g € Gy and f € C*(G) and z € Gy,

mr(9)en(X)(f)(2)
= w(X)(f)lg™ )
1

= I emenp (X))
= 2 He M nlenp (X))l

= L (@) f@n(eap(tX))) o

dt
= w(X)r(9)f(z) (3.5.5)
So ¢1,(X) is left invariant. O
STEP2. 1p(Lie(G1)) C Xr(G1). Tt is easy to show this by the similar method to STEP1. O
STEPS. v, and vg are R-linear and injective. 1t is easy to show this by the similar method to Proposition3.5.1. O

STEP4. 11, and vg are surjective. Let us fix any F' € X1(G1). By Proposition3.5.1, there is X € Lie(G) such that
F(f)(e) = «(X)(f) (vf € CF(Gr), Vo € Gh) (3.5.6)

Because F' is a left invariant vector field, for any x € Gy,

F(f)(x) =
= m(a ) (F(f)(e)
= F(rr(a)(H)(e)

)
- %m(x‘l)(f)(n(ewp(tX)))\t:o

= & fan(eap(t X))o
= L )()) (3.5.7)

STEP5. Calculas of «([X,Y]). Let us fix any f € C*(1¢g,).
By Propositiond.2.14,

(X YD)
= & nterp(tlX, Y]l

- %f (n(eap(VEX)exp(VY exp(~VEX)exp(=VEY)))|=o0 (3.5.8)
]

STEPG6. Taylor expansion of f(n(exp(ti X1)exp(teXa)exp(tsXs)exp(t4Xs))). By the definition of ¢z, for any i4 € Z N
[0,00),

L (Xa)™ (f) (exp(ti X1 )exp(taXo)exp(ts Xs))

(a%)”f (n(exp(tr1 X1)exp(ta Xo)exp(ts Xs)ewp(taXs)li=o (3.5.9)

By repeating the above discussion in the same manner below, for any 41, 42,143,474 € Z N [0, 00),

Lo (X1) " e (X2) 2 (X3) 0 (Xa) ™ (f)(e)

() F T (6. X)) o (3.5.10)
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So,

1 111 ) . ) )
- 21 14 11 14
+ > Z_1”2!2.3”,4!%()(1) o (Xa) f(e)th .t
+ o([t]*) (3.5.11)
O

STEP7. Showing v1,([X,Y]) = [tp(X),tn.(Y)]. Inwesett; =to = —tg3=—t4y=tand X1 = —-Xzg=Xand Xo =-Xy, =Y
in (3.5.11),

flexp(VtX)exp(VtY exp(—VtX )exp(—V1tY))
= fle)
+ [(X), (X))t
+ o(lt]) (3.5.12)
By (3.5.8),
(X YD) = [(X), u(X)](S) (3.5.13)
O

STEP4 in the proof of Proposition3.5.7 implies the following Proposition.

Proposition 3.5.8. Let G be a Lie group which is locally isomorphic to a Lie subgroup Go. Let us fix any Fy, Fy € X1(G)
such that Fy(f)(e) = Fa(f)(e) (Vf € C(e)). Then Fy = Fy.

3.5.4 Taylor expansion of C“-class function

STEPG in the proof of Proposition3.5.7 implies the following Proposition.
Proposition 3.5.9. Let

(S1) Gy be a Lie group which is locally isomorphic to a Lie subgroup Gs.
(S2) f be a C*-class function at a neighborhood of 1¢, .
(Sg) Xi,.,.X, € L’LC(Gl)
(84) 9(t) := FCL 1 X5).
Then
9 \i 9 i i
(871) Lo(=—)"g(0) = (X)) et (X)™ f (3.5.14)

Theorem 3.5.10. Let
(S1) Gi1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).
(S2) Ga,1 is a Lie group which is isomorphic to a Lie subgroup Ga 2 of GL(n,C).
then the followings are equivalent.
(i) Lie(G1,1) and Lie(Ga,1) are isomorphic.
(i) Gy and Ga1 are locally isomorphic.

Proof of (ii) = (i). If (ii), by the same argument of the proof of Proposition3.4.14 and Lemma3.4.7 and von Neumann-
Cartan’s theorem, (i) = (i). O
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Proof of (i) = (ii). Let ® : Lie(G11 — Lie(G2,1 be an isomorphism. Let X 1,..., X1, be a basis of Lie(G; 1. And
let us set Xo; := ®(X1,) (i =1,2,...,m). Weset e : (—€,€)" 3 (t1,...,tm) = 7 exp(t; X;:) (j =1,2). Thereis e >0
such that e;((—¢, €)™) is an open subset of G; and e;((—¢,€)™) C V; and e; is homeomorphism(j = 1, 2).

We set W : 11 (e1((—€,€)™)) — na(e2((—e, €)™)) by ¥(e1(t)) := ea(t). Thereis d > 0such that e;((—d,d)™)e;((—6,0)™) C
ei((—e,€)™) (j =1,2). Weset ¢j;: (—6,8)*™ — (—¢,¢€) by

ej(®)e;(y) = €j(0j1(2,y), ... bjm(x, Y)) (3.5.15)

(7 =1,2). We set ¢;(ej(x)ej(y)) := ¢ji(x,y). By von Neumann-Cartan’s theorem, ¢y; ;3 are relal analytic functions.
So, for each j,i there are Cj; 7.y I,J € Z™

¢ji(x,y) = ch,i,I,Jt(I’J) (3.5.16)
We will show ¢1,; = ¢2, (1 = 1,2,...,m). By Proposition3.5.9,
Ciirg =tn(X1)" or (X)) ™ e (X1) e, (X )20, (0) (3.5.17)

Let us fix k,1 € {1,2,...,m}. Because ® is an isomorphism, there is ¢ 11, ..., Ck.;.m € R such that

(Xk, Xjal = ch,l,in,i (3.5.18)
i=1
So, by (3.5.4),
e (K)o (X50) = e (X500 (X k) + > erpaen(X;,0) (3.5.19)
i=1

By repeating apply of this equation to ¢z, (X1)" ...t (X )?™, Cri1.0 = Cair1.5. S0 ¢p1: = o, (i =1,2,...,m).
We set W, :=n;(e;((—6,8)?m)) j =1,2. Because ¢1,; = ¢p2; (i = 1,2,...,m), for each z,y € W

xy €Wy <= ¥(2)¥(y) € Wy (3.5.20)

and if xy € W,
U(zy) = U(x)V(y) (3.5.21)
Consequently, G1,; and G3; are locally isomorphic. O

3.5.5 Differential representation
Clearly the following holds.
Proposition 3.5.11 (Definition of differential representation of a continuous representation of Lie group). Let
(S1) Gy is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C). Gy has at most countable
connected components.
(52) (mw,V) is a finite dimensional continuous representation of Gy.
(S3) P :={v1,va,...., 0.} is a basis of V.
(S4) For each f € Endc(V), denote the representation matriz with respect to P by ®(f).
(S5) By ®|GL(V) : GL(V) — GL(n,C), introduces a topology of GL(V').
Then
(i) ®|GL(V): GL(V) — GL(n,C) is an isomorphism of topological groups. So, GL(V') is a Lie group.
(i) 7 : Gy — GL(V) is an homomorphism of Lie groups.

(i1i) Lie(GL(V)) = M(nC). By Proposition3.4.14, 7 introduces the homomorphism from Lie(G1) to M(nC).
we denote this homomorphism by dr.. We call dme the differential representation of .

(iv) dr is continuous.
(v) ;
dn(X) = —li=olm(Ezp(tX)) (VX € Lie(G1))

Proof of (iv). Because dr is a linear mapping from Lie(G1) to M (nC), dr is continuous. O
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Proof of (v). Let us fix any X € Lie(G1). From the definition of dr,
m(Exp(tX)) = Exp(tdr(X)) (Vt € R)
Then (v) holds. O

The following clearly holds.
Proposition 3.5.12. The followings are settings and assumptions.

(S1) G is a connected Lie group.
(52) (mw,V) is a finite dimensional continuous representation of G.

(S3) W is a C-linear subspace of V.
Then W is G-invariant if and only if W is dr(Lie(QG))- invariant.
Proposition 3.5.13 (Adjoint representation of a Lie group). Let
(S1) G is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C). Ga has at most countable

connected components.

(S2) For each g € Gy, we define o(g) € Auto(G) by o(g)(z) := grg™* (z € Gy).
Then

(i) Forany g € G1, a(g) is an automorhism of a Lie group. By Proposition3.4.14, we denote the endmorphism
of Lie(G1) by Ad(g).

(i1) Ad(G1) C GL(Lie(Gh))
(i1i) (Ad,GL(Lie(G1))) is a continuous representation of G on R.

)
Proof of (i). Because o(g~1) = o(g)~! and analyticity of the group operation on G4, (i) holds. O
Proof of (ii). Because o(lg,) = idg,, Ad(lg,) = idpe,)- Let us fix any g,h € G1. Because o(gh) = o(g)o(h), Ad(gh)
is the homomorphism of a Lie algebra Lie(G1) derived from o(g)o(h). By Proposition3.4.15, Ad(gh) = Ad(g)Ad(h). So,
Ad(G1) € GL(Lie(Gy)). O

Proof of (). Let us fix v := (v1, va,...,v,) which is a basis of Lie(G1). We denote the representation matrix of Ad(g)
respect to v by R(g). Let us fix € > 0 such that exp(B(O,¢) N Lie(G1)) C V. Let us fix § > 0 such that {vY|Y €
B(0,25) N C"} C B(O,€) N Lie(Gy). For any Y € B(0,1) NC", exp(6Ad(g)vY) = 7(gn(exp(6Y))g~'). So,

1 _
vR(g)Y = Slog(r(gn(exp(3Y))g ")) (3.5.22)
By setting Y = ey, ..., Y = e, vR(-) is continuous. Because v is N x r-matrix and rank(v) = r, R(:) is continuous. So,
(Ad, Lie(Gy)) is a continuous representation of Gj. O

Proposition 3.5.14. Here are the settings and assumptions.
(S1) Gy is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C).
Then

(i) dAd = ad.
(i) Ad(Ezp(X)) = Exp(ad(X)) (VX € Lie(Gy).

Proof of (i). Let us assume i : Lie(G1) = Tc(G1) be an isomorphism of vector spaces in Proposition3.5.1. Let us fix any
X,Y € Lie(Gy) and s,t € R such that |s| < 1,[t| < 1 and f € C°°(e). Then

f(Exp(sAd(Exp(tX))Y)) = f(Exp(tX)Exp(sY)Exp(—tX))

And, by Proposition3.5.2,
Ad(Exp(tX)) = exp(tdAd(X))
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Because
o]0 (Eap(tX) Exp(sY ) Eap(—1X)
= lemolimof (lep(sY) + X, Y]+ O(2)
= i YI()
— (X YD) = ilad(X)Y)(S)
and
limolsmof (Bap(s Ad(Bap(t))Y )

= L lemoi(Ad(Bap(tX))(V)(f)
_ %hzoi(exp(tdAd(X)(Y))( )
_ %hzoi(E +tdAd(X)(Y) + O(2))(f)
- %hzoi(m( £) + ti(dAd(X)(Y)(f) + O(¢?)
= i(dAd(X)(Y)(/)
i(dAd(X)(Y))(f) = i(ad(X)Y)(f). So, dAd = ad.

Proof of (ii). By (3.5.5) and (i),
Ad(Exp(X)) = Exzp(dAd(X)) = Ezp(ad(X))

Proposition 3.5.15. Here are the settings and assumptions.
(S1) G is a linear Lie group of GL(n,C).
Then for any g € G

(i) The representation matriz of Ag(g) is g ® (g7) =" with basis {E; j}i ;-
(it) det(Ag(g)) = 1.
Proof of (i). We set h := g~!. Let us fix any g, jo and 4, j. Then

(9Fi0.309 i = (9Fi0 o9 i = > _(9Fi0jo)ithi; =Y gik(Big jo)kihi; = Giioloj = Giig

l k,l

So, the representation matrix of Ag(g) is g ® (¢g7)~L.

Proof of (ii). By Proposition2.1.11 and (i), (ii) holds.

3.5.6 Baker-Campbell-Hausdorff formula

Proposition 3.5.16. Here are the settings and assumptions.
(S1) S,T € M(n,C).

Then

d
£|Szoemp(—5)exp(5 +sT) =

STEP1. Simplifieing S. Clearly

d
£|5:06xp(—5)exp(5 + sT)

and

hT

J,Jjo
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are continuous respects to S. For any P € GL(n,C)

d
P—|s—oexp(—S)exp(S + sT)P~*

ds
= %|s:0€l‘p(7PSP71)6Z‘p(PSP71 +sPTP™Y)
and
ad(S)? _
P T
= S (PSP

= (p+ 1)

So, we can assume S is a diagonal matrix. O

STEPZ2. Linearity respects to T. By Wierstrass’s theorem,
exp(—S)exp(S + sT)

. d (S + sT)
= exp(—9) lim 7 |SZOZT

m—o0 dS
1=0

We set
d (S + ST
L, (T):= exp(—5)£|s:0 Z %
i=0 :

Because
d 4
—|s=0o(S T
g ls=0(S +s )

= di8|5:0 Z sSITS™I71 4+ o(s)
Jj=0
= ) ST
j=0

L,,(+) is linear for any m € N. Because L,,(-) normed converges to

d
G5 limoean(~S)eap(S + =)

d
£|Szoexp(—5)exp(5 + s-) is linear. O
STEPS3. Simplifying T. By STEP2, we can assume T' = E; ;. O

STEPJ. Showing this equation. If [S,T] = 0, the both side equals to T. So, we can assume [S,T] # 0. We set A1,..., A\,
by

A0 0
g - 0 A 0
0 0 . A
We set A = A; — ;. Then
ST = \T

Because [S,T] # 0, A\; # A; and ¢ # j. Because \;T and T are commutative, by replacing S by S — \,;T', we can assume
)\j = 0. Then
TS=T1T°=0

So
ad(S)T = AT
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d
£|s=oexp(—5')exp(5 + sT)

{Zs

m Sifl
= exp(—S)Z a T

d
= —|S oexp(— T+0 (L}

i=1
m /\1—1
= exp(—S)Z T
i=1
m P
= exp(—)\)z i T
i=1
expA — 1
= exp(=A) p/\ T
B 1—exp(—)\)T

Consequently, this Proposition holds.
Proposition 3.5.17. Let

(S1) S,T € M(n,C).

Then
(i) I 1t < P2 then Z(t) = log(exp(tX)exp(tY )
i —————— then = log(exp exrp converges.
X[+ 7]
(it) We set {Zm}oo_1 by Z(t) = > oo, Zint™ then
Z1=X+Y

and for any m € NN [2,00)

Zm =

D

ec{0,1}m—2

Cead(We,)...ad(W,

Here Wy := X and W1 :=Y and C. € Q and C, does not X,Y .
(iii) If || X|| + ||Y]| < log2 then Z :=>>°

m=1
log2

X[+

Proof of (i). If || < vl

then
[lexp(tX)exp(tY) —
. L RS R
155 e e
. 1 i~ Lo
< n}gnoo\zijlt| || X1 Ziﬂﬂ Y= 1]
i=0 i=0

lexplt][| X |[lexplt|[[Y]| — 1
leaplt|([1X1]+ Y1) — 1
1

El|

IA

VAR VANVAN

log2

So, if [t] < —— 0"
X+ 1Y

then log(exp(tX)exp(tY')) converges.

yad(X

)Y (3.5.23)

Zm exists and exp(X)exp(Y) = expZ.

67
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Proof of (ii). By Proposition3.5.14,

S ern(Z(1)

= %ea:p(tX)exp(tY)
= exp(tX)Xexp(tY) + exp(tX)exp(tY)Y
= exp(tX)exp(tY)exp(—tY)Xexp(tY) + exp(tX)exp(tY)Y
= eap(Z(t))(exp(—tY) Xeap(tY) +Y)
exp(Z(t))(exp(—tad(Y))X +Y)
So

exp(—Z(t))%exp(Z(t)) =exp(—tad(Y))X +Y

Because

cap(~2(1)) eap(Z(1)
= eap(—Z(1) L lsoeplZ(t + )
= cap(~Z(1)) Sl wmoexp(Z(1) + 57'(1) + o(s))
= cap(~Z(1)) Sl emoexp(Z(1) + 57'(1)) +o(s)

= eap(=2(0) 5 lamoczp(Z() + 57'(1)

by Proposition3.5.16,

> (=P <p( +(1)))',, Z'(t) = exp(—tad(Y)) X +Y

p=0

So,

o pr1 ad(Z(1))P _

Z'(t) =Y (-1) b1 Z'(t) 4+ exp(—tad(Y)X +Y
p=1
Because d( »
;( N +(1))), Z(t)
has no constant,
Z1=X+Y

We assume 71, ..., Z,, satisfies the condition (3.5.23). Because
Z(t) = Zat + Zot* + . + Zppt™ +

and
Z’(t) =t+ 222t + .+ mth"L—l + (m + 1)Zm+1tnL...

m _1 m
(m+1)Zpq1 = Z Z 1Zi,.. 2, 7y + ( m? ad(Y)™X
k=1i14...+ip+(1—1)=m—1 ’
Because of (3.5.6) and the assumption of this mathematical induction,

(m+1)Zm+1

= > Dycad(We,)..ad(We,,_,)ad(X)X
e€{0,1}m—1
+ Z Dy cad(We,)...ad(We,, _, )ad(X)Y
ec{0,1}m—1
+ Y. Dscad(We,)..ad(W,,_,)ad(Y)X
66{0’1}771,—1

+ Z D4,ead(We1) ad( €m— 1)ad(Y)Y

ec{0,1}m—1
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Because ad(X)X =0 and ad(Y)Y =0 and ad(Y)X = —ad(X)Y,

= > (Dac— Dso)ad(We,)...ad(We,, _, )ad(X)Y
66{0,1}7"71

So Z,,+1 satisfies the condition (3.5.23).

3.5.7 Analytic subgroup
Theorem 3.5.18 (Analytic subgroup). Let

(S1) Gy is a Lie group which is locally isomorphic to a linear Lie subgroup G of GL(n,C).
(S2) b be a Lie subalgebra of Lig(Gy).
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Then there is H such that H is a subgroup of G1 and H is a Lie group and Lie(H) = §. We say H is a analytic subgroup

of G whose Lie algebra is b.

STEP1. Construction of H. There are X1, ..., Xp, ..., X, ..., Xn € M(n,C) such that N = n? and Xi,..., Xy is a basis
of M(n,C) Xy,..., Xk, ..., X;, is & basis of Lie(G1) and X7, ..., X is a basis of h. By von Neumann-Cartan’s theorem,

there is € > 0 such that

e:(—€,)" 3t Exp() t:X;) € Gy
i=1

is a C*-class homeomorphism to an open subset of U and

N
E:(—e, e 5t Bap(d t:X;) € GL(nC)
i=1
is a C*-class homeomorphism to an open subset of GL(nC). We set

H :={Exp(Xy)...Exp(X))| X1,...,X; € b, l €N}

Clearly H is subgroup of G;.

O

STEP2. Constructing the topology of H. We set the topology of H whose fundamental neighborhood system of H is
{hExp(Br(0,s¢€))|0 < s < 1, h € H}. We will show {hEzp(B;(0,s¢))|0 < s < 1, h € H} satisfies the aixoms of a

fundamental neighborhood system.
Let us fix any eacp(Zf:l t;X;) such that t € (—se, se)*. We will show there is § > 0 such that

k k

k
exp(z tiXi)exp(Z(—(S, 0)X;) C exp(Z(—se, s€)X;)

i=1 i=1 i=1
There is €; > 0 such that t + (—e1, €1)* C (—se, se)*. There is § € (0, ¢€) such that

k k k N

ea:p(z tiXi)exp(Z(—(S, NX;) C exp(z t; X + Z(—el, €1)X;)

i=1 i=1 i=1 i=1
By the continuity of exp and log, we can assume

k k N

log(exp(D>_t:Xi))exp(D (=6,8)X:)) C Y (—€,)X;

i=1 i=1 i=1
By Baker-Campbell-Hausdorff formula,

k k N

log(exp(z tiXi)exp(Z(—(S, 0)X;)) C Z(—e, e)X;Nh

i=1 i=1 i=1

(3.5.24)
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Because exp|(zg\;1(—e, €)X;) is injective,

k k
exp Zt i Xi))exp Z
i=1 i=1

k k N
- exp(z €)X; N Z X + Z —€1,€61)X
i=1 i=1 i=1
= 63019(2 t; X + Z(_Eh €1)X;)
i=1 i=1
k
C exp(Z(—se, s€)X;)
i=1

Let us fix any hq, ho € H such that
h1Exp(Bg (O, s1€)) N ha Exp(By (O, sg¢€)) # ¢

Then there is u3 € Exp(Bj(0,s1€)) and uy € Exp(By (O, sg¢€)) such that hju; = houg. By (3.5.24), there is 6 > 0 such
that uy Exp(Br(0,0)) C Exp(Bi(0, s1€)) and ug Exp(By(0,9)) C Exp(Bi (O, sg€)).

h1Exp(By (0, s1€)) D hiui Exp(Bi (0, 9))
= hiupExp(Bi(0,6)) C ha Exp(Bi(O, s2e))

Consequently, {hExp(By(O, s€))|0 < s < 1, h € H} satisfies the aixoms of a fundamental neighborhood system.
O

STEP3. Showing properties of H. Clearly Exp : h — H is continuous. Because By (O, ¢) is connected and Exp is contin-
uous, Exp(By(O,¢€)) is a connected. So H is connected. And clearly H is Housdorff space. O

STEP). Showing H is a topological group. It is enough to show continuity of the multiple operation and the inverse
operation of H. Let us fix any g1,92 € H and s € [0,1). We set g := gflgg. It is enouth to show for sufficient small
51,82 € [0,1) {g1 Exp((Bx (O, s1€))} g2 Exp(( By (O, s2¢)) is contained gExp((B (O, se)). For sufficient small X,Y € b,

{91 Bxp(X)} g2 Bap(Y)
= Eap(—X)gExp(Y)
99~ ' Exp(—X)gExp(Y)
= gExp(—Ad(g~")X)Exzp(Y)

By the defitnition of H, there are Zy, ..., Z; € b such that
g ' = exp(Zy)...exp(Zy)
So, by Proposition3.5.14,

Ad(g~h)X
= Ad(exp(Zy))...Ad(exp(Zi)) X
exp(ad(Zy))...exp(ad(Zy)) X

By Proposition3.4.2, b is a closed subset of M(n,C). So, Ad(¢g~')X € bh. By Baker-Campbell-Hausdorff’s formula, for
sufficient small X,Y € b,
Bap(—Ad(g~")X)Bap(Y) € Exp((By(0, s¢))

So, the multiple operation and the inverse operation of H are continuous.

O

STEP5. Showing H is a Lie group. We can assume 7(e((—¢,€)™)) C V. By Baker-Campbell-Hausdorff’s formula, there
is €1 > 0 such that

re([~er,ea]" x {0} M) 7(e([—er,ea]® x {0} 7)) C 7(e((—e,€)* x {0}™F))
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We set Vi := 7(e([—e1,e1]* x {0}™7F)). Clearly Vy is a neighborhood of the unit element in H and Vi C V. Because
7(e([—e1, €1]% x {0}™~F)) is compact subset of GL(n,C), Vg is closed subset of GL(n,C). We will show the topology of
Vi is equal to the relative topology of GL(n,C). It is enough to show for any ¢ € [—¢y, €1]¥ such that for any a < €

k N

k k
Vi N exp(z t,;Xi)exp(Z(foz, a)X;)=Vgn exp(z tiXi)exp(Z(—a, a)X;)

i=1 i=1 i=1 i=1
Let us fix any t € [—e€y, ;)% and a < € and

k k N

GCCP(Z tiXi)u € exp(z tiXi)el”P(Z(_Oé» @) X;) N Vi

i=1 i=1 i=1

Because exp(ZfZl ftiXi)exp(Zle[fel,el]le) C ezp(ZfZl(fe, €)X;) and exp is injective in Zfil(fe, €)X,

k
ue eap(y(~e,0X,)
i=1
So,
k k k
exp(z tXi)u € exp(z tiXi)exp(Z(_a»a)Xi)
i=1 i=1 i=1
Consequently, H is a Lie group. Clearly Lie(H) = b. O

Proposition 3.5.19. Let G be a Lie group and H is a closed subgroup of G. Then H is a Lie group.

STEPI1. Showing that H has at most countable connected components. For any h € H, the connected component of H
which contains h(called Hy) is contained some connected component of G.So, H has at most countable connected com-
ponents. 0

STEP2. Showing that H is a Lie group. We set
h:={X € M(n,C)|Exp(tX) e UNH (Jt| < 1)}

Because U N H is closed, by the argument which is similar to the proof of Proposition3.3.2, b is a Lie algebra. And clearly
b is a Lie subalgebra of Lie(G). Let us take Xy, ..., Xg, ..., Xin, ..., Xy which is a basis of M (n,C) such that X, ..., X} is
a basis of h and X3, ..., X, is a basis of Lie(G). Because U N H is closed and H satisfies the second countable axiom, by
the argument which is similar to the proof of Lemmag3.4.9 and Baker-Campbell-Hausdorff formula,

k m N

Exp(hn Z(—e, €)X;) = Ea:p(Z(—e, e)X;))NH= Exp(Z(—e, e)X;)NH

i=1 i=1 i=1

We set

So, by the argument which is similar to the proof of Theorem3.5.18, V} is closed neighborhood of e and the relative
topology of Vi to G is equal to the relative topology of Vi to GL(n,C). So, by Proposition3.4.8, H is a Lie group and
h = Lie(H). O

3.6 Invariant measure

3.6.1 Existence of Invariant measure

Definition 3.6.1 (Baire measure). Let X be a locally compact Housdorff space. We say p is a Baire measure on X if

C.(X)c LYX,p)
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Definition 3.6.2 (Invariant measure). Let G be a locally compact topological group. We say p is a left invariant measure
on G if for any f € C.(G) and any go € G

/f@wmmmzjjwmmm
G G

We say p is a right invariant measure on G or a right Haar measure on G if for any f € C.(G) and any go € G

| foginte) = | Fa)ints)
G G
We say G is unimodular if there is a left and right Haar measure on G. We call a left and right Haar measure on G
a Haar measure on G.
We say p is a right invariant measure on G
Notation 3.6.3. Let G be a Lie group and go € G. For each g € G and x € G, Ly (x) := goz.
Definition 3.6.4 (Left invariant form). Let

(S1) G is a Lie group and m := Lie(G).
(52) w is a m-form on G.

We say w is left invariant if for any g € G dLyw = w. Here, for eahc v1, ..., vy € T(G),
(dLgw)g (V1 ooy Um) i= Wga (dLgv1, ..., dLgUpm,)

Lemma 3.6.5. Let G be a Lie group and m := Lie(G). And let us we a antisymmetric m-th tensor at 1 and w # 0.
For each z € G and vy, ...v,, € T,(G),

W (V1 ey Uy ) 1= we(dLaflvl, ...,dL;lvm)

Then w is a C¥-class left invariant form.
Proof. Let us fix any g,x € G and vy, ..., v, € T(G).
(Lgw)e (1, eey Um)
= wga(dLguv1,...,dLgvp,)
= we(dLy}dLyvy,...,dL .} dLgvm,)
we(dL;'dL, dLgvy, ..., dL, " dL, ' dLgvy,)

= We(chzlvlv ) dL;IUm) = wz(vlv ~~~7Um)

Lemma 3.6.6. Let
(S1) G be a Lie group.

(52) w be a C¥-class left invariant form.

(53) g € G.

(S4) (Ua,%a) and (Ug, ) are local coordinates on G and gUg N Uy # ¢.
(S5) For any x € U, and y € Ug

Wy = Po(x)dpa1 A ... Ndda,m, wy =Ps(y)dds1 A ... Nddg m

Then, for any x € Ug N L;an,
Pp(x) = det(J (Yo © Lg © ¢3)(¥5(x))) Palgr)

Proof. Let us fix any « € Ug N L;'U,. Then

wy = Pp(z)(ddp1 A ... Nddg,m)s

and
wgz = Pa(92)(ddai A ... AN dda,m)ga
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So,
0 0 0 0
wr((aw671 Jas s (8¢5,m )a) = wgﬂi(‘”’g((%)z)v e dLg((aw/&m )z))
and
o ALl )e)) = detT (1 o Ly © 65)(15(2)

These implies that
Dp(x) = Palgz)det (o © Ly o ¢p)(1hp(x))

By following the argument of the proof of Lemma3.6.6 in reverse, we can show the following proposition.
Lemma 3.6.7. Here are settings and assumptions.

(S1) G is a Lie group.

(52) {Uq, %0 }aca is a system of local corrdinates of G.

(53) {Potaca is a family such that ®, € C°(Uy,R) (Va € A).
(A1) Then, for any g € G and v € UgN L;an,

Dp(x) = det(J (Yo 0 Ly © ¢p)(1p(2))) Pa(g)

(S4) We set
wy = P (2)dpai A ... Ndda,m (x € Uy, € A)

Then w is well-defined and C* left-invariant form.

Proposition 3.6.8. Here are settings and assumptions.

(S1) G is a Lie group.

(52) wis a C™ class form on G such that wy #0 (Vg € G)
(S3) p is the measure on G induced by w.

(A1) p is left invariant.

Then w is a left tnvariant form.

Proof. By Lemma3.6.6, There is a {U,,%q}aca is a system of local corrdinates of G preserving the orientation of G
and &, > 0 on U, (Va € A) and det(¢y' o Ly o) > 0. Let us fix any g € G and Ug N g~ U, # ¢. Let us fix any
f € Ce(gUsNUy,). Because p is left invariant,

/Umg_an (gx)dp(z / flgz)du(z / f(x)dp(x /QUWUQ f(x)dp(z) = /wal(gUBmUa)f(%(x))q)a(%(x))dx

By change-of-variables formula for integral

| Hevdnte) = [ g5 )5 (05 0)
UﬁﬂgflU wﬁ (Uﬂﬁgian)
- [ F(Wa(2) (g™ b)) det(05 0 Ly 0 )| dx

Yo (gUpNUa)

So, for any g € G and © € Ug N L;'U.,

Dp(x) = |det(J(Ya 0 Lg © ¢p)(¥5()))[Palg2)
Because det(J(1ha 0 Ly 0 ¢3)(1s(x))) > 0

Dp(x) = det(J (Yo © Lg 0 ¢p)(¥5(2)))Pa(gz)
So, w is left invariant form.

Lemmad3.6.6 implies the following.
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Lemma 3.6.9. Let G be a Lie group in which there is a left invariant form w. Then G is orientable and w is C¥-class .

Proof. By replacing two variables if necessary, there is a local coordinate system {Uy, ¥4 }aca such that ®, > 0 (Vo € A).
By Lemma3.6.6, {Uy, ¥ }aca preserves the orientation of G. O

Lemma 3.6.10. Let

(S1) M is a paracompact C*-class manifold.

(§2) H: M — M is a C*°-class homeomorphism.

(53) {Ua}aen is a open covering of M.

(S4) f is a C*-class function on M.

(A1) supp(f) is compact and there is o € A such that supp(f) C Us.

Then there are {Ug, }N.; and {f;}}.; € C(M) such that {H(Ug,)}, is a covering of supp(f) and

N
F=Y_f
i=1

and
supp(fi) - Uaa Supp(fi © H) - Uﬂi (Z =1,2 7N)

Proof. Because supp(f) is compact, there are {Ug, }¥; such that {H(Ugs, )}, is a covering of supp(f). Because supp(f)

is paracompact and {H (Ug, )}, is a open covering of supp(f), there is {h;}; C C°°(M) such that {h;} , is a partition
of unity which is subordinate to {H (Ug,)}Y.,. We set f; :=h; (i =1,2,...,N). Clearly {fi}Y , satisfies the conditions in
this Proposition. O

By Riesz-Markov-Kakutani representation theorem[15], any left invariant measure induces a measure.
Theorem 3.6.11. Let
(S1) G be a Lie group.
Then

(i) There is C*-class left invariant form w on G.
(i) G is orientable by w.

(i4i) The measure induced from w is left invariant. Specially, G has a left invariant measure.

Proof. (i) is from Lemma3.6.5. (ii) is from Lemma3.6.9. We will show (iii). We set m := Lie(G). Let us fix f € C®°(G)
and gg € G. For x € G,

(Lgo f) () := f(go)

By (ii) and the second contable axiom, there is {U;, 1;, Vi, ®;, p; 12, such that {U;,1;}32, is a local coordinate system of
G and {U;,¢;}$2, is local finite and for each i V; € O(R™)

i Ui =V,
is an homeomorphism and {U;, 1;}32, preserves a orientation of G and for each ¢ and = € U;
Wy = @z(x)(d%,l A A dwi,m>z

and ®; > 0 and {p;}2; is a partition of unity subordinating {U,;}$2,. We set for each i, f; := fp;. By Lebesgue’s

convergence theorem,
fw = /fz‘uh /L fw= /L fiw

By Lemma 3.6.10, we can assume that for each ¢, there is j such that supp(Lg, f;) C U;. Because supp(f;) is compact,
there is an open set U/ such that

So, it is enough to show for each 4

supp(f;) C Uj C U;



3.6. INVARIANT MEASURE (0]

and
supp(Lyg, fi) = Ly supp(fi) C LU} C U,

We set ¢; := w;l and V; := ¢;(U;) and ¢; == 1/}7 and V; := 1¢;(U;). By change-of-variables formula for integral and
Lemmad.6.6,

[ Bt [ Fi(g06;(2)); (2)dx
G Vi (Lgg U!)
- / sy O s @), )

LggUl)
= [ 56 Ly o g5(a)
i (Lgy UY)
xdet(J(1; © Ly, 0 67)) (5 0 Ly s 09 0 Ly, 0 3(x)))) ™"
X®;(1hj 0 Ly piohs 0 Lg, 0 ¢5(x))))
/ S5 () det(J (s 0 Ly 0 6,)) (5 0 Lyt 0 4i(y)) ™"

D¢ 0 Lgolsﬁz( ))dy

/fz 61())®:(y)dy
= /Gfiw

O
3.6.2 Haar measure
Theorem 3.6.12. Let
(S1) G be a Lie group with m := dimLie(Q).
(S2) w¥ is a left invariant m-form and W is a right m-form on G.
(A1) wk = wk.
(S3) dgr, is the left invariant measure induced from w™. dggr is the right invariant measure induced from w't.
Then
(i) wf = det(Ad(-))wt
(ii) dgr = |det(Ad(-))|dgr. We set Ap(-) := |det(Ad(-))| and Ag(-) := |det(Ad(-))| L.
Proof. Tt is enough to show (i). Let us fix any g € G. and v € Ty(G) and u := dL;'v. Then
wf(v) = wf(dLgu) = we(dRydLyu) = we (L(Ad(g)e™ (u))) = det(Ad(g))we (u)
= det(Ad(g))we(dLg_lv) = det(Ad(g))w" (v)
This implies (i). O
Proposition 3.6.13. Any compact Lie group is unimodular.
Proof. Let us fix any G be a compact Lie group. Clearly, |det(Ad(G))| is compact subgroup of RZ. So, |det(Ad(G))| =
{1}. O

3.6.3 Integral on all inverse elements
Proposition 3.6.14. Let

(S1) G is a Lie group.

(S2) I:G>g—gted.

(83) f € Ce(G).
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(S4) w be a left invariant and right invariant form on G.

Lf@ﬂwzéf@w

STEP1. Construction of a left invariant form. We set m := dim(Lie(G)). Let us fix {(Ua,¥a)}aca & system of local
coordinates which preserves the orientation of G. Let us fix {aqs }aea such that for any a € A a, € C*(U,,) and

then

W|Uq = aqdpl A ... A dp™
Then {(I(Ua),%a o I7')}aen a system of local coordinates of G. For any «, 8 € A such that (I(Uy) N (I(Ug) # &,
Yool o (hgol )T =g 0y

So, {(I(Us),%a © I71)}aea preserves the orientation of G.
We set w’ by

Wy (U1, U, oy U ) = wl_l(g)((df);ll(g)uh vy (dI);,ll(g)um)
We will show ' is left invarinat. Because w is right invariant,
wEL )(g)((dLz) gV, ...(dLy) gUm) = Wy ((dLy)gv1, ..(dLy ) gUm) :wI(xg)((dI)I(Iy)(dL g1, ..., (dI) (my)(dL )gUm)
= 29) (A1) 1y (AL 1 ()5 o1, oy (D) 15 (AL 1 (2)) 5 0m) = Wiag) (A( L) © 1)) 1y V15 s (L1 () © 1)) gy 0m)
= wl(xg)(d(IoR )I(lxy)vl"" d(IoR, )_(lmy)vm) = WR; (a1 (A © )I(xy)vl,..., (IORI)I_(iy)vm)
= YR (e )Ruz)(I(q))(dI)I(g)vl’"' (R, )Rz(as)u(g))( D 17 Um)
= WRi e ([@R1()) 1(9) (A [y 015 ooy (AR1(2)) (g (D) [y 0m)
= wI(g)(dI)I(g)vl, vy (dI)I(g)vm) = (J.}Ifl(g)(d]—)lfl(g)'vl, (dI)I 1(g)vm) = Wy (V1, -y V)
So, w’ is left invariant. So, there is C' € R such that w’ = Cw. O
STEPZ2. Display of X using local coordinates.
Wy (U, U2, ey Unn) :Wl—l(q)((d.[);ll( JULy - (dI);* LU Um) = We(d(L1-1(9))e YdD);t (g )ul,...,d(L[ 1g))e YdD);t (g )um)
= we(d(l o Li-1(g))g 'ur, oy d(I 0 Li-1(g))g 'tim) = we(d(Lg)g M un, ooy d(Lg) s )
For any w1, ..., um € T,(G),
LU, Uy ey Uy) = wI_l(g)((dI);ll(g)ul, e (dI)Iill(g)um) = wI_l(g)((dI);ll(g)uh . (dI)Iill(g)um)
I7Hg))dtpg A e AT 1 yus ey (A T i)
I Y(9))dyl o (dI);? 1g) N NG 0 (d 0,k (o) (V15 - Um)
= aa(I"Hg)d(e o I} 1) N Nd(pa o I™ )1,1(9)(01,...,0771)

this proposition holds. So,
[ fae= [ so)
a G

Lf@ﬂwzéf@w

By the proof of Proposition3.6.14, the following holds.
Proposition 3.6.15. Let
(S1) G is a Lie group.
(S2) I:G3g—~gted.

(83) f € Ce(@).
(S4) w be a left invariant on G.

wg(
B aa(
aa(

By setting f =1, w’ = w. So,

then
‘Lfmfﬁw: F(@)Ar(g)e

G
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3.6.4 L[*(G)
Proposition 3.6.16. Let G be a Lie group. Then LP(G) is separable for any p € NN [1,00).

Proof. By Proposition3.4.6 there is {U;}22, which is a local finite open covering of G; and {4,01 ©, is a partition of unity
with respect to {U;}5°; and for any i U; is C*°-class homeomorphic to (0,1)™. For each i, L*(U; ) is separable. So, there is
{fik}ix C C*(G) such that supp(fi ) C U; (Vi,Vk) and {f; x|U;}, is dense in LP(U;) (Vi). We set A := {Zf\il fiks ki €
N (i=1,2,..,N), N € N}. Clearly A is separable.

Let us fix any f € LP(G). Let us fix any € > 0. Because limy_, o f * Xuy u, = fand f € LP(G), by Lebesgue’s
convergence theorem, there is N € N such that

€
Hf_f*Xuﬁ"leiH < 5

We set f1 := f * xu, and fi = f * XUAUN_,_, Uy (1 =1,2,..,N). Then f XuN U, = Zf\il fi. There are f; k,,..., fikn

such that ||fi — firll < ﬁ (i=1,2,...,N). Clearly

N

€

1 *xon v, — > firll < 3
=1

So, ||f — Zfil fik:|| < €. Consequently, LP(G1) is separable. O
By the proof of Proposition3.6.16, the following holds.

Proposition 3.6.17. Let G be a Lie group. Then there is at most countable subset of C.(G) which is dense in LP(G).

3.6.5 Convolution
Definition 3.6.18 (Convolution of function and linear functional). Let
(S1) G be a Lie group.

(52) f € Ce(G).
(83) T is a C-linear functional on C.(G).

Then

T f(z) :=T(1(f)) (x € G)
Here,

(M) = flay™) (z,y € G)

Notation 3.6.19 (Dirac delta function d,). Let G be a topological group and x € G. We set 6, by
0. (f) = f(z) (f € C(G))

Definition 3.6.20 (Convolution of functions). Let G be a Lie group. Let us fix dg, which is a right invariant measure
on G. Let us fix f,g € C(G) and assume supp(f) or supp(g) is compact. We set

fra@) = [ flayotw)da. ) (@ € G)
Proposition 3.6.21. We succeed notations in Definition3.6.20. Then

(i) f*geC(G)
(ii) If f1, f2 € C(G) then fi = fo € C.(G) and supp(fi * f2) C supp(f1)supp(fz)
(iii) If f3, f3 € Co(Q) then (f1* f2) * f3 = f1 * (f2 * f3).

Proof of (i). Firstly let us assume g € C.(G). Let us fix any € G and € > 0.

Jogle / Feyg(y)dg (y) = / 1@ s
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We set K := dgr(supp(g)). Becase f,g € C(G), for each y € supp(g), there is U, , and V,, such that U, , is an open
neighborhood of = and V}, is an open neighborhood of y and

Fzwg(w) = flaw Mg(w)| < g (V2 € Uy, Yo € V)

Because supp(g) is compact, there are V,,, ..., V},, such that supp(g) C U_,V,,. We set U, := NI'_,U, ,,. Then clearly

[flzw™)g(w) = flzw™ )g(w)] < (Vz € Uy, Vw € V)

€
K+1
So,

[fxg(z) = frg(x)] <e(VzeUs)

This means f * g is continuous.
Firstly let us assume f € C.(G). Let us fix any © € G.

frgla /f:vy Yg(y)dg,(y /f )g(yztx)dg, (y /f R
_/Supp(f) 1f(y Yg(yx)dg,(y)

So, we can prove continuity of f x g by the argument which is similar to the proof in case g € C.(G). O

Proof of (iii). Let us fix any = € G.

(% fo) * f(z) = / fr% falay™) 5 (y)dg (y / / ey 2 ) fo(2)dgo(2) fa(y)dor (v)
/ / (@)™ Faleyy™)dgr (2) £3(y)dga (y / / Fr(wz) falzyY)dgy (2) f3(v)dg ()

by Fubini Theorem
= [ 5 [ e mmn s ) = [ fiaz) s i) = fix (fax )@
G

3.7 Basic Notions of Lie algebras

Definition 3.7.1 (Automorphism Group Aut(g)). Let
(S1) g is a Lie algebra.

We set
g:={a € GL(g)|[aX,aY] = a[X,Y] (VX,Y € g)}

and call it the automorphism group of g.
The following is clear.
Proposition 3.7.2 (Inner Automorphism Group Int(g)). Let

(S1) g is a Lie algebra.
(52) ad(g) := {ad(X)|X € g}.

Then ad(g) is a Lie algebra. Let Int(g) denote the analytical subgroup of ad(g) in GL(g). We call it the inner automorphism
group of g.

Definition 3.7.3 (Killing form). Let g be a Lie algebra. We set

(X,Y) :=Trace(ad(X)ad(Y))
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3.8 Connected component of Lie group

Proposition 3.8.1. Let

(S1) Gy is a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C) and G1 be connected.
(A1) There is open neighborhood of 1¢, U such that for any xz,y € U zy = yx.

Then G1 is commutative.

Proof. By Proposition3.4.6, we can assume that for any g € G there are g1, ...,gp € U such that g = g1 - g2...gar. Let us
fix any g = g1 - g2...9gnp and h = hy - ho...hy such that g1,..., g, b1, ..., Ay € U.

gh = g1-92...90m - h1 - ho.hy
= h1 'hg...hN-gl cgo...gMm
hg (3.8.1)

Proposition 3.8.2. Let
(S1) Gy be a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C).
(S2) G1,0 be the connected component of G .

Then G1, is path-connected.

Proof. For sufficient small ¢ > 0, N(e) := Exp(B(O,¢)) is path-connected. Clearly, finite multiple of N(e) is path-
connected. So, by Proposition3.4.6, G1 o is path-connected. O

3.9 Reductive Lie group

Definition 3.9.1 (Reductive Lie group). Let G C GL(n,C) be a linear Lie group. We say G is a reductive Lie group if
for any g € G g© € G. Let G be a Lie group. We say G is reductive if G is locally isomorphic to a reductive linear Lie
group and G has finite connected components.

The following definition is from [6].
Definition 3.9.2 (Harish Chandra Class). The followings are settings.

(S1) G be a Lie group with the reductive Lie algebra g.
(52) g1 :=([g,9])-

We say G is said to belong to Harish-Chandra’s class if it satisfies the following conditions.

(i) G has finitely many connected components.
(i) Ad(g) € Int(g) for any g € G.
(iii) The analytic subgroup Gy with g1 has finite center.
The followings clearly hold.
Proposition 3.9.3. Let G C GL(n,C) be a linear Lie group and G be reductive. Then

(i)
G={g"|g € G}
(ii) )
Lie(G) = {XT|X € Lie(G)}

—T
Proof of (i). For any g € G, g = g7 . So the above equation holds. O

Proof of (ii). For any X € Lie(Q), exp(tXT) = exp(tX)T. So Lie(G) = {XT|X € Lie(G)}. O
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Proposition 3.9.4. Let g be a Lie algebra. We set
(X,Y) := ReTr(X"Y) (X,Y € g)
then

(i) (-,) is an inner product on g.

(ii) (ad(X)Y,Z) = (Y,ad(XT)Z) for any X,Y,Z € g.

Proof of (i). For any X,Y € g,

Also,

So, (i) holds. O
Proof of (ii). Because Tr(XTYTZ) =Tr(ZXTYT),

(ad(X)Y,Z) = ReTr((XY - Y X)) 2)
= ReTr(YIXT - XTYT)Z) = ReTr(YT'XTZ - YT ZXT)
ReTr(YTad(XT)Z) = (Y,ad(XT)Z) (3.9.1)

So, (ii) holds. O

Lemma 3.9.5. Let g be a Lie algebra and §° = g. For any § which is an ideal of g, h~ is also ideal. Here, we assume
the inner product of g is (-,).

Proof. Let us fix any X € g, Y € bt, Z € h. By the assumption, ad(X?)Z € h. By Proposition3.9.4,
(ad(X)Y, Z) = (Y,ad(X")Z) =0 (3.9.2)

So (ad(X)Y € . O

Proposition 3.9.6. Let G is a reductive Lie group such that Gy is locally isomorphic to Gy which is linear Lie
group of GL(n,C). Then Lie(Gy) is a reductive Lie algebra. And we denote the center of Lie(G1) by 3 and denote
([Lie(Gh), Lie(G1)]) by g1. Then

Lie(G1) =3P ¢ (3.9.3)

and g1 is a semisimple Lie algebra or {0}.

Proof. We set g := Lie(Gy). If Lie(Gy) has no trivial ideal, then Lie(G;) is reductive. Otherwise, Lie(G1) has a
trivial ideal h. By Proposition3.9.5, g = h @ h~. We set h; := b and by := h*. If b; has a subset which is a not
trivial ideal of by, by Proposition3.9.5, the subset is a not trivial ideal of g. By repeating the above argument, there
are g1, ..., 0r, 9r+1, --, -0m such that gi,....,9-, gr+1,.., .gm are ideals of g and gi,..., g, are one-dimensional abelian Lie
algebras and g1, ..., gm are simple Lie algebras. So g is reductive. Clearly g; @ ... @ g, is the center of g. Clearly
(lg,0]) C ([r+1:9r+1]) @ .. ® ([, Om])- S0 ([9,0]) C Gr1 D ... ® g Because for each j € {r +1,...,m} g; is simple Lie
algebra, ([g;,9;]) = ;. S0 gr+1® ... © g C ([9, 9))- O

Proposition 3.9.7. Let g be a semisimple Lie algebra and g = g1 @ ... © g = b1 © ... © by, and g; and b; are ideal of g
and simple Lie algebras. Then m = n and there is o : {1,2,....,m} — {1,2,...,m} such that o is bijective and g, ;) = b;
(Vi € {1,2,....m}).

Proof. For each i, g1 D {[g1,01]) = {[91,b1]) ® ... ® {[91,bn]). Because ([g1,g1]) is not zero, there is o(1) such that

(91, bo(1)]) is ot zero. Because ([g1,h,(1)]) C b1 and b, (1) is simple and gy is simple, g1 = ([g1,b,11)]) = br1). By
repeating the above argument, O
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3.10 Discrete subgroup and Abelian Lie group

Definition 3.10.1 (Discrete subgroup). Let G is a topological group. We call H C G a discrete subgroup of G if H is a
subgroup of G and the relative of H to G is equal to the discrete topology.

Proposition 3.10.2. Let

(S1) Gs is a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C).
(S2) H is a subgroup of Gi.

then the followings equivalent.

(i) H is a discrete subgroup of Gy.
(i) There is an open neighborhood of 1¢, U such that UNH = {1¢, }.
(iii) H is a closed subgroup of G1 and H is a Lie group which is locally isomorphic to {lg,}. And Lie(H) =

{0}.

Proof of that (i) = (ii): Because {1g,} is an open set of relative topology, there is an oen set U such that {1g,} =
UNH. 0

Proof of that (ii)) = that H is closed set: There is Uy such that U; is open neighborhood of 14, and UflUl C U. There
is Us such that Us is open neighborhood of 14, and U{l C U, and Uy C U;. Let us assume there is g € H \ H. There is
u € Uy and h € H such that gu = h. So g € hU;. Because G is a Housdorff space, there is U3 such that Us is an open
neighborhood of 1, and Us C U and h™'g ¢ U;*. So h ¢ gUs. Because g € H, there is hy # h such that hy € gUs. So
there is uz € Uy such that hy = gus. So houz ' = hu~'. Because h~'hy € Uy 'Us CU. So h™'hy € UN H = {1¢,}. This
implies h = hy. This is contradiction. O

Proof of that H is a Lie group: Because of (ii), H is locally isomorphic to {1g,}. Because {1¢,} is a linear Lie group of
GL(n,C), H is a Lie group. O

Proof of that (ii) = that Lie(H) = {0}: By von-Neumann-Cartan’s theorem, exp is locally injective. So Lie(H) =
{0}. O

Proof of that (iii)) = (ii): By von Neumann-Cartan’s theorem, there is € > 0 such that

exp(B(O,¢e)) NT(HNU) = exp(Lie(H) N B(0,¢)) = {lg,} (3.10.1)
So
n(exp(B(O,e) N V)N
= n(ezp(B(O,€))N T (Hm U))
= exp(Lie(H)N B(O,¢)) = {1g, } (3.10.2)
This means (ii). O
Proof of that (ii) = (i): For any h € H, {h} = hU N H. This means (i). O

Proposition 3.10.3. Let us fix any H which is a discrete subgroup of R™. Then there are linearly independent subset
X1,.... X, CR™ such that H=>Y"\_, ZX;. 7 =0 means H = {0}.

Proof of that n = 1. We can assume H # {0}. There is Y € H\ {0}. We set to := inf{t > O|tY € H}. We assume to = 0.
t
There is {t;} C (0,00) such that lim; , ¢; = 0 and ;Y € H (Vi). Let us fix any ¢ > 0. tY = lim;_, o [t—]th Because H

is closed, tY € H. This implies RY C H and Y # 0. This contradicts with H is a discrete subgroup.
So tg > 0. We set X7 := tgY. We assume there is X € H \ ZX;. There is t € H \ Z such that X = tX;.
(t—[t)toY = (t — [t]) X1 € H. This contradicts with the definition of . O

Proof of that n > 1. We assume the Proposition is true if n < N and N < 1. Let us take X; € H as in the N =1 case.
(0,1)X:NH = ¢.

There is Xo, ..., Xnx € RY such that X;, X, ..., X is a basis of RY. We set H' := {¢' € R¥~!|3s € R such that sX; +
Z@J\Lz tX; € H}. Clearly H' is a subgroup of RV~1.

We assume H' is a not discrete subgroup of RV =1, By the same argument as above, there is a sequence {t;'}$°, C H’

11
such that lim ¢;" = 0. Because X; € H, there is a sequence {s;}2; C [—5, 5] such that s; X7 + ZZVZQ t; X; € H (Vi). We
1—00
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11
can assume there is sg € [—5, 5] such that lim s; = so. Because H is closed, so X1 € H. By the definition of X3, so = 0.
71— 00
N

Because s; X1 + Z;VZQ t;; X; € H\ {0} (Vi) and lim s;X; + Z t;,jX; = 0. This means H is a not discrete subgroup. This
1— 00
j=2
is contradiction. So H' is a discrete subgroup.
By the assumption of the mathematical induction, there is Z1, ..., Z, € RN¥~! such that Zi, ..., Z, are linear independent
and H' ="' | 7Z;. There are sy, ...,s, € R such that X/, | := s; X7 + Z;zl Z; i X; € H (Vi). Because

1 S1 Sy
(X1, X s X)) = (X Xy | & 2100 o Fna (3.10.3)
0 2z n-1 Zr N—1
1 S1 Sy
and the rank of 0z Zm is (r+1), X1, X3,..., X]; are linear independent.
0 zi,N—1 - ZrN-1

Let us fix any X € H. Because X1, X5, ..., Xy is a basis of RY, there are s and to, ..., tx such that X = sX; +t2Xo +
..+ tnXn. Because (to,...,tNy) € H', there are mo,...,my € Z such that (to,...,tx)7 = maZo + ... + myZn.
Because X — Y/ X! e RX; NH =7ZX,, X € ZX1 + Y.,_, ZX]. Consequently, H = ZX; + Y _._, ZX]. O

Proposition 3.10.4. Let
(S1) Gy is a Le group which is locally isomorphic to a Lie subgroup of GL(n,C).
(A1) G is connected.
Then the followings are equivalent.
(i) Gy is abelian.
(i) Lie(G1) is abelian.
STEP1. Showing (i) = (ii). Let us fix any X,Y € Lie(G1). Because
exp(t(X +Y) + 2[X, Y] + O(t))

exp(tX)exp(tY)
exp(t(X +Y) + £3[Y, X] + O(t)) (3.10.4)

, 1X,Y] =Y, X]. So Lie(G}) is abelian. O
(X, Y] = [V, X]

STEP2. Showing (ii)) = (i). Thereis ¢ > 0 such that exp(B(O,¢))exp(B(0,¢)) C V. Let us fix any g, h € n(exp(B(O,¢€))).
There is X,Y € B(O,¢) such that g = n(exp(X)), h = n(exp(Y)0. Because X and Y are commutative,

gh = n(exp(X))n(exp(Y))
= n(exp(X)exp(Y))
= n(ezp(X +Y)) =nlexp(Y + X))
= n(exp(Y)exp(X)) = n(exp(Y))n(exp(X)) = hg (3.10.5)
By Proposition3.8.1, G; is abelian. O

Proposition 3.10.5. Let
(S1) Gy is a Lie group.
(A1) Gy is abelian.
(A2) G is connected.
(S2) N :=dimLie(Gy).

Then there is v € {1,2,...,n} such that T" x RN=" is C%-class isomorhic as Lie group to G.
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STEP1. Showing that Exp : Lie(G1) — G1 is continuous and surjective. There is € > 0 such that for any g € G there
are exp(X1),...,exp(Xpr) € Vi := exp(B(O0,¢)) which satisfies g = exp(Xy)...exp(Xyr). Because Lie(G1) and G, are
commutative, Exp : Lie(G) — G; is homomorphism of topological group.

Because FEzp is a locally isomorphism from Lie(G1) N B(O,€) — n(exp(B(0,€))) N V°, by Proposition3.4.6, Exp is
surjective. O

STEP2. Showing that Exp~*({1g}) is a discrete subgroup of R™. By von-Neumann-Cartan’s theorem, there is ¢ > 0
such that exp~t({1¢}) N B(O,¢€) = O. So exzp~1({1g}) is a discrete subgroup of RV, a

STEPS3. exp is an open map. Because G is abelian, for any X € Lie(G) exp(B(X,¢)) = exp(X)exp(B(0,€)). Because
exp(B(0,¢€)) is open, exp is an open map. O

STEPJ. Construction of a isomorphism of Lie groups. By Proposition3.10.3, there are X,..., Xy € Lie(G) and r such
that Xy,..., X is a basis of Lie(G) and

exp ' ({la}) = Y ZX; (3.10.6)
=1
We set i : T" x RN=" = G by
r N
i(exp(i2m0y), ..., exp(i2n0,), t) == exp(Y_0:X; + Y t:X;) (3.10.7)
=1 1=r+1

By STEPS3, i is an open map. So i is homeomorphism and isomoriphism of topological groups. By Proposition3.4.14, i is
a C“-class isomorphism of Lie groups. O

3.11 Nilpotent Lie group
Definition 3.11.1 (Nilpotent Lie algebra, Lie group). Let G be a Lie group and g := Lie(G). We set
go =9, 8; ‘= [gi—hg] (Z = 172a ) (3111)

We call g is a Nilpotent Lie algebra if there is n € N such that g, = {0}. We call G is a Nilpotent Lie group if G is
Lie(G) is a Nilpotent Lie algebra.

Proposition 3.11.2. Let G be a Lie subgroup of GL(nC) and G be a connected Nilpotent Lie group. Then Exp : Lie(G) —
G is surjective.

Proof. Let us fix any g € G. By Proposition3.4.6, there are X7, ..., X;,, € Lie(G) such that g = exp(X1)exp(Xs)...exp(Xy,).
Let us fix any X,Y € Lie(G). By Baker-Campbell-Hausdorff formula, there is a polynomial Z(t) sucht that for |t| < 1

exp(tX)exp(tY) = exp(Z(t)) (3.11.2)

Because exp(-X)exp(-Y) is holomorphic, the power series of exp(-X)exp(-Y') is equal to the power series of exp(Z(t)). The
convergence radius of the power series of exp(Z(t)) is co. By identity theorem of holomorphic function(see [19]),

exp(X)exp(Y) = exp(Z(1))

So exp is surjective. O

3.12 Solvable Lie group
Definition 3.12.1 (Solvable Lie algebra, Lie group). Let G be a Lie group and g := Lie(G). We set
go:=9, 8i:=[8i-1,0i1] (i=12,..) (3.12.1)

We call g is a Solvable Lie algebra if there is n € N such that g, = {0}. We call G is a Solvable Lie group if G is Lie(Q)
is a Solvable Lie algebra.

Clearly the following holds.

Proposition 3.12.2. Any nilpotent Lie algebra is solvable.
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3.13 Complex Lie group and Holomorphic representation

From the definition and property of C, the following holds.
Proposition 3.13.1 (Complexification). Here are settings and assumptions.
(S1) g C M(n,C) is a Lie algebra.

Then
gc =gr C:= {X+iY|X,Y€g}

is a C vector space with respect to
(a+ ) (X +13Y) := (aX = bY)

We call g ®@gr C the complexification of g.
From the definition and property of C and the definition of complexification, the following holds.
Proposition 3.13.2. Here are settings and assumptions.

(S1) g C M(n,C) is a Lie algebra.
(S2) f:g— g isaR linear map.

If we define F : g @r C by
g C:i={X +iV|X,Y € g}

then F is a C linear map.
Clearly the following holds by Proposition7.1.1.
Proposition 3.13.3. Here are settings and assumptions.

(S1) g C M(n,C) is a Lie algebra.

(S2) f:g— gisaR linear map.

(A1) There is a basis of g which is {X;}1, U {iX;}, for some {X;}, Cg.
(A2) {X;}_, is a basis of the complexification of g.

(S3) F is the complexification of f.

(A3) All eigenvalues of F' are distinct.

Then
det(f) = |det(F)|?

Definition 3.13.4 (Complexification and Real Form of Lie Algebra). The followings are settings and assumptions.

(S1) g is a complex Lie algebra.
(S2) b is a real Lie algebra that is real subalgebra of g.
(A1) g="bH+ibh and hNih = {0}.
Then we say b is a real form of g and g is a complexification of b.

Definition 3.13.5 (Complex Lie group). We call G is a complex Lie group if G is a Lie group and G is a complex
manifold and multiple operation and inverse operation of G are holomorphic.

Definition 3.13.6 (Complex Structure). The followings are settings and assumptions.
(S1) g is a real Lie algebra.
We say J € Engr(g) is a complex structure of g if
J? = —id, [X,JY] =J[X,Y] (VX,Y)
The followings are clearly hold.

Proposition 3.13.7. The followings hold.
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(i) For any real Lie algebra g C M(n,C), g has a complex structure below.

J:igoXm—iXeg

(ii) If a real Lie algebrag has a complex structure J, then gc := {X +iJY|X,Y € g} is a complex Lie algebra.

Definition 3.13.8 (Real Form of a Complex Lie algebra). The followings are settings and assumptions.

(S1) g is a real Lie algebra which has a complex structre J.
(52) gc :={X + JY|X,Y € g}.
(A1) There is a sub Lie algebra of g go such that

go+Jgo=g,80NJgo = ¢

Then we call go a real form of g.
The following is clear.
Proposition 3.13.9. The followings are settings and assumptions.

(S1) g is a complex Lie algebra that has a complex structre J.
(52) gc :={X +JY|X,Y € g} has a real form go.
(S3) b is a complex Lie algebra.

(S4) ® is a homomorphism from go to b as real Lie algebras.
Then ® can be uniquely extended on g.
Proposition 3.13.10. The followings are settings and assumptions.

(S1) G is a connected Lie group.
(A1) g:= Lie(G) has a complex structre J.
(A2) gc :={X + JY|X,Y € g} has a real form go.

Then there is € > 0, G is a complex Lie group, which has a local coordinate system

¢g : B(an) = ($1 + yliv ey Iy + ynl) — gexp(lel + leXI + ...+ ann + ynJXn) (g S G)

and
GxG3(xy)—ayted

18 holomorphic. We call a Lie group whose Lie algebra is go, a real form of a complex Lie group G.

85

Proof of that G is a complexr manifold. By von-Neumann Cartan Theorem, there is € > 0 such that G is a smooth real

manifold, which has a local coordinate system

¢g: B(0,€) 3 (x1 4+ Y1ty ..., Tp + yni) = gEzp(x1 X1 + 1 J X1 + .+ 2, X +ynJ X)) (9 € G)

Let us fix any ¢,¢’ € G such that ¢4(B(0,¢)) N ¢y (B(0,€)) # ¢. From the definition of Lie group, there is § > 0 such
that n : exp(B(0,0)) — G be a locally isomorphism as topological groups. Since € > 0 is sufficiently small, there is

A € exp(B(0,0)) such that
n(4) = (9)""9g
Therefore, for each (z1, ..., z,) € B(0,€), there exists unique (21, ..., 2},) € B(0,€)

R R2

Aexp(z1 X1 + oo + 20, X)) = exp(21 X1 + ... + 2, X5)

This means
log(Aexp(z1 X1 + ... + 2, X,)) = 21 X1 + ... + 2, X,

Let us fix Y7, ..., Y, € M(N,C) such that {X;}7, U{JX;}}, U{Y;}2, is a basis of M(N,C). And

C" 3 (2z1,.y2n) —» 21 X1 + ... + 2, X, € M(N,C)
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and
M(N,C) > X — log(Aexp(X)) € M(N,C)

and
M(N,C)3Y =21 X1 + .. + 20, X + 1 Y1 + oo + Y Yo = (21, ., 2),) € C™

are holomorphic mapping, respectively. So,

C" 3 (21,0 2n) > (21,000 20) €C™

is holomorphic. O

Proof of that inverse operation and multiplicity operation of G is holomorphic. From the proof of von Neumann Cartan
Theorem, it is enough to show that for any g € G Ad(g) is C linear. Because G is connected, there are Xi, ..., X, € g such
that Exp(X1)...Eaxp(X,,) = g. So, Ad(g) = ad(X1)...ad(X,,). From the definition of complexication, ad(X1), ..., ad(X,)
are C linear. O

Definition 3.13.11 (Holomorphic Representation). Let G be a complex Lie group and V' be a finite dimensional C-vector
space. We say (m, V') is a holomorphic representation of G if (m,V) is a continuous holomorphic representation of G and
m: G — GL(n,C) is a holomorphic homomorphism.

Proposition 3.13.12. The followings are settings and assumptions.

(S1) Gy is a connected complex Lie group.
(S2) Gs is a complex Lie group.

(53) ¢ : G1 — Gy is a continuous homomorphic map from Gy to Ga.
Then ¢ is homomorphic if and only if dp14, = Thg, (Gy) — Tig, (G2) is a C linear.
Proof. Tt is clear from the proof of Theorem3.4.14. O
Proposition 3.13.13. The followings are settings and assumptions.

(S1) G is a connected complex Lie group.

(S2) (m,V) is a finite dimensional continuous representation of G.
Then (m, V) is a holomorphic representation of G if and only if the differential representation of m is C linear.
Proof. 1t is followed from the definition of differential representation and Proposition3.13.12. O
Definition 3.13.14 (Complexification and Real Form of Lie Group). The followings are settings and assumptions.

(S1) G is a complex Lie group. We set g := Lie(QG).
(52) H is a closed subgroup of G. We set b := Lie(H).
(A1) g is a compexification of b.

Then we say H is a real form of G and G is a complezification of H.

3.14 Simply Connected Lie Group

3.14.1 Universal covering group of Lie group

Proposition 3.14.1 (Universal covering group). The followings are settings and assumptions.

(S1) Gy is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) Gs.
(A1) Gy is path-connected.

Let .
G1:=1[([0,1],{0}), (G1, {16, })]

and for each ci,cy € él c1 ~ co if there is a homotop ® from ¢y to co such that

CI)(S, O) =6 (I)(Sa 1) = Cl(l) = 62(2) (VS)
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and i
Gl = Gl/ ~
and ~
p:G19C}—>[C]EG1
and i
q:G13[c]—c(l) e Gy
and
[c1] - [e2] :=[c1ca] (for c1,c0 € GY)
Then

(i) There is a Lie group structure of G1 such that p: Gy — G is locally isomorphism of Lie groups.
(ii) Lie(G1) = Lie(Gh)
STEP1. Showing ~ is equivalent relationship on G1. Ttis easy to show by the fact homotop is equivalent relationship. [

STEP2. Showing the multiple operation of G is well-defined. Let us fix any c1,dy, co,ds € G such that ¢; ~ ¢o and dy ~
d2. Then there is ®., P4 such that ®. is a homotopy from c; to c2 and @4 is a homotopy from d; to da. Because ®. - @4
is a homotopy from ¢; - dy to ¢ - ds, ¢1 - dy ~ co - d2. So, the multiple operation of G is well-defined.

O
STEPS. Showing q is surjective. This is from (A1). O
STEP/. Showing Gy is group. This is from the group structure on Gj. O

STEP5. Constructing the topology of G1. There is € > 0 such that
Ezxp : Lie(G1) N B(O,€) — Exp(B(0,¢€)) NGy

is C*-class homeomorphism and
sup |lexp(X) — E|| <1
XeB(0,e)

For each s € [0, 1], we set
We s :={[[0,1] 3t — Exp(tsX)]|X € Lie(G1) NsB(0,¢€)}
and for each j € G4
W_f],s = gWe,s

We will show {Wys}aca, sefo,1) satisfies the axiom of system of fundamental neighborhoods.
Let us fix any [c][d] € [¢]We,s, [d] € We 5. Clearly, there is s1 € [0, 1] such that for any ¢ € [0, 1]

d(t)Exp(s1B(0,¢€)) C Exp(sB(0,¢€))

Let us fix any X € $1B(0,¢€). We set Z := d(1)Ezp(X). Because Exp(sB(O,¢)) is simply connected, d(-)Exp(-X) ~
Exp(-Z). This implies that
c(-)d(-) Exp(-X) ~ c(-)Exp(-2)

So,
[cd]We s, C [c]We.s

Let us fix any [c1][d1] = [e2][d2] € [c1]We,s; N [c2]We.s,, [d1] € We s, and [da] € We 5,. By the argument in the previous
paragraph, there is s3 € [0, 1] such that

[Cldl}We,% C [Cl]We,sla [CQdQ]We,S3 C [CQ]W6,52

So,
[Cldl]We,33 - [Cl}We,sl N [02]W€,82
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STEP6. Showing that G is a topological group. Firstly, we will show G is Housdorff space. Let [¢]G \ {e}. Because G is
Housdorff space, there is s € (0, 1] such that

e ¢ c(1)Exp(B, (O, se¢))

So,
[6] ¢ [C] We s

Consequently, G is Housdorff space.

STEP7. Showing that q is a local isomorphism. Because FxpB,, (O, €) is simply connected,
qlw., : We1 3 [c] = ¢(1) € Exp(B,(0,¢))

is injective. And clearly glw, , is surjective. Because ExpB,,(O,€) is simply connected, for any s € [0,1] and [c] € We 1
such that [¢|W, s € We 1,
q([c]We,s) = c(1) ExpBy, (O, se)

So, q|w. , is continuous and open map. Because Exp is continuous, there is s € [0, 1] such that
Exp(B,, (0, so¢) Exp(Bm (0, soe) C Exp(B,, (0, so€))
Because ExpB,, (O, ¢) is simply connected,
[c1]le2] € We sy <= c1(1)c2(1) € Exp(B, (0, so€))
Consequently, ¢ is a local isomorphism. O

Showing that G is path-connected. Let us fix any [¢] € G. We set, for each s € [0,1],

Then, clearly, C' is a continuous path from [{e}] to c. O

Proposition 3.14.2. Let G be a path-connected topological group and G be a universal covering group of G. Let us
assume * be the operation of m(G). Then for any c1 € C([0,1],G) such that c(0) = e and c2 € 7(G),

[e1] - [e2] = [ea] * [e2] = [e2] - [ed]

Proof. We set
Dy (s,t) := 1 (L(s(2t — 1)) + (1 — $)t)ea(L(2st) + (1 — 8)t)

and
Dy (s,t) := co(L(s(2t — 1)) + (1 — s)t)er (L(2st) + (1 — 8)t)
Here,
0 (u<0)
Lu):=¢ v (0<u<1l)
1 (u>1)
Clearly, ®1 is a homotop from c¢; - ¢3 to ¢q * ¢35 and P is a homotop from ¢y - ¢; to ¢1 * co. O

By Proposition3.14.2, the following holds. We will show another proof using adjoint representation of Lie group.

Proposition 3.14.3. Let G be a path-connected Lie group and G be a universal covering group of G. Then g~ *(e) is
contained in the center of G. In special, 7(G) is commutative group.

STEP1. Showing that Ad(g) = id (Vg € ¢~*(e)). Let us fix any go € ¢~ '(e) and Y € Lie(G). By the definition of Ad,
goBap(tY)gy ' = Eap(tAd(g0)Y) (It < 1)

So,
Exp(tu(Y)) = ¢(Bxp(tY)) = q(goExp(tY)gy ') = q(Bxp(tAd(go)Y)) = Exp(tu(Ad(g0)Y))

This implies
u(Y) = «(Ad(g0)Y')

Because ¢ is a local isomorphism, ¢ is an isomorphism. So, Y = Ad(go)Y . O
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STEP2. Showing that q~1(e) is contained in the center of G. Because EG) is path-connected, it is enough to show g is
commutative with Exp(B(0,¢)) for sufficient small € > 0.

goExp(Y) = goExp(Y)gy ' 90 = Exp(Ad(g0)Y )go = Exp(Y)go

Theorem 3.14.4. The followings are settings and assumptions.

(S1) G;1 is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) G;2 (i = 1,2).
(A1) Lie(G11) and Lie(G21) are isomorphic as Lie algebras.

then G1,1 and Ga,1 are isomorphic as Lie groups.

3.14.2 Lifting a Homomorphism of Lie Algebras*

Lemma 3.14.5. The followings are settings and assumptions.

(S1) G1,Gs are connected Lie group.
(52) ¢ : Lie(G1) — Lie(Gs) is a homomorphism.

(583) U is an open neighborhood of the zero vector in Lie(G1) such that Exp : U — Gy is a diffeomorphism to
an open neighborhood of e and

For each X,Y,Z € Uexp(X)exp(Y) = exp(Z) = exp(¢(X)) exp(¢(Y)) = exp(é(2))

(S4) V is an open neighborhood of e in Gy such that
V==V, VV C Exp(U)

(55) We set
P, (Exp(X)) = Exp(¢(X)) (Ezp(X) € V)

(S6) ¢1 € C([0,1],G1) such that ¢1(0) = e.
then
(i) There uniquely exists ca € C([0,1],Ga) such that for each 0 < 59 < 81 < 1, if
c1(s)te(t) € V (Vs, t € [s0,51])

then
c2(8)tea(t) €V (s, t € [s0,51])

it) If c1 and c| are homotopic preserving the start point and the end point, then co and ch are homotopic
1 2
preserving the start point and the end point.

Proof of the uniqueness in (i). Let us fix co that satisfies the condition in (i). Let us fix N € N such that for any

i€{1,2,...,N} and s,t € [ti—1,t;] c1(s)"tei(t) € V. Here, t; := >

Let us fix any ¢t € [0.1]. There is ¢ such that ¢ € [¢t;_1,%;]. Then from the condition in (i)
Cg(tifl)ilc/(t) = @O(Cl(tifl)ilcl(t)), Cg(tl,,l)ilcg(tl,) = @o(cl(t,,,l)flcl(tl,)) (l/ = ]., 2, ,Z — 1)
Therefore,

Cg(t) = 602(15) = Cg(to)_ICQ(t) = CQ(to)_lc2(tl)_l...CQ(tifz)_102(tifl)CQ(tifl)_lcQ(t)
= Dy(erto) ter(tr) ) Poler(tion) Tt er(tio1))Poler(tima) T ea (1))

I mean,
CQ(t) = @O(Cl(to)_lcl(tl))..@o(cl(ti,g)_lcl(ti,l))@o(cl(ti,l)_lcl(t)) (3141)

Consequently, ¢y is uniquely defined by ¢;. O
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Proof of the existence in (i). We take over the notations in the proof of the uniqueness in (i). We define ¢; by (3.14.1).
Let us fix any sg, s; € [0, 1] such that sy < s; and

c(s)te(t) e V (s, t € [sg, 51])
Let us fix any [sg, s1]. Then there exist i, j such that
s € [ti1, ) t € [tj-1, ]
First, let us assume that ¢ < j. Then

co(s) " tea(t) = (Po(er(to) " er(t))- - Polcr(tioa) ter(tio1))@o(er(tin) ea(s))) ™
(Po(ea(t ) Yer(t) 1) @o(er (ty—2) " tea(ti—1)) ®oler (tj 1)~ Cl(t)))
D, (c1(s) er(tion))Poler(ti) er (i) Po(er(tj—2) " ter(t;—1))@
= B,(cr(s)tea(t))

In the case when i > j, by the same argument as the above,

ca(s) ea(t) = @oler(s) ea(t))

O
Proof of (ii). Let us fix F : [0,1] x [0,1] — G such that F' is a homotopy from ¢; to ¢j. We set
ci(t) =i (t) ((s,1) € [0,1] x [0,1])
For each s € [0, 1], let ¢§ denote the curve in (i) regarding
[0,1] 3t — F(s,t) € G
And we set
F'(s,t) :=c5(t) ((s,t) €[0,1] x [0,1])
Clearly F’(0,-) = co(-) and F'(0,-) = c5(-). Let us fix N € N> such that
Fs,t) ' F(s',t)) € V (V5,8 € [0,1] st |s — | < % it —t] < %)
It is enough to show
F'(s,t) ' F' (', t') = @, (F(s,t) ' F(s', 1) (Vs,8 € [tiytiva], VE, ¥ € [tj,t541],Y4,7) (3.14.2)

If the above equation holds, F” is continuous and F'(s,1) = F’'(s’,1) (Vs,s’). Then, F’ is a homotopy from cg to ¢
preserving the start point and the end point.
We will show (3.14.2) by mathematical induction. We set

s = 1) i (1), gp 00 = 1) 7T (1)

Then

Ifj=0,g,,=c30)=c5(0)=e. So,if j =0,
¢ (t;) = c5(t;)Po(91,6,00) (3.14.3)
If we assume that (3.14.2) holds for any fixed (j — 1), this equation holds. Then

ety ity 00 =i (D EV

and
Gorty 108, 590950050 = () 71e] (e ()71 () = () () eV
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That implies

¢ (1) = e3(8)(e3(£)es () (e3(ty) ™ es (8))(e5 (1)~ e’ ()
(By (3.14.3))

= S0 Po(9s,t;.6) T Po(94 5,6 Po(gs7,t5,)
(g;tlj,tgg',tj,t' ev)

= SO)Po(s s, 195,50 )Po(gs 1;.17)
((g;gj,tgg/,tj,t/)gslytj;tl eV)

= SOPo(ss, 1Gar i, 095 t500) = SO Po(cF (1) i (H))

Therefore, (3.14.2) holds for (j + 1). O

Theorem 3.14.6. The followings are settings and assumptions.

(S1) G1,G2 are connected Lie group.
(52) 7 : Gy — Go is an isomorphism of Lie groups.
(S3) co € C([0,1],Ga2).

then

(i) There uniquely exists c; € C([0,1],G1) such that

TOCL = C2
We call it the lifting of co.

(i1) Let us fix any b € C([0, 1], G2) which is homotopic to ca. Then the lifting of cb ¢} is homotopic to c;.
Proof of (i). By applying Lemma3.14.5 to d7~!, there exists ¢; that satisfies the condition (i) in Lemma3.14.5. There
exists n € N such that )

ca(u)tea(v) €V (Vu,v € [0,1] st ju—v| < =)
n

We set t; := = (7 =0,1,...,n). Let us fix any ¢ € [0, 1]. There exists j such that ¢ € [t;,¢;11]. Then

3 I~

ci(to) " ter(tr) = Po(calto) ea(tr)), - ealtj1) "rer(ty) = Polca(tj—1) " ealty)), calty) " er(t) = Polcalt;) ' ea(t))

Since ¢1(tg) = e and cao(tp) = e and 70 &, = id,

T(e1(tr)) = ca(tr), oo T(er(tj-1) " Ter(ty) = caltj—1) ealty), T(ea(t;) " Ter(t)) = calty) ' ea(t)
Then
7(c1(t)) = ca(ca(t)

We found that ¢; in (i) can be induced by the curve in Lemma3.14.5. Therefore, from the uniqueness in (i) of Lemma3.14.5,
the uniqueness holds. O

Proof of (ii). We found that ¢; in (i) can be induced by the curve in Lemma3.14.5. Therefore, from (ii) in Lemma3.14.5,
(ii) holds. O

Theorem 3.14.7. The universal covering group of any Lie group is simply connected.

Proof. Let us fix any Lie group G. Let G denote the universal covering of G and ¢ : G — G denote the natural projection.
Let us fix any curve ¢: [0,1] — G. Then there is n € Nand € > 0 and g1,....,g, € Gand 0 =ty < 51 <1} < ... <lp_1 <
Sp < tn, =1 C[0,1] such that

exp: Lie(G) N B(O,¢e) - U

is diffeoomorphic and
q(é([oﬂtl])) C gan q(é([smthLlD) - giJrlU (Z = ]-a 2; () n)

and
Q(é([slatl])) c glU mgi-l—lU (Z = 1327 sy U 1)



92 CHAPTER 3. LIE GROUP AND LIE ALGEBRA

From the definition of the system of neighborhood in G, for each i € {1,2,...,n}, there is a continuous map ® : [t;_;,t;] x
[0,1] — G such that ‘
6(8) = (I)Z(S, ) (ti,1 S Vs S tl)

From the definition of the system of neighborhood in G, for each i, there is a continuous map W’ : [s;, ;] x [0,1] x [0,1] = G
such that for each v € [s;, ;] ¥¥(v,1,2) is a homotopy from ®¢(v,-) to ®*1(v,").

We set _
<I’l(t,1—s) ti—1 <t <s;
F t) = : t— i
(5,1) \I/’(t,( 8),1—5) s <t <t
ti — S5
Clearly F is continuous and a homotopy from g o ¢ to {e}. From Theorem3.14.8, the lifting ¢ is homotopic to {e}. O

Theorem 3.14.8. The followings are settings and assumptions.

(S1) Gy is a connected and simply connected Lie group.
(A1) Gy is a connected Lie group.
(S2) ¢ : Lie(G1) — Lie(Gz) is a homomorphism of Lie algebras.

then

(i) There uniquely exists the continuous homomorphism ® of Lie groups such that
dd, = ¢

(i) In addition, let us assume ¢ is surjective isomorphism. Then Ker® is isomorphic to the fundamental
group of Gs.

Proof of the existence in (i). Let us take over the notations in Lemma3.14.5. Let us fix g € G. Let us fixany ¢; : [0,1] = G
such that ¢1(0) = e and ¢;(1) = g. Let ¢ denote the curve in Lemma3.14.5. We set ®(g) = c2(1). From (ii) in
Lemmad.14.5, ® is well-defined. And, from Lemma3.14.5, ® is locally homomorphism and continuous and d®. = ¢. From
(3.14.1),if g = g192---gn,9: € V(i =1,2,...,n) then

P(g) = ®(91)P(g2)---(gn) (3.14.4)

Since @ is locally homomorphism, from the above equation, ® is a homomorphism. O

Proof of the uniqueness in (i). From Theorem3.5.2, ® is locally uniquely identified. From (3.14.4), ® is uniquely identified.
O

Proof of (ii). Remark that the natural projection ¢ : Gy — G5 is a continuous homomorphism and dg. is an isomorphism
as Lie algebras and Ker(q) is isomorphic to the fundamental group of G3. From (i), Corollary3.14.9 holds. Let ¥ denote
an isomorphism from G; to Go. q o ® is a continuous homomorphism and dg. o d®. is an isomorphism as Lie algebras.
From the same argument as the proof of (i), Ker(®) is isomorphic to Ker(q). O

Corollary 3.14.9. The followings are settings and assumptions.

(S1) G1,Go are simply connected Lie group.
then Gy and Gy are isomorphic with each other if and only if Lie(G1) and Lie(G2) are isomorphic with each other.
Proof. Tt is clear from Theorem(i). O
Corollary 3.14.10. The followings are settings and assumptions.

(S1) G is a simply connected Lie group.
(52) (m,V) is a finite dimensional representation of G.

then there uniquely exists the finite dimensional continuous representation of G (1,V) such that
dm =T
Proof. 1t is clear from Theorem(i). O

Proposition 3.14.11. The followings are settings and assumptions.



3.15. COMPACT LIE GROUP 93

(S1) G is a complex Lie group.
(52) G is the universal covering of G.
(S3) ¢ is the covering homomorphism from G to G.

Then

(i) G is a complex Lie group.
(i) ¢ is holomorphic.
(i1i) @ is locally biholomorphic.

Proof of (i). (i) is from Proposition3.13.10. O
Proof of (ii). Since d¢ = idp;e() is C-linear, from Proposition3.13.12, ¢ is holomorphic. O

Proof of (). From Proposition3.14.1, ¢ is locally diffeomorphic. From (ii) and the inverse function theorem for several
variable holomorphic mapping(See [17]), ¢ is locally biholomorphic. O

3.15 Compact Lie Group

T.B.D






Chapter 4

Irreducible Decomposition of Unitary
Representation

4.1 Some Facts Admitted without Proofs

In this subsection, We will present some facts that we will use without proof in the pages that follow. For the following
Proposition, see [4].

Proposition 4.1.1 (Shur Lemmall). Let G be a topological group and (7, V') be an continuous irreducible representation
of G and A :V — V be a continuous intertwining operator with respect to G such that A # 0. Then there is A € C such
that A = \I.

Definition 4.1.2 (Extreme point). Let

(S1) V is a vector space on C.
(52) A is a convex set of V.
(S3) z € A.

We say x is an extreme point of A if for any y,z € A and X € [0,1] such that x = Ay + (1 — X\)z x =y = z. We denote
the set of all extreme points of A by Ex(A).

Definition 4.1.3 (Extreme set). Let

(S1) V is a vector space on C.
(S2) A is a convex set of V.
(S3) B € A.

We say B is an extreme set of A if for any y,z € A and X € [0,1] such that x = y+ (1 — )z € B then y,z € B.
For the following three Propositions, see [13].
Theorem 4.1.4 (S.Mazur Theorem). Let

(S1) (V,{pn}tnen) is a semi-normed space on R.
(SQ} xg €V.
(83) A CV is a closed convex subset with xo ¢ A.

Then there is real-valued continuous linear function f such that f(xo) =1 and |f(z)] <1 (Vz € A).
Proposition 4.1.5. Let

(S1) (V,{pn}tnen) is a semi-normed space.
(S2) f is a real-valued continuous linear functional on V.

(S3) K is a compact convex subset of V.
Then {x € K|f(z) = max{f(z)|z € K}} is an extreme set of K.
Proposition 4.1.6 (Krein-Millman Theorem). Let

95
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(51) (V,{pn}nen) is a semi-normed space.
(52) K is a compact convex subset of V.
(58) Ex(K) is the set of all extreme ompact convez subset of V.

Then
(i) Exz(K) is not empty.
(i) K is the closure of the convex full of Ex(K).
Theorem 4.1.7 (Stone Weierstrass Theorem, lattice version). Let

(S1) X is a compact metric space.

(S2) V is a R-vector subspace of C(X,R).

(A1) V means the pointwise mazimum. Then fVgeV (Vf,ge V).

(A2) For any x,y € X such that x # y, there is f € V such that f(x) # f(y).

Then V is dense in C(X,R).

4.2 Continuity of representation

4.2.1 Uniform boundedness principle
Theorem 4.2.1 (Uniform boundedness principle). Let

(S1) X s a banach space.

(52) Y is a normed space.

(53) {T)\}AGA C B(X, Y)

(A1) For any v € X, {||Tav||}rea is bounded.
Then {||Tx||}rea is bounded.

Proof. We set A,, :={v € X|||Thw|| <n (VA€ A)} (n eN). {A,}52, satisfies the assumptions in Baire category thereom.
By Baire category thereom, there is n € N such that A # ¢. So there is vg € X and € > 0 such that B(vg,2¢) C A,. For
any A € A and w € X such that ||w|| =1,
1 1
|[Tawl| = HET/\(EW + o) — ET,\UoH

because vy, w + vg € B(vo, €)

1 1 1 1 n o n 2n
= 2T (ew +w0) = STeoll < 1= Ta(ew + w)ll + 1= Tveol| < =+ 2 = =
€ € € € € € €

2
So, [|Ty]] < == (VA € A) 0
€

4.2.2 Weakly continuity of representation
Theorem 4.2.2. Let

(S1) G is a local compact topological group.

(S2) (m,V) is a representation of G.

(A1) For anyu €V, G> g w(g)u € C is continuous.
Then (w, V') is continuous.

Proof. Let us fix Uy which is a local compact neighborhood of e. By (A1) and uniform boundedness principle,

sup |7 (g)|| < oo
9€Uo
Let us fix any € > 0 and go € G and up € V. By (Al), there is U; which is an open neighborhood of e such that
U, C U()

€
|| (goUr)uo — uol| < 3
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€
2(supyeg, lIm(g)l| + 1)

So, for any x € Uy and u € B(uo, )7 (go)ll + 1),

€
[l (goz)u = 7(go)uol| < [Im(goz)u — m(gox)uol| +[[m(gox)uo — m(go)uoll < Im(g0)llop|I7(2)llop|lt — uol| + 5 <€
O

In speciality, the following holds. However, this theorem can be proved without using Theorem4.2.2. The proof is
given below.

Theorem 4.2.3. Let

(S1) G is a topological group.
(S52) (mw,V) is a unitary representation of G.
(A1) For any u,v €V, G 3 g — (n(g)u,v) € C is continuous.

Then (mw, V) is continuous.

€

Proof. Let us fix any u € V and g € G. Let us fix any v € B(u, ——————
/ Y g Y © S+ D

). There is U which is an open neighborhood
of e such that .
(g™ Pyu, w) = [ull?| < 5

By (S2), for any h € gU and v € B(u, 5 ‘ ),

(Ifull + 1)

[l (R)u = m(g)v||* = ||ul[* — 2Re(m (g~ h)u, v) + |[v]|* = [[ull* — 2Re(u, v) + [[v]|* + 2Re(u, v) — 2Re(r (g~ " h)u, v)
= |lu — v||* + 2Re(u — w(g" h)u,v) = ||u — v||* + 2Re(u — 7(g~ h)u, u) + 2Re(u — 7(g~ h)u, v — u)

€ € _ 2¢ _ 2¢
<gtgt2llu—ml hyullllo —ul] < 5 T 2(lull +l7(g hyul])|fu —of| = 5 2(/full + [Jul Dl = ol
= ol < E 4 S
3 -3 3
So, (m, V) is continuous. O

4.3 Cyclic representation and Unitary dual

4.3.1 Definition and Basic Properties

Definition 4.3.1 (Cyclic representation). Let G be a topological group and (w,V) be a continuous representation of G.
We say (m,V) is a cyclic representation of G if there is v € V such that

N
{Zﬂ(gi)vkh, gN EG} =V

i=1
Clearly the following holds.
Proposition 4.3.2. Let G be a topological group. Any continuous irreducible representation of G is a cyclic representation.
By Proposition3.4.6, the following holds.

Proposition 4.3.3. Let G be a Lie group and (m,V') be a continuous cyclic representation of G. Then V is countable.
In speaciality, if m is unitary representation and dimm = oo, then V ~ % as Hilbert space.

By Proposition4.3.3, we can set of all continuous irreducible unitary representations of a Lie group.

Notation 4.3.4. Let G be a Lie group. We set
Q. := {(m, V)| V is closed subspace of I* and (7,V) is a continuous cyclic representation of G'}
Definition 4.3.5 (Unitary dual). Let G be a Lie group. We set

G = {(m, V)| V is closed subspace of I* and (m,V) is a continuous irreducible representation of G}/ ~

Here, ~ is the isomorphic relation as continuous representations. We call G the unitary dual of G.
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The following Proposition says that in the definition of unitary dual, the isomorphicness as continuous representation
is equal to the isomorphicness as continuous unitary representation.

Proposition 4.3.6. The followings are settings and assumptions.

(S1) G is a Lie group.
(52) (w,V) is a continuous irreducible representation of G.

(88) Py, Py are inner products on V such that (w, V') is a continuous unitary representation with P; (i =1,2).

Then there is A > 0 such that
P =)\P,

Proof. From Riez Representation Theorem, for each v € V', there uniquely exists ¢(v) € V such that Py(-,v) = Ps(-, ¢(v)).
For any v1,v3 € V and g € G and ¢1,¢ € C,
Pi(-,m(g)(crvr + cava)) = @1 Pi(m(g™ ) o) + @Pi(n(g™h) v2) = @ Pa(m(g ™), ¢(01)) + G Pa(m(g™ ), d(v2))
= By(,m(g)(c1op(v1) + c20(v2)))

This means that

P(m(g)(c1v1 + cav2)) = 7(g)(c16(v1) + c2(v2))

Therefore, ¢ is G-linear.
We will show that ¢ is a closed operator. Let us fix {u,}52,; C V such that {(un, ¢(u,))}52, is a cauchy sequence.
Then there are u,v € V such that

lim w, = u, hm o(up) =v
n— oo

Then for any w € V and n € N,
Pi(w, un) = Pa(w, ¢(un))
That implies that
Py(w,u) = Py(w,v)

Therefore, ¢(u) = v. Consequently, ¢ is a closed operator. From the Closed Map Theorem, ¢ is continuous.
From the Shur Lemma II, there is A € C such that ¢ = \idy. Since P, and P, are positive definite, A > 0. O

Proposition 4.3.7. The followings are settings and assumptions.
(S1) G is a Lie group.
(S2) (m;,V;) is a continuous unitary cyclic representation of G with cyclic vector v; such that ||v;|| =1 (i = 1,2).
(A1) (m1(g)v1,v1) = (m2(g)va, v2) (Vg € G).

Then (w1, V1) and (me, Va) are isomorphic as continuous unitary representation of G.

STEP1. Construction of orthonormal basis of V1. Let {g;}2, is a dense subset of G. We set {h;}$2, is a subgroup of G
generated by {g;}52,. There is a {f;}5°, C {h;}$2, such that {mi(f;)v1}$2, is a basis of the vector space W7 which is
generated by {my(h;)v1}52,. We take {w;}$2; which is the orthonormal basis of W3 by Gram-Schmit orthogonalization.

At the end of this step, we will show {7r2( fi)v2}52, is a basis of the vector space Wy which is generated by {ma(h;)v2}52,.
For showing this proposition, it is enough to show for each ai,...,any € C

N N
Zaml(fi)vl =0 < Zaﬂrg(‘fi)’vg =0 (431)
i=1 i=1
Because of (S3) and (Ay),

N N N

Zaml(fi)vl =0 < (Z a;m (fi)v1, m(g)v1) =0 (Vg € G) = Zai(m(g_lfi)vl,vl) =0 (Vg € G)

i=1 i=1 i=1

N N N

s Zai(ﬂ'g(gilfi)vg,vg) =0 (Vg c G) <~ (Z aiﬂg(fi)’l)hﬂ'g(g)vl) =0 (Vg S G) s Zamg(ﬁ)vg =0

i=1 i=1 i=1

So, (4.3.1) holds. O
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STEP2. Construction of orthonormal basis of V. By (Al), clearly
N N
1> am(fi)orllv, = 11> ama(fi)vallv, (Vas,..,an € C) (43.2)
i=1 i=1

We set, for each w; = Z;V:1 a; ;m1(fj)ve,
N;
= ai;m(f;)v
j=1

We will show {w}}$°, is an orthonormal basis of V2. By (A1), {w}}$2, is clearly orthonormal. Let us fix any k € N. Then
there are aq,...,any € C such that

fk U1 = Z a;W;

Because w; € W1, by (4.3.1),

ma(fi)v2 = Zaz

So, {w}}2, is an orthonormal basis of V5. O

STEPS3. Construction of isomorphism. We set

N N
(I)(Z a;w;) = Zaiwg (a1, ...,any € C)
i=1 i=1

Clearly ® is an unitary isomorphism between Hilbert spaces. We will show ® is G-linear. Because w; = v; and w] = va,
@(Ul) = Vg

Let us fix any ¢ € N. Then there are aq, ..., a, € N such that

gz U1 = Z a;W;
Because w; € W1, by (4.3.1),
2(9:)v2 = Z aju

So,
(m1(gi)v1) = m2(g:)P(v1)

Because W7 is dense in V7 and ® is unitary, ® is G-linear. O

Proposition 4.3.8. Let (7, V) be a continuous unitary representation of a topological groupG. Then there is a subset of
G-invariant cyclic subspaces D such that
V=P w

webD
Proof. We denote the all of nonzero invariant closed cyclic subspaces by ®. Clearly © # ¢. We set

N
T:={D CDlv; € Wi(i =1,2,...,N),{W;}¥, is a distinct subset of D, Zvi =0 = v; =0 (Vi)}
i=1

Let us fix any every totally ordered subset of T, T. Clearly UperD € T. So, by Zorn’s lemma, T has a maximum element
D. We set Vg := @y cp W. Let us assume Vi~ is nonzero. Then Vi~ has a nonzero invariant closed cyclic subspace W.
Clearly, D U{W} € T. This contradicts that D is a maximum element. So, V5= = {0} and V = 1}, O



100 CHAPTER 4. IRREDUCIBLE DECOMPOSITION OF UNITARY REPRESENTATION

4.3.2 Cyclic Representation and Jordan Normal Form

The content of this section is independent of the content that follows. In this subsection, we pointed out that for each
square matrix A a Jordan block corresponds to a cyclic representation (7w4(Z)z) (3z) when A is regular. Here, for each
m € Z ma(m)z := A™z. When A is not regular, a Jordan block corresponds to a space generated by ‘orbit‘ (m4(N)z)
(32). And we show we can get the Jordan normal form of A by repeating that we get a good space generated by an ‘orbit’
and add it to an existing direct sums of those spaces, by the same argument as the proof of Proposition4.3.8.

Notation 4.3.9. The followings are settings and assumptions.
(S1) A is a squared matriz of order n.

Then
ma(m)z = A"z(m e N,z € C")

And if A is reqular, we define
ma(m)z = A"z(m € Z,z € C")

When A is regular, (m4,C") is a continuous representation of Z. Since Z>( is a monoid, in general(not assuming that
A is regular), (m4,C") is a continuous representation of the monoid Zx>.

Proposition 4.3.10. The followings are settings and assumptions.
(A1) A is a jordan block Jp(a).

Then for wy := e,
C" = (ma(Zzo)wr)

In speacialty, when o # 0, 71 (o) 15 a cyclic representation of Z with a cyclic vector ey.

From Proposition4.3.10, we can see that Jordan normal form of a regular matrixz is a decomposition of the
representation of the group Z w4 into cyclic representations of 7. In general(not assuming that A is regular),
Jordan normal form of a regular matrixz is a decomposition of the representation of the monoid Z>o 7y
into representations {(m;,V;)}", of Z>o that statisfies the following condition.

ze Vst Vi=(Z>g-2)
From the point of view, we give another proof of exisense of Jordan normal form.

Definition 4.3.11. The followings are settings and assumptions.

(S1) V is a C vector space.
(S2) f € Endc(V).

df(z) = dim(ma(Z>o)z) (z € V)

and
dy == max{ds(z)|z € V}

Proposition 4.3.12. The followings are settings and assumptions.

(S1) V is a C vector space.
(58) ze V.

Then z, Az, ..., A% ()= are linear independent.

Proof. We set m := d¢(z). And aiming contradiction, let us assume z, Az, ..., A 'z are linear dependent. Then there
are m' <m — 1 and ag, ..., @y, —1 such that

A™ = apz +a1Az + ... + am/_lAmlflz
That implies that dim(agz, ..., am—1 A™ ~1z) < m — 1. This is contradiction. O

Proposition 4.3.13. The followings are settings and assumptions.

(S1) A€ M(n,C).
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(S2) P € GL(n,C).

Then
da =dpap—

Proof. There is z € C" such that d4 = dim(m4(Z>¢)z). From Propositiond.3.12, z, Az, ..., A"~ 12 are linear independent.
So, Pz, PAz = PAP 'Pz,...,PA™ ! = (PAP~1)™~1 Pz are linear independent. Therefore, dpp-1 < da. O

Theorem 4.3.14. The followings are settings and assumptions.
(S1) A€ M(n,C)
then the followings hold.
(i) There is P € GL(n,C) and oy, ...,ax € C such that

Ja) O 0
PilAP _ 0] J(OZQ) O

Ji(a;) 0 o)
J(Oél) _ O Jg(Oéi) 0]
and Ji(«;) is a jg-th square matriz
Q5 1 O
O o 1 o
Jk(ai) =
O a; 1
O Q5

We call Ji(oy) is a Jordan block.

(i) For any W1 and Wy such that Wi and Wy are Ji(«;)-invariant subspaces and C¥ = Wy @ Wy, W; = C¥
or Wy = C".

Proof of (i). We set V := C". Let {aq,...,ax} be the set of all eigenvalues of A. We set for each ¢ € {1,2,..., K}

da(z) :=dim(ma(Z>0)z) (z € V)

and
Vi :={z € V|{ma(Z>o)z) has just one eigenvalue «;}
and
M; := max{da(z)|z € V;}
and

Vim, = {z € Vi| dim(ma(Z>0)z) = M;}

Remark V; # ¢ and M; < oo for any ¢ € N since each eigenvalue space is not empty.
First, we will show
Vi = Wi, = {2z € V|(A - aE)Miz =0} (4.3.3)

Let us fix any 2z € V;. By Proposition4.3.12, Then there are ay, ..., ag,(»)—1 such that
f(A)z=0,f(z):==a0+a1z+ ... + adA(Z)_ldi(z)*l + g2 ()

If f has a root which is not equal to «, that is contradict that z € V;. So, f(z) = (x—a)™. This means that (A—aF)™z = 0.
Next, for aiming contradiction, let us assume that there exists z € W; ar, \ Vi. So there exists polynomial f such that
f(A)z # 0 and f(A)z has an eigenvalue o; # ;. From Proposition2.1.3, there are polynomial ¢1, ¢ such that

o1(2)(x — ) + da(a)(z — )M =1
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So,
0# f(A)z = 1(A)(x — ;) f(A)z + ¢a(x)(x — @)™ f(A)z = da(A) f(A)(x — a;)M'z = 0

That is contradiction. Therefore, (4.3.3) holds. From the same argument,
UkSvaiyk = Wi,’m (m = 17 27 ceey Mz) (434)

So,
‘/;,m = i,m \ Wz}mfl (m = 1, 2, ceey Mz) (435)
We set
Vim,; = {{#1,---2m} C Vin,| For any a € C™ \ {0}, Zaizi € Vi, by Ki i=max{m|{z1,..2m} € Vi, }
i=1

and we take
{ZMi,lv ey ZMiaKi} € Vi,Mi

By (4.3.4),
{(A — Oéi)ZMi,h ey (A — ai)ZMi,Ki} S Vi,Mi—l

Next, we will show
V=aLlV

Let us fix any z € V. Then dim(Zx>oz) < n. Therefore, there are ay), ..., pr) C {a1,...,ax} such that I (A4 —
Qy(i))™ 2z = 0. From Proposition2.1.3, there are polynomial f1,..., fz such that

Y (z—apw)" fi=E

This implies
2= Msi(A = ap)™ fi(A)z
i

Since ;i (A — ap()™ fi(A)z € Woig)m, = Vo), V =
sum;V; holds. By the same argument as Section2, we can show ), V; = @;V;.

Hereafter, by the same argument as Section2, the Theorem holds. O
Proof of (ii). For aiming contradiction, there are Jy(«) invarinat subspace W; and Wy such that

CY =W, & W,y

By decomposing Ji(a)|W7 and Ji(a)|W3 into Jordan normal forms, d(Ji(«)) < k. It is contradict with Proposition4.3.13.
O

4.4 x-weak topology of L'(G)

Definition 4.4.1 (x-weak topology). Let V be a normed space. We denote the weakest topology in which for any x € V
V* s f = f(x) € C is continuous by O, (V*). We call this topology *-weak topology of V*.

Clearly the following two propositions holds.
Proposition 4.4.2. Let V be a normed space. O, (V*) is induced by the family of seminorms {-(z)}zev .

Proposition 4.4.3. Let V be a separable normed space and {x,}nen be a dense subset of V. Then

|f(zn) — g(zn)]
<1+ | fwn) — g(zn)]

d:V*xV*> '—)Z € [0, 00)

is a metric on V* and O (V*) is induced by d.

Theorem 4.4.4 (Banach-Alaoglu theorem). Let V' be a separable normed space and {xp}nen be a dense subset of V.
Then B := {f € V*|||f|| <1} is a compact subset in O, (V*).
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Proof. Because (V*,0,,) is metrizable, it is enough to show (V*, O,,) is sequencial compact. Let us fix any { f,, }neny C B.
By the same argument as the proof of Proposition2.5.20, there is a subsequence {g,}nn = {f,(n)}nen such that for any
i €N lim g,(z;) exists.

n—oo

€
Let us fix z € V and € > 0. Let us fix x; such that ||z — z;|| < 3 Because {g,(2;)}nen is a cauchy sequence, there is

ng € N such that |g,(x;) — gm(z;)] < g (Ym,n > ng). Then for any m,n > ng

L€
19m (2) = gn(@)] < |gm(@) = gm(@i)| + g (2i) = gn(@i)] + lgn(2) = gn(@i)] < 2w — il[ + 5 <
So {gn(2)}nen is a cauchy sequence. This implies ILm gn () exists. We set

g(x) := lingogn(x) (xeV)

n—

Cearly ||g|]| <1 and w— lim g, = g. O
n—oo

4.5 Positive definite function on a group

4.5.1 Definition and Basic properties

Definition 4.5.1 (Positive definite function on a group). Let G be a group and ¢ € C(G,C). We say ¢ is positive definite
if for anyn € C and g1, 92,...,9n € G and c1,cz,...,¢c, € C

> ciceelgytgr) >0 (4.5.1)
Jik
Example 4.5.2. Let G be a group and (7, V) be a unitary representation of G and v € V. Then the following is a positive

definite function.
(m(-)v,v) (4.5.2)

Proof. For any n € C and g¢1,92,...,9n € G and ¢1,c¢a,...,c, € C

chck m(g; Lgr)v,v) chck 7(gx)v, (gj)v chw (gr)v ch m(g;)v) = ||Zc’k7r(gk)v||2 >0
k

O
Proposition 4.5.3. Let G be a group and ¢ is a positive definite function on G. Then
(i) p(e) 20
(ii) o(g7") = ¢(9)
(iii) 1e(g)] < p(e)
1 _
(i) [¢(g1) = ¢(92)* < Sp(e)l(e) = Rewp(gy ' go)]
Proof of (i). We succeed in the notation of Definition4.5.2. By setting n =1 and g; = e and ¢; =, (i) holds. O
Proof of (ii). By setting n =2 and gy = e and go = g and ¢; = 1 and ¢ = q,
(1+ lal*)¢(e) + ap(g) +ap(g™") 2 0
By setting a = 1,
Img(g) = ~Imp(g™")
By setting a = 1,
Rep(g) = Rewp(g™")
So, (ii) holds. O

Proof of (iii). By the above proof of (ii),
(1+al*)e(e) > —2Re(ap(g))
By setting a = —exp(—iarg(a)),
2p(e) = 2|¢(9)]
So, (iii) holds. O
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Proof of (iv). Weset n =3, c3 =1, g3 =3 in (). Then we get
0 < c1629(9195 ") + cacip(gagi ) + cr(g1) + c29(g2) + Gplgr ) + Gp(gs ) + p(e) + |er|*e(e) + |eal*p(e)
By (i),
0 < 2Re(c1629(g195 1)) + 2Re(c1p(g1) + cap(g2)) + () + |e1[p(e) + |eal*o(e)

Moreover, we set ¢; = —co = . Then

0 < —2|a|*Re(p(g1g5 1)) + 2Re(al(g1) — #(g2)) + p(e) + 2lal*p(e)
= 2[af*(p(e) — Re(p(g1g5 1)) + 2Re(a((g1) — ¢(g2)) + #(e)

©(g91) — p(g2)

2|lp(g1) — ¢(g2)

o(e)(e(e) — Re(o(g195 1))
2|e(g1) — (g2)]?

We can assume ¢(g1) # ©(g2). We set a = —p(e) 7 Then 2Re(a(p(g91) — ¢(g2)) + v(e) = 0 and

2lal*(p(e) — Re(p(g19; 1)) = . So, we get (iv). 0

The following is clear.
Proposition 4.5.4. Let G be a group and ¢ is a positive definite function on G. Then

(i) @1, p2 are positive definite functions on G and ay, g are positive numbers. Then aqp1+aaps is a positive
definite function on G.

(i) We set
Py := {p|p is a continuous positive definite function on G such that p(e) = 1}
and
Py := {p|p is a continuous positive definite function on G such that p(e) < 1}
and

P := {p|¢p is a continuous positive definite function on G }

Then Py and Py and P are conver.

Theorem 4.5.5 (Schur product theorem). Let M := {m; ;};; and N := {n; ;}; ; be nonnegative definite m-th Hermitian
matrices. Then M o N := {m; jn; ;j}:; is nonnegative definite. We call M o N the Hadamard product of M and N.

Proof. There are A := {a; ;};; and A := {b; ;};; such that
M = A*A, N = B*B

This means
m m

Mi = a0k = > bibik
=1 =1
So,

m
MmN j = E @i kb kai b
i,l=1

For each 4,1, we set the (m, 1)-matrix v;; by
Vil = t(ai,lbi,la ceey ai,mbi,m)
Then v; ;07 is a m-th nonnegative definite Hermite matrix and
MoN = Zvi)lv;"l
il
So, M o N is nonnegative definite. O

Proposition 4.5.6. Let @1, s are positive definite functions on a group G. Then p1ps is a positive definite function on
a group G.

Proof. Let us fix any g1, ..., gm € G. By Propositiond.5.3, {(p1¢2)(g; *g;)}:,; is an Hermite matrix. By Theoremd4.5.5,
{(901902)(9;1%)}1',]' is nonnegative definite. So, 12 is a positive definite function on a group G. O



4.5. POSITIVE DEFINITE FUNCTION ON A GROUP 105

4.5.2 GNS construction for unitary representation

We introduce the following notation.

Notation 4.5.7. Let G be a Lie group and f € C(G). Then

[ (@) == Ag(2)f(z7!) (z € G)
Clearly the following holds.
Proposition 4.5.8. Let G be a Lie group and f € C(QG).
(i) fre€C(G).
(it) f=f
Theorem 4.5.9 (GNS construction). Let G is a Lie group.
(S1) G is a Lie group.
(S2) ¢ is a continuous positive definite function on G.
(S3) We set (f,g) :==px* fxg*(e) f,g € Cc(Q).
(S4) We set Ho := C.(G)\ N. Here, N :={f € C.(G)|||f|| = 0}.
(85) Tyl f] == [f(9)] ([f] € Ho.9 € G)
Then

() (1.9) = [ ola™ )Tl @dordyn = | olay™)f ) derdyn = | S @ dendin
(i) Ho is a pre-Hilbert space.
(iii) T is well-defined continuous unitary representation on Ho of G.

(iv) We set H be the completion of Ho. Then T is well-defined continuous unitary representation on H of G.
(iv) H is separable.

(v) Let us assume {fn}nen C Ce(G) and f € C.(G) and suppen||falloo < 00 and li_>m fn = f (pointwise
convergense). Then lim ||f, — f|| =0.
n— oo
(vi) [|£1l < 5D, yesupn(r) 2@y DIZ|fl L1 (6 (VF € Cel(@))
(vii) (H,T) is cyclic.
(viii) ¢(g) = (Tgv,v) (Vg € G).

(iz) If o(-) = (7(-)u,u) for (w, V) which is a continuous cyclic unitary representation of G with cyclic vector
u. Then (m,V) and (T, H) are isomorphic as continuous unitary representations.

STEP1. Proof of (i).

( ) (Sp*f ) (6) = /G(lp*f**@?_ )g*(x)de = /G/G<p($— Y~ )f**(y)dng*(x)de
/ / ™)y~ A)dyrg* (v)dar

/ / (=19 F )y (2)dyndan = / / (2~'9) F(y~)g(@ DAW)A(w)dyrdan

// e(zy™ ) f(y)g(x)dyrdan
0

STEP2. Proof of (f,f) <0 (Vf € C.(G)). By the same argument as in the proof of Proposition5.2.3, there is { Ep ; }nen,1<i<e(n)
and {xmi}nGN,lgig@(n) such that

By Proposition3.6.15,

{En,i}nEN,lgiggo(n) C B(G)dlbjOlnt (Vn S N)
and
T i € En,i (Vn € N7 1 < Vi § 30(71))
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and
1f(z) = flana)ll < = (VwéEannéNwl < Vi < p(n))
and
llo(@™ y) =z, any)ll < = (Vw € Epni,Vy € B, j,Y¥neN, 1 <Vi<p(n))
We set
Z@ T iTny) (@) f(Tn3)XE, i(T)xE, i () (2,9 € G,n €N)
and

F(z,y) == p(a"'y) f(2) f(y) (z,y € G)
Then clearly
lim F,(z,y) = F(z,y) (Vz,y € Q)

n—oo

and
1F oo < llllool 1112

So, by Lebesugue convergence theorem,

hm//Fn(xay)dedyR://F(xay)dedyR:”ﬂF
n—o Jg Ja GJa

Because ¢ is positive definite,

/G/GFn(xay)dedyR = ;@(x;,txnj)f(xnﬂf(xnj) 20

O

STEPS3. Proof of (g, f) = (f,g) (Vf € C.(G)). By Proposition4.5.3, p(yz~") = (zy=1) (Va,y € G). So, by (i), (g, f) =
(f,9) (Vf € Ce(@)) B

STEP/. Proof of (ii). By STEP2,

I, 9l < Ilgll (Vf, g € Ce(G))
So, (1, -2) is well-defined on Hg by this inequality. Consequently, (ii) holds. O

STEPS. Proof of that (T, f,T.9) = (f,g9) (Vf,g € C.(G),Vz € G).

(T.f.T-9) / / (ay™ )T f(2)T- F () drndyn = / / (2y~1) f(22) F(y2)dwnilyn
- /G /G p(@2(y2) ") f(w2) (g2 dondyn = / / ey f(@) F W dzrdyn = (£,9)

O
STEPG6. Proof of that T is well-defined and unitary. It is clear from STEPS5. O

STEP7. Proof of (#i). By STEPG, it is enough to show T is continuous. Let us fix any f, g € C.(G). By Theorem4.2.3, it
is enough to show G 3 z — (T, f,g) € C is continuous. Let us fix any € > 0 and fix any z € G. Let us fix U such that U is
a compact neighborhood of e and U~ = U. For = € supp(f)U, there is V,, and U, such that V,, is an open neighborhood
of x and U, is a compact neighborhood of ¢ and U, C U and U, ! = U,

€

|fyz) = f(y)] < (fG fsupp(f)UO lp(xy=1)T.-1g(x)|dzrdyR + 1)

(Vy € V,Vz € Uy)

Because supp(f)U is compact, there is V., , ..., V. which is a covering of supp(f)U. Uy := U, N...NU,,, . For any w € zUy,

\(wa,g)—(Tzf,g)l=I(Tz—lwf,Tz—lg)—(f,Tz—lg)\S/G/ " lp(z ™ y)g(@)||f(yz) — f(y)ldyrdar < €

STEPS. Proof of (iv). By Proposition6.4.16, H, is clearly separable. Because H, is dense in H, H is separable. O



4.5. POSITIVE DEFINITE FUNCTION ON A GROUP 107

STEPY. Proof of (v). (v) is proved by Lebesgue convergence theorem. O

STEP10. Proof of (vi). This is followed by

A< sup Iso(xy_l)l(/G F(@)ldg)? (Vf € Co(C))

z,y€supp(f)

O

1
STEP11. Constructing a cyclic vector. There is {f,}52, C C.(G) such that supp(f,) C exp(B(O, E) and f, > 0 and
Jo fndg =1 (¥n € N). Then for any n € N

1P < el [ F@)0)dady = lell
So, there is subsequence { f4(n)}ne; and v € H such that

w— lim fop) =v
n—oo

Then for any f € C.(G)

n—oo

(frv) = lim (f.£,) = lim / . / P W@y

By the same argument as in the proof of STEP7,

dmif o[ e Ry [ e )
supp(f) J supp(fn) supp(f)

—Jim [ ) )y = [ oty )y
=00 J supp(f) wm)(fn supp(f)

= lim / / OF () — F)| fulw)dady
=0 J supp(f) éupp(fn

< / sup  (e)| f(yz) — F(y)ldy =0
supp(f) z€supp(fn)

So,
(f,v) =@ f(e)
O

STEP12. Calculas of f x k*. Let us fix any f,k € C.(G). By Proposition5.2.3, fG T,-1 fk*(y)dy exists. By the same
argument as in the proof of STEP2 and STEP?7, there is {E, i }rneni<i<p(n) a0d {Zn i }nen1<i<p(n) such that

{En,i}nEN,lﬁiﬁcp(n) C B(G)dlSJOlHt (V’ﬂ S N)

and
UYn,i € Emi (VTL c N,l <Vi < a(n))
and )
16" () = & (yn )| < — (VY € B,V €N, 1 < Vi < a(n))
and

_ _ 1 .
1f(y™") = flay, Il < — (Vo € supp(f)supp(k), Yy € By 5,¥n € N, 1 < Vi < a(n))

We set for n € N

a(n)

0= > S DK (i e () (2 € )

Then

lim F, = f* k" (pointwise convergence)
n—oo
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and
[ Folloo < 1 f ool [E™|loodg(supp(f)supp(k))dg(supp(k*)) (Vn € N)
So, by (v),
lim F,, = f+k™ (in H)
n—oo
Also,

a(n)

Z yo1 K (i)

By Proposition5.2.3 and (vi),
lim F, — / T, fk* (y)dy (in H)
€]

n—oo
So,
/Gqu fE*(y)dy = f = k*

STEP13. Proof of (vii). Let us fix any f,k € C.(G).
(FF) = @ (f % k*)(e) = (f * k*,0) = ( /G T, fK* (y)dy, v) = /G (T, [ (), 0)dy = /G (K" (), Ty)dy
— [ £k T8y = / k(y™)T, 85 (y)dy)
G

So,
k:/ k(yil)TyvAR(y)dy
G

By the same argument as in the proof of Proposition5.2.3, k € {3~ ¢;7(g:)v|e; € C,g; € G,i =1,2,...,m,m € N} So, v
is a cyclic vector of H. O

STEP14 Proof of (viii). For any f € C.(G),

/90(9’ f(g)dg = 9+ f(e) = /f YT, 0A R (y)dy, v) /f “1)(Ty, 0)Ar(y)dy

/f 10, 0)dy

So, for any y € G,

o(g™") = (Ty-1v,v)

STEP15 Proof of (iz). This is clearly followed by Proposition4.3.7. O

By the proof of Theorem4.5.9, the following holds.
Proposition 4.5.10. Let G is a Lie group. We will succeed in notations of Theorem4.5.9.

(S1) G is a Lie group.
(S52) ¢ is a bounded borel measurable function on G.

(A1) (f,f)=@xfx[r(e) 20 (Vf € Ce(@)).

Then by the same method to Theorem4.5.9, we can construct a cyclic continuous unitary representation (T, H) with a
cyclic vector v and o(g) = (Tyv,v) (a.e. g € G).
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4.5.3 The topology of positive definite functions
Definition 4.5.11 (The topology of P1). Let G be a Lie group. We denote the minimal topology of Py in which

P13>p— / g)dg, € C is continuous for every f € L'(G) (4.5.3)

by T1.
By Propositi0n3.4.6, there are {Up}22, C O(G) such that U, is relative compact and U, C Upty1 (Vn € N) and

i 1f1 = fallpoo ()
201+ |[f1 = fall Lo @)

By Proposition4.5.3, d is a metric on P;. We call this topology the pontryagin topology of P1 and denote this by Ts.

flaf2

(f1, f2 € Py)

The following is clear.

Proposition 4.5.12. Let G be a Lie group and {@n}nen C P and ¢ be a complez-value function on G and {@n}nen
compact converges to ¢. Then p € P.

Proposition 4.5.13. Let G be a Lie group. Then there is {fn}nen C Ce(G) such that for every f € C.(G) and € > 0
there is m € N such that ||f — fulleo < €.

Proof. By Proposition3.4.6, there is a sequence of compact subsets of G {K,}nen such that K,, C K, (Vn € N) and
G = UpenKy,. Then there is {gn }nen C C.(G) such that

gn|Kyn =1 and supp(gn) C K1 (Vn € N)

Because C(K,,) is separable for every n € N(see [?]), for each n € N there is {fy, m }men which is a dense subset of C'(K,).
We set fn+1,m = gnthrl,m (m n e N) Clearly {fn,m}n,mGN C C (G)

Let us fix any f € C.(G) and € > 0. Then there is nN such that supp(f) C K,. Because f € C(K,41), there
is m € N such that ||f|Knt1 — hnt1,m|EKnti1llo < €. Because g|K,, = 1 and supp(f) C Kn, ||f — fati,m|Ent1lloo =
19 f1Knt1 = ghnt1m | Kntilloo = [[f1Kn+1 — hng1m|Kniilleo <€ O

Proposition 4.5.14. Let G be a Lie group. Then 11 satisfies the first countable axiom.

Proof. Let us assume {f, }nen be in Proposition. Let us fix any ¢q € P;. We set
1 1
V(o Jos ) = (0 € P1ll [ (0= p0)fudgel < 1) (mm € N)
m el m

Let us fix any € > 0 and f € L*(G). Because C..(G) is dense in L'(G)(Proposition6.4.16), by Proposition, there is n,l € N
1 1
such that [|f — fullz1(q) < i Let us fix m € N such that — < 2 Let us fix any ¢ € V(po, fn, E)

| teta—coan o] < | [ (ola)=eo(a)ulaiar|+ | leto)=eol@)| )~ Fulo)lds: < T+2 [ 1)~ Fulo)ld <o

1
SO) V(wv fna E) C V(@? fa 6)' Because {V(QPO, fv 6)}fELl(G),€>O isa neighborhood basis at ©0, {V(@Ov fnv E)}m,nGN is also
a neighborhood basis at ¢g. O

Proposition 4.5.15. Let
(i) X1 and X5 are topological spaces.
(i) f: X1 — Xo satisfies

If {xn}nen converges x in Xy then {f(x,)}nen converges f(z) in Xo

(iii) X, satisfies the first countable aziom.
then f is continuous.

Proof. Let us assume f is not continuous. Then there is an open set of Xy O such that f~1(O) is not open set of X;.
Then there is z € f~(O) such that for any neighborhood of z N, N ¢ f~!(0). By (iii), we can take {V, , }nen which
is a countable neighborhood basis at . Then there is {z;, }nen C X1 such that z,, € V., \ f71(O) (Vn € N). Because
{Zn}nen converges z, by (i), {f(2n)}nen converges f(z) € O. Because f(x,) € O¢ (Vn € N), f(z) € O¢ = O°. This is
contradiction. O
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Notation 4.5.16. Let G be a topological group. We denote the set of all continuous positive definite functions by P. And
we set

Py = {p € Plp(e) = 1}

Example 4.5.17. Let G be a group and (mw,V) is a unitary representation of G. Then ®,(v ® v) is a positive definite
function.

Proof. For any n € C and ¢1, g2, ..., gn € G and ¢y, co, ...,c, € C

D i (v@o)(g;ar) = Y cir(nlgr)o, m(g5)v) = O ermlgr)v, Y em(g;)

3k 3k k j
O
Lemma 4.5.18. Let
(i) G be a Lie group.
(ii) f € Ce(G).
(111) {dn}tnen C Po.
(Z’U) ¢ € Py.
(v) {Pntnen converges to ¢ in 1.
Then {¢,, * f}nen compact converges to ¢ x f.
STEP1. Showing that {¢, * f}nen pointwise converges to ¢ = f. Let us fix any g € G. Then
0) = / ulah ™) 0)ao (1) = [ 6,((hg™) )7 (g™ ) (1) = [ o0 (h) (k) (1)
/ 0 (1) F (1 6) A (1)dg, (1)
by
> / o(h A (h)dgr () = 6+ f(g) (n — )
O

STEP2. Showing that {¢y, * f}nen are equicontinuous. We will show that for each gy € G and € > 0 there is a neighbor-
hood of e V such that
|On x f(9) — &n * f(g0)] < € (Vg € goV,Vn € N)

Let us fix any go € G and € > 0. Because f € C.(G), fA, is uniformly continuous. So, there is a neighborhood of e V

such that .

2(dgr (supp(f)) + D) (1A (@] Lo (supp(r)) + 1)

|f(g) — f(h)] < (Vg,heG st g theV)

Then, for any g € goV/,

|¢n % f(9) = & * flg0)| = I/ On(h™1)(f(hg) — f(hgo)dg,(h)| < /G |f(hg) — f(hgo)ldg:(h) < €

O

STEPS. Showing that {¢n * f}nen compact converges to p. Let us fix any K is a compact subset of G and € > 0. Because
 is uniformly continuous on K, there is V which is a neighborhood of e such that

€ _
[P(91) = ¢(92)| < 5 (Vo100 € K 5.t g7 g2 € V)
By STEP2, for each g € K, there is V; C V' which is a neighborhood of e such that
€
|30n(g) - @n(h‘” < g (Vh € qu’n € N)

Because K C UgergV and K is compact, there is g1, g2, ..., gn such that K C Ul ¢;Vj,.
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By STEP1, for each i € {1,2,...,n}, there is k; such that
€
lom(gi) = #(gi)] < 5 (Ym 2 ki)

We set K := max;c(1,2,... n} ki- Let us fix any g € G and m > K. There is i such that g € g;V,.

lom(9) — (9] < lom(9) — em(gi)| + lom(gi) — (gi)] + l9(g:) — p(g)] <€
O

Theorem 4.5.19 (D.A.Raikov-R.Godement-H.Yoshizawa Theorem). Let G be a Lie group and 1, T2 be topologies which
are defined in Definition.5.11. Then 11 = 7.

Strategy for our proof. Clearly 71 C 79. Let us fix any {¢,}nen C Py and ¢ € Py such that ¢,, — ¢ in 7;. By Proposi-
tion4.5.15, it is enough to show ¢, — ¢ in 7.

Let us fix any € > 0 and K which is a compact subset of G. By Proposition4.5.3, there is V' which is a neighborhood
of e such that

€ _

[p(g1) = ¢(92)| < 3 (V1,90 € K st g 'g> € V)
Then there is f € C.(G) such that supp(f) C V and f <0 on G and [, fdg, = 1. O
STEP1. FEvaluation of ¢, x f — f. Foranyn € Nand g € G

lon * f(9) — en(9)] < I/(tﬂn(gh‘l) — ¢nl9)) f(R)dg,(h)] < / lon(gh™") = ©n(9)|f (h)dgr(h)
G G
By Proposition4.5.15

< /G - /G (¢n(e) — Rewpn(R))
1

-5 /G (Reg(e) — Rewpn () f(h)dgy(h))*

Because ¢, — ¢ in 7y, there is ng € N such that

Nl=

1 1 1 1
f(h)2 f(h)2dgr(h) < ﬁ(/G((Pn(e) — Repy(h)) f(h)dgy(h))?

€2

| 1Reon (010 = Resh) 0l () < 5

So,
o 119) = enl0)] < § [ 10(6) = @7 (h)dgo 1) < § (¥ € G 2 o)
G
Similarily,

lo* f(g) —w(9)] < 5 (Vg € Gin > ng)

3
O
STEP2. Showing this theorem. By Lemmad4.5.18, there is n; € N such that
[ x fla) =@ F(9) < 5 (Vg € Kin > )
So, by STEPI,
lon(9) — 0(9)] < len(g) = @n* f(9)| + lon * f(g) =@ * f(g)| + [ f(g9) = f(g)] <€ (Vg € K,n > maxng,n1)
O

Proposition 4.5.20. Let G be a Lie group. Then Py is compact.

Proof. Let us fix any {¢n}nen C P1. By Banach-Alaoglu Theorem, there is a cauchy subsequence {¢q () }nen in *weak
topology. Because L'(G)* = L*®(G) (see [15]), there is a bounded borel function ¢ such that {¢q () }nen converges
to ¢ in weak-* topology. So, ¢ satisfies assumptions in Proposition4.5.10. By Proposition4.5.10, we can assume ¢ is
continuous. O
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4.5.4 Extreme points

Proposition 4.5.21. Let
(S1) G is a Lie group.
(S2) 1,2 are continuous functions on G.
(A1) o1 x f=pax f (Vf € Ce(@)).

Then p1 = @s.

Proof. Let us fix any g € G. There is a sequence {f,}nen C CF(G) such that [, fudg, = 1 (¥n € N). By the same
argument as the proof of Theorem4.5.9, ¢1(g) = p2(g). O

Proposition 4.5.22. We will succeed in notations of Theorem4.5.9. Let
(S1) G is a Lie group.
(S2) p1,p2 are continuous positive definite functions on G.
(A1) (1,2)¢r = (15 °2)g,
Then p1 = @a.
Proof. By Theoremd4.5.9, p1 % f = o x f (Vf € C.(G)). By Propositiond.5.21, p; = pa. O
Proposition 4.5.23. Let
(S1) G is a Lie group.

Then Ex(Py) \ 0 = Ex(Py).

Proof of C. Let us fix any ¢ € Ex(Pp) \ 0. If ¢(e) < 1, then ¢ = ¢(e) ZD) + (1 — ¢(e))0. This means ¢ ¢ Ex(Pg). So,
o(e

ple) = 1. O

Proof of D. Let us fix any ¢ € Ex(Py). Let us fix any ¢1,p2 € Fz(Py) and ag,as € [0, 1] such that ¢ = @191 + asps.

Then 1 = p(e) = arp1(e) + aspa(e). Then pi(e) = pa(e) = 1. So, p = 1 = pa. O

Proposition 4.5.24. Let

(S1) G is a Lie group.

(§2) By GNS construction we set
Q:Pr3>¢p— (T,H,) € Qe

Then Ex(Py) =P, N & 1(G).

Proof of C. Let us fix any ¢ € Ex(P;). Let us fix any closed G-invariant subspaces of H,, Vi, Vs such that H, = Vi + Va
and Vi # 0. Let us set P; be the orthogonal projection of V; (i = 1,2). Let us fix v € H, such that ¢(g9) = (T,v,v)
(Vg € G). Because V; L V, and P; is commutative with T, (Vi,g € G) and 1 = |[v||* = ||Piv||? + ||P2v]]?, (g9) =
T,Pv, P T,Pov, P
|P1U||2W + ||P2U||2W. Because ¢ € Ez(Py), (Tyv,v) = (T,Piv, Piv) = (T,Piv,v) (Vg € G). So,
1 2
(v, Ty-1v) = (Pyv,T,-1v) (Vg € G). Because (T, H,) is cyclic, v = Piv. So, Vi = H,,. O

Proof of D. Let us fix any ¢ € P; N Cb_l(é). Let us fix ¢1,p2 € P; and ag,a € [0,1] such that ¢ = ay¢1 + azpz. We
set for f + {f € Cc(G)|[|fll, = 0}) € Ce(G)/{f € Ce(G)|| ]|, = 0}

mi(f +{f € C(GlIfllo = 0}) := f +{f € C(G)IlIfllo, = 0} (i =1,2)

Because {f € C.(G)|||fllo =0} C {f € Cc(G)|I|f]lp; =0} (i =1,2), m1, mo are well defined and surjective.
1
Let us fix any w € H,,. Because |(m1(u), m1(w))n,, | < —|(u,w)| < —|ul|[|w]|. So, by Riez representation theorem,
a a

there is Aw € H,, such that (71 (u), 71 (w))y,, = (u, Aw) (Vu1 € Hy). Cle;rly A is continuous and linear. If A = 0, then
@1 = 0. This is contradiction. So, A # 0. Because (T',H,) is irreducible, by Shur Lemma(see Proposition4.1.1), there is
A1 € C such that T = X\ I. There is wy € Hy, such that i (wy) # 0. Then 0 < |[my(w1)][2, = AlJwi][?. So, A1 > 0. And,
(‘1,-2)p; = A1(1,2),. By Proposition4.5.22, o1 = M. 1 = ¢1(e) = Mp(e) = A1. So, o1 = A O
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By Proposition4.5.24, Krein Millman Theorem(Theorem4.1.6), Raikov-Godement-Yoshizawa Theorem(Theorem4.5.19),

the following hold.

Theorem 4.5.25 (.M. Gelfand-D.A. Raikov Theorem). Let

(S1) G is a Lie group.
(S2) K is a compact subset of G.
(S3) € > 0.

(S4) ¢ is a continuous positive definite function on G.
Then i, ...,y > 0 and @1, ..., om € Ex(Py) such that
o = il |[Loe(icy < €
i=1
Theorem 4.5.26 (I.M. Gelfand-D.A. Raikov Theorem). Let
(S1) G is a Lie group.

(52) 91,92 € G.
(A1) Ty, =Ty, (V(T,V) € é)

Then g1 = gs.

Proof. Let us fix g1, g2 € G such that g; # go. We set go := g1g5 *. There is f € CH(G) s.t go ¢ supp(f)~ supp(f) and
[|f]l2 = 1. We set

v(g) == (Ryf, f) (9 € G)

Because the right regular representation R is continuous on L?(G), ¢ is continuous positive definite function on G.

o(g0) = /G F(990)f(9)dgy (g) = 0

Because 1 = ¢(e) = ¢(e) — ¢(go), by Theorem4.5.25, Then aq, ..., &y > 0 and @1, ..., @ € Ex(P1) such that
> aiwile) = wilgo)) # 0
i=1

So, there is 4 such that ¢;(go) # 1. Because ¢; € Py, by Propositiond.5.24, (T, H,,) € G and there is v € H,, such that
llv]|g, =1 and ¢;(g0) = (Tgov,v)y,- So, Ty, # I. This implies that Ty, # T,,. O

4.6 Topology of unitary dual
Definition 4.6.1 (Fell topology). By GNS construction we set

O:Pro>p— (T,H,) € Qe

Here, we assume the topology of P1 is the pontryagin topology and 2. is the set of all separable cyclic unitary representation
of G. We set the toplogy of Q. by {O C Q.|®1(O) is open set}. We call this topology Fell topology of Q..

4.7 Direct Integral of Hilbert spaces

Definition 4.7.1. Let
(S1) (X,B, ) is a measurable space.
We say X is localizable if there is N C X and {X;}2, C B such that

(i) {X;}52, is disjoint.
(i) NNU2, X, = ¢.
(iii) X = NUUZ, X;.
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(iv) u(X;) < oo (Vi € N).
(v) W(F) =372 W(FNX;) VF € B.
Because Lie group is o-compact, the following holds.

Proposition 4.7.2. Let
(S1) G is a Lie group.

(52) w is a left invariant measure.
Then (G,*B, u) is localizable.
Notation 4.7.3 (Locally almost everywhere). Let
(S1) (X,B, ) is a meaurable space.
(S2) For each x € X, the proposition P(x) is given.
We denote P holds loc. a.e x € X if for any YB such that u(Y') < oo P holds loc. a.ex €Y.
Proposition 4.7.4 (Direct Integral of Hilbelt spaces). Let

(S1) (X,B,u) is a meaurable space.
(52) {H(z)}zex is a family of Hilbert spaces.
(§3) I :=1,cx H(x).
(S4) & C II.
(S5) R:={f €6|f =0 loc-a.e. x € X}
We say & is a Direct Integral of {H (z)}zex if
(i) If v1,v2 € & and a,b € C then avy + bvg := {av1 () + bva(z) }rex € .
(ii) If v € & then X € x = [[v(2)||g(z) € R is measurable.
(iii) If v € & then [ |[v(@)|[F () < oo
(iv) Let us fiz any f € Il such that
(a) There is p € L*(X) such that || f|| gy < () (Vo € X)
(b) For any gec &, X >z (f(2),9()) ) € C is measurable.
Then there is h € & such that for any g € &

(f(xz) — h(x),g9(x)) =0 for loc-a.e x € X (4.7.1)

(v) Let us fix any f € II such that

(a) [1f( )z € LA(X)
(b) There is h € ® such that f(x) = h(z) for loc-a.e x € X.

Then f € &.

Then & /R is a Hilbert space. We call this Wils Direct Integral of (X, u, {H(x)}zex) with respect to & and denote this by
&
Jx H(x)du()

Proof. Tt is enough to show that any cauchy sequence of & has a convergent subsequence. Let us fix any cauchy sequence
of &, {v,}52 ;. Then there is subsequence {v, ;) }i, such that

D vy = vee* < oo

and

D Mgt = vl < oo

i=1

So,

/ZH%W 2) = V(i) ()| By i1 (2) Z/H%(m 2) = V(i) ()| By i1 (2) Z||Uw+1)—%<z\|<00
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So,

o0

Z Ve (it1) (2) — v¢(i)(x)||%{(z) < oo locae z € X

i=1

So, {ve)(x)}2, is cauchy sequence for loc-a.e x € X. Because for any v € X H(x) is Hilbert space, {vgq)(7)}2;

converges to some v(x) € H(x) for loc-a.e z € X. Because Hv(z)||?q(x) = lim (v, (z),vn(z)) for loc-a.e x € X, [[v(:)|la(,
n— oo

is measurable. For loc-a.e x € X,

o (@] < lloa (@) = o1 (@)l + llor(@)]] < D lloi(z) = vima(@)]] + [Jor (@)]]
=2

So, for loc-a.e © € X,

(@)l < levi(w) —viea (@)]| + [[or (2)]]

Here,
/X(Z [lvi(2) = viz1 ()] + |[vr ()] *dp() < lim Z [vi(2) = vie1 (@)]] + [Jor ()| *dp(z)
1=2
n
< nli_{go(z vit1 — il + [Jo1|[* + [[on ] Z |[vigr — vil| + (Z Vi1 = wi]])?) < o0
i=1 i=1 =1
So,

ZHUz —viea ()l + [ Ol € L2(X, )

Let us fix any u €  and n € N.
L 2 1 2 1 2y, oL - 2 1 o L. 2
(0n (@), u(2)) = (Sllon(2) +u(@)[]” = Sllva(@)]]" = Sllu@)I%) +i(Sllva(z) + iw(@)|I" = Sllva(@)II" = 5 liu@)I)
So, (vn(+),u(+)) is measurable. This implies that (v(-),u(-)) is measurable. By (iv), there is vy € & such that for u € &

and for loc-a.e v € X
(v(z) —vo(z),u(z)) =0

So, for any n € N, (v(x) — vo(x), v, (x) — vo(x)) = 0. This implies that for loc-a.e z € X (v(z) — vo(z),v(z) — vo(z)) = 0.
So,
v(z) = vo(x) loc-ae xz € X

By (v), v € 6.
For loc-a.e z € X and nN,

o0

llo(@) = va(@)I] < 203 i) = via (@)]] + [[oa (@)]])

=2

and Yoo, [|vi(-) — vi—1 ()| + |Jv1(+)|] € L*(X). So, by Lebesgue convergence theorem,

im0 = vl = Jim_ [ ofa) = vn (@)l Pdn(o) =

n—oQ

FWils=mL?A‘xNglS By Theorem4.2.3, the following holds.
Proposition 4.7.5 (Direct Integral of Unitary representations). Let
(S1) (X,B, ) is a meaurable space.
(S2) {H(z)}zex is a family of Hilbert spaces.
(§3) I := e x H(x).
(S4) & C II.
(S5) f;? H(x)du(z) is the direct integral of (X, p, {H(z)}rex) with respects to &.
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(S6) G is a topological group.

(S7) 7y is a continuous unitary representation on H(z) (z € X).

(A1) For any g € G and v := {v(z)},ex € 6, m(g)v := {m:(9)v(x) }rex € &
(A2) For any v :={v(z)}zex € &, G > g+ 7(g)v® is continuous.

Then (m, ff; H(z)du(z)) is continuous unitary representation. We call this direct integral representation of (X, p, {m(x), H(x)}zex)
) &
and denote this by [ m(x)dp(z).

4.8 Decomposition of an affine type function

Definition 4.8.1 (Baire Set). Let X be a locally compact topological space. We denote the minimal borel family in which
any element of C.(X) is measurable by By. We call the elemant of By Baire set.

Definition 4.8.2 (Support of measure). Let

(S1) X is a locally compact topological space.

(52) B is the minimal borel set family containing all relative compact open sets.
(S3) w is a nonnegative measure on B.

(S4) F C X.

We say F supports p if for any AB such that ANF = ¢, u(A) =0.
Definition 4.8.3 (Regular borel measure). Let

(S1) X is a locally compact hausdorff topological space.

(52) B is the minimal borel set family containing all relative compact open sets.
(S83) 1 is a nonnegative measure on B.

(A1) For any compact set A, u(A) < oo.

(A2) p(A) = sup{u(C)|C € B, C C A and C is compact.}.

(A8) w(B) = sup{u(C)|C € B, AC C and C is an open set.}.

Then we say p is regular borel measure on X.
Definition 4.8.4 (Upper semicontinuous function). Let
(S1) X s a topological space.
We say f € Map(X,R) is upper continuous for any ¢ € R f~1((—o0,c)) is an open set.

Definition 4.8.5 (Affine type function). Let D be a vector space and X be a convex subset of D and f be a real valued
function on D. We say f is affine type if

fAz+ (1 =XNy) =Af(z) + (1 =) f(y) (VA €0,1],Vz,y € X)
We denote the set of all continuous affine type function on D by A(X).
Notation 4.8.6. Let

(S1) (D,{|| - lln}nen is a seminormed vector space.

(S2) X is a compact convex subset of D.

We set
B(X) :={f € Map(X,R|f is an upper semicontinuous and convex on X}
and
CB(X) := B(X)NC(X)
and

CB()(X) = CB()(X) - CB()(X)

Definition 4.8.7 (Vector lattice). Let
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(51) (V,<) is a partialy ordered vector space.
(S2) V is a binary operation on V.

We say (V,<,V) is vector lattice if for any x,y,z € V

(i) If e <y thenz+z<y+z.
(i) If v <y then ax < ay (Va > 0).
(iii) x Vy is a least upper bound.

Proposition 4.8.8. Let

(S1) (D{|| - |In}tnen is a seminormed vector space.

(52) X is a compact convez subset of D.
Then
(i) If f,g € CB(X) then max(f,g) € CB(X).

(ii) CBo(X) is a vector lattice with the pointwise order and pointwise mazimum.
(i1i) C'Bo(X) is dense in C(X).

Proof of (i). Let us fix any z,y € X and A € [0, 1]. Then

max(f(Az + (1 = A)y), g(Az + (1 — Ny)) < max(Af(z) + (1 = A)f(y), Ag(@) + (1 = Ng(y))
< Amax(f(z),g(z)) + (1 — Nymaz(f(z), g(z))

So, max(f,g) € CB(X) O

Proof of (ii). Let us fix any f1, f2, 91,92 € CB(X). For each z € X

fi(@) — g1(z) < fa(z) — go(7) = fi(z) + g2(2) < fa(@) + g1 ()

So,

max(f1 — g1, f2 — 92) = max(f1 + g2, f2 + 91) — (91 + 92)
So, by (i), max(fi — g1, f2 — g2) € CBo(X). O
Proof of (iii). By Hahn-Banach Theorem, for any =,y € X such that x # y, there is h € CBy(X) such tat h(z) # h(y).
So, by Stone-Weierstrass Theorem in Vector Lattice(Theorem4.1.7), (iii) holds. O

Definition 4.8.9 (Order of Regular Borel measures). Let

(S1) X is a locally compact hausdorff topological space.
(52) B is the minimal borel set family containing all relative compact open sets.

(83) 1, pe are regular borel measures on X.

We denote p1 < uso if
m(f) < pe(f) (Vf € CB(X))

Proposition 4.8.10. Let

(S1) (D {|| - ||n}tnen is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S83) 1, pe are regular borel measure on X.

(A1) 1 < po and po < p.
Then p1 = po.
Proof. This is from Proposition4.8.8. O
Proposition 4.8.11. Let

(51) (D{|| - |In}tnen is a seminormed vector space.

(52) X is a compact convez subset of D.
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(S83) w1, pe are regular borel measure on X.

(A1) pr =< pia.

(84) f € A(X).
Then py(f) = pa(f)-
Proof. Because f € CB(X)N (—=CB(X)), p1(f) = p2(f). O
Definition 4.8.12 (Upper envelope function). Let

(S1) (D{|| - |In}tnen is a seminormed vector space.

(52) X is a compact convex subset of D.

(83) f e C(X,R).
We set :

f(z) :=inf{h(z)|h € A(X),h > [} (z € X)

Proof of {h € A(X)|h > f} # ¢. Because X is compact and f € C(X,R), ||f]|r=(x) < oo. Constant function with
|| f||ze(x) is continuous affine type function. So, {h € A(X)|h > f} # ¢. O
Proposition 4.8.13. Let

(S1) (D,{|| - lln}nen is a seminormed vector space.
(52) X is a compact convex subset of D.
Then
(i) For any f € C(X,R), f is
(ii) For any f € C(X,R), f <
(iii) For any f € CB(X), f =
(iv) For any f,g € CB(X), f <f+3
(v) For any f.g € CB(X), |f =3l < |If = gllz=(x)
(vi) For any f € CB(X) and r € (0,00), rf =rf.
Proof of (i). Because f < [ £l o (x5 f is bounded. Let us fix any ¢ € R and = € f~((—o0,¢)). Then there is h € A(X)

such that h(x) < c. Because h is continuous, there is V' which is a neighborhood of 0 such that h(z+y) < ¢ (Yy € VN X).
So, f(x +y) < c (Vy € VN X). This means that z +V C f~1((—o0,c)). So, f is upper semicontinuous. O

bounded and upper semicontinuous.

5
f-
+

Proof of (i). (ii) is clear from the definition of upper envelope functions. O

Proof of (iii). We set K := {(z,7) € X x R0 < r < f(2)}. Because X is compact and f is continuous concave, K is
compact convex subset of X x R. Aiming contradiction, let us assume f(xg) < f(zo) for some z¢ € X. (zo, f(z0)) ¢ K.
By Theorem4.1.4, there is L which is a continuous R-linear functional on D x R such that

L(wo, f(20)) > 1> L(w, f(x)) (Vo € X)
This implies (f(zo) — f(z0))L(0,1) > 0. So,
L(0,1)>0

We set
1— L(z,0)

h(z) = T00.1 (x €D)

Then h € A(X) and
L(z,h(z)) =1 (Vz € D)

So, ~
L(zo, f(x0)) > L(z,h(z)) > L(z, f(x)) (Vz € X)

This implies

0 < Lz, h(x)) = L(z, f(z)) = L0, h(x) — f(x)) = (h(z) — f(2))L(0,1) (V2 € X)
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So,
f(z) < h(z) (Vz € X)
Similarly,
h(wo) < f(x0)
These two equation contradict with each other. O

Proof of (iv). Let us fix any x € X and € > 0. Then there is hi,hs € A(X) such that f < hy; and g < hg and
hi(z) < f(x) 4 € and hy(z) < §(z) + €. Because hy + hy € A(X) and f + g < hy + ha. f+ g(x) < hi(z) + ha(z). So,
f+g() < flz)+g(x) + 26 0

Proof of (v). By (iv), for any = € X.

fl@) = g(x) < f =g +g(@) = §(z) < f —g(x)
Because ||f — gl € A(X), f— g < [|f — gll So, (v) holds.
Proof of (vi). This is clear from the definition of upper envelope functions.

Definition 4.8.14 (Convex cone). Let
(S1) D is a R-vector space.
(S52) vi,va,...,vm € D.
Then
cc(V1, V9, ooy Upy) 1= {Z a;vila; >0 (Vi) }
i=1
Proposition 4.8.15. Let
(S1) D is a R-vector space.
(S2) v1,v2,...,;Um € D.
(A1) 0 € ex(ce(vr, va, ..oy Up)).-
Then there is wy, ..., w, €€ D such that wy, ..., w, are linear independent and
cc(V1, 02, vy V) C cc(wy, Wa, ..., Wy,)

Proof. We set ng := dim{vy, ..., v, }. Using mathematical induction on m — ng, we prove this proposition. Let us fix any
d € N. Let us assume this proposition holds for m — ng < d and m —ng = d + 1. Then we can assume

k l
Vypy = fZaiviJerjka,kJrl =m-1
i=1 j=1

If Kk =0 or v, # 0, then ce(vy,va,...,v) = cc(vy,va,...;Upm—1). By the assumption of mathematical induction, this
1
proposition holds. So, we can assume k # 0 and v,,, # 0. If { = 0,0 = E(v,,ﬁ—zle a;v;). This means 0 ¢ ex(cc(vy, ..., vm))-

So, we can assume [ % 0. Furthermore, we can assume

k:=min{K € N|Jo : {1,...,m} — {1, ...,m}:bijective, 3¢y, ...,cx >0, Idy,....,d, > 0(L :=m — K) s.t.
K L
— an(i)vg(i) + Zbg(])va(k+J) = 0 } — 1
i=1 j=1

We set
k

Vitj = TZW% +bjopss (5 =1,....0)

i=1
1
Because of the minimalism of k, 0 € ex(cc(vi, ..Uk, Vjyqs -, Vsyy)). Because vgy; = E(Zfﬂ aivi + vy ;) (V) and

!
Z_j:l v,/c+j = Um,
cc(v1,02, .oy V) C (1, .., Vg yy), k+1=m—1

By the assumption of mathematical induction, this proposition holds. O
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Proposition 4.8.16. Let

(51) (D{|| - |In}tnen is a seminormed vector space.
(52) X is a compact convez subset of D.
(S3) z e X.
(A1) f(x) = f(z) (Vf € C(X,R)).
Then x € ex(X).

Proof. Aiming contradiction, let us assume x ¢ ex(X). Then there is y,z € X such that y # z and =z = L—i_z We set

2
f() :==d(z,-). By Proposition4.8.13,

0= f(z) = fx) = 5(f(y) + f(2) = %(f(y) +£(2) >0

N | =

This is contradiction. O
Proposition 4.8.17. Let

(S1) X is a locally compact hausdorff topological space.
(52) B is the minimal borel set family containing all relative compact open sets.

(S3) M is the set of all reqular borel measures on X.
(S4) 1 eMm.

Then M, :={v € M|p > 0, < v} has a mazimal element.

STEP1. We set
¢ := {T C M,|T is totally ordered with <}

Let us fix any 9 which is totally ordered subset of M), with inclusion relationship. Clearly Uren' is totally ordered
with <. So, by Zorn Lemma, ® has a maximal element F'. Because F' is totally ordered with <, for any finite elements
Tly ey T, € F', N2 M, 6. O

STEP2. We set
S = {p e Mu(1) =v(1)}

Because S C {F € C(X)*|||F|| < |v(1)|} and S is closed subset in *-weak topology, by Banach-Alaogrou Theorem, S is
compact subset in *-weak topology. For any 7 € F,

M; = Nrecpx){n € Slu(f) 2 v(/)} N0 ecr o {m € Slu(f) = 0}
So, M, C S is closed subset in x-weak topology, O

STEPS. By STEP1 and STEP2, N,.cp M, # ¢. Let us take a pg € NrepM,. For aiming contradiction, let us assume there
is u € M, such that pg < p and p # pg. By Proposition, u ¢ F. But F N {u} is totally ordered. This is contradiction.
So, g is a maximal element of M,,. O

Proposition 4.8.18. Let

(S1) (D{|| - ||n}tnen is a seminormed vector space.
(S2) X is a compact convex subset of D.

(S3) w is a mazimal element in 9.

Then ~
u(f) = u(f) (Vf € C(X,R))

Proof. We set
p(9) = p(9) (9 € C(X,R))
Clearly p is a seminorm on C'(X,R). Let us fix any f € C(X,R).

L(rf)=ru(f) (r € R)
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By Hahn Banach Theorem, L has an extension L’ which is a R-linear functional on C'(X,R) such that L' < p. Let us fix
any g € C(X,R)*. Because —g <0, —g < 0. So,

L(—=g) < p(—g9) = u(—g) < p(0) <0

This implies 0 < L(g). So, by Riez representation theorem, L is a regular borel measure.
Let us fix any h € CB(X). Because —h is continuous and concave, by Proposition,

So, < L. This implies u = L. So,

O
Proposition 4.8.19. Let
(51) (D{|| - |ln}tnen is a seminormed vector space.
(52) X is a compact convex subset of D.
(S83) [ is continuous strictly convez function on X.
(54) z & ex(X).
Then f(z) < f(2)
Proof. By there are z,y € X such that x # y and z = %(z +y) Let us fix any h € A(X) such that f < h. Then
1 1
£(2) < L(F(@) + ) < 5hiz) +h(w)) = h(:)
So,
f(2) < S(f(@) + f(y) < f(2)
O

Theorem 4.8.20 (Choquet Theorem). Let

(S1) (D{|| - |In}tnen is a seminormed vector space.
(52) X is a compact convex subset of D.
(‘93) rg € X.
Then there are K is a borel set and p which is a regular borel probability measure on X such that K supports p and
X\ K Cex(X) and
plao) = [ c@)du(o) (Vo € ACX))

STEP1. Construction of continuous strictly convez function. We set U := {h € A(X)|||h||>*® = 1}. Because X is compact
metrizable, there is a countable set {h, }neny C U which is dense in U. We set

=
n=1

We will show f is strictly convex. Let us fix any z,y € X such that x # y and A € (0, 1). By Hahn-Banach Theorem, there is
I f@)+ f(y)
2 evu,

IIf = MHLO@(D)

%

N}

f which is a real-valued continuous linear functional onD and satisfies f(z) > f(y). Because

there is n € N such that h,(z) > 0 > hy(y).

ha(Az + (1= N)y)? = My (2)? + (1= A 2ha(3)? + A1 = N (@)ha(y) < Mo (2)? + (1= A)2ha(y)?
< A (2)2 + (1= N ()

This implies that f(Az + (1 —N)y) < Af(z) + (1 — A)f(y). So, f is strictly convex. O
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STEP2. Construction of a reqular borel measure. Because X is locally compact hausdorff space, by Riez-Markov-Kakutani
Theorem, § : C(X) 3 g — g(x) € C defines a regular borel measure. So, by Proposition4.8.17, there is a maximal element
€ M such that & < p. By Propositiond.8.11, u(g) = d(g) for any g € A(X). Because 1 € A(X), u(X) =1. O

STEPS3. Construction of K. We set

K = UpenKn, Kn = {z € X|(x) — f(z) > %}

- 1 1 -
Because K,, = (Npmen{z € X|f(z) — f(z) < —+ —})¢ and f — f is upper continuous, K, is measurable for any n € N.
n. m .

So, K is borel measurable. By Proposition4.8.19, X \ K C ex(X). By Proposition4.8.18, u(f) = u(f). So u(K) = 0. This
implies X \ K supports p. O

4.9 Mautner-Teleman’s theorem

Proposition 4.9.1. Let
(S1) G is a Lie group.

(S2) (m,V) is a continuous unitary cyclic representation of G with a cyclic vector w.

Then there is a finite mesurable space (X, M, u) and a direct integral f)g w(z)du(x) which is isomorphic to (w,V) as
continuous unitary representation.

STEP1. Decomposition of a matriz coefficient. We can assume
|l =1

We set
¢(g) = (1(g)w,w) (g € G)

Because P is a compact convex subset of C(G) with compact convergence topology which is metrizable by countable
seminorms. By Theorem4.8.20, there are p which is a probability measure on P; and X which is a borel mesurable set
such that X C ex(P;)

FwwaéFwameer@m

Here, ¢, = . For any g € G, P; € ¢ — Reyp(g9) € R and P; € ¢ — Imw(g) € R are continuous affine by Raikov-
Godement-Yoshizawa Theorem(Theorem4.5.19). So,

ﬂm=A%MMMHwe®

STEP2. Construction of a family of irreducible representations. We set

(T'(z), H(x)) : The representation generated by the GNS construction (z € X)

and
I = e x H(z)
and
v(f,x) : The projection of f in H(z) (f € C.(G),x € X)
and

®y : The vector space generated by {A()v(f,-)|f € Co(G), A € L=°(X, u)}

We set © by the completion of D¢ with the inner product (-,-) := [(-,-)g()dp(z). As we showed in the process of
proving Proposition4.7.4, any cauchy sequence of ®y has a subsequence which converges pointwise some element of II.
So, we can embedded © in II. Clearly © is C-linear subspace of II. And, for each A € L*®(X,u) and f € C.(G),
X 3z~ |[\2)v(f,2)||n(z) is measurable and L2-integrable. So, forany F € ®, X 3 x + ||F(2)||(») is measurable and
L2-integrable. Clearly ® satisfies (v) in Proposition4.7.4. So, it is enough to show (iv) in Proposition4.7.4. Hereafter, let
us fix any u € II which satisfies (iv)(a) and (iv)(b) in Proposition4.7.4. There exists {v, }neny C Dg such that

A flon —ul| = inf flv—ull
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For each u,v € II,
(u(z),v(z))
Plu.v)(x) = { T (WY Gex
0 ( )

We will show
[lu(z) — P(u,v)(z)|| < |Ju(z) —v(x)|] (Vv € V,Vz € X) (4.9.1)
Let us fix any v € V and z € X. If v(x) = 0, (4.9.1) holds. So, we can assume v(z) # 0. Then
2
o) =~ Plu )@ = lu(o)| - 2

and
|u(z) = v(@)|[* = [Ju(z)[|* = 2Re(u(x), v(x)) + |[v(2)|

So,
lo(@)|*(lu(z) — v(@)[]* = [Ju(@) = P(u,v)(@)]]*) = |(u(z), v(2)) = [[o()[[** = 0
This implies (4.9.1). So, by (4.9.1) and Proposition2.5.14, { P(u, v,,) }nen is a cauchy sequence. So, ug := li_>m P(u,v,) €D
n oo
exists. We will show ug w € II which satisfies (iv)(4.7.1) in Proposition4.7.4. Aiming contradiction, let us assume that
there are v/ € © and a borel measurable set E such that p(E) > 0 and
(u(z) — up(z),u'(z)) #0 (a.ex € X)

As we showed in the process of proving Proposition4.7.4, any cauchy sequence of ®( has a subsequence which converges
pointwise some element of II. So, we can assume u’ € Dy. We set

vi=u' — P(u,ug)

For any x € X, we will show
(v(z), uo(z)) =0 (4.9.2)
and
(u(x) — ug(z),up(x)) =0 (4.9.3)

If ug(x) = 0, the both clearly holds. So, we can assume ug(z) # 0. Then,

(u'(2), uo())

@@ uo@)P =0

(v(x), uo(x)) = (u'(x), uo(z)) —
This means (4.9.2) holds. Furthermore,
(u(2), voo (7))

[|voo ()] 12

|(u(2), voo ()]

Voo ()12

(u(z), uo(x)) = (u(z), Voo (7)) = = (uo(x), uo(z))

This means (4.9.3) holds. For any = € F,
(u(z) = uo(z), v (z)) = (u(x),u'(x)) = (uo(x),u'(x)) = (u(z),v(x)) + (u(z), P(u', u0) () = (uo(x), v’ (x))

by (4.9.2)
= (u(z),v(x)) + (u(x), P, u0)(x)) — (uo(x), P, uo)(x))
by (4.9.3)
= (u(x),v(x))
So,
(u(z),v(x)) #0 (Vz € E) (4.9.4)
We will show
P(u',up) €D (4.9.5)

Clearly,
AeL¥(X),weD = MweD

For n € N, we set
(u'(x), uo(x)) ([o(z)]] > % and [|u’(2)[| < n)

An () = { [|uo ()| |2 - (zr e X)
0

(otherwise)
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Because A, € L™(X, 1), Ayug € . Let us fix any ng € N. If m,n > no,

[[Amuo — Anuol| < / o (z)||2dp(x)

lluo (@) 1< 75 [’ (2) || =m0

The right side of this equation converges to 0 when n — oco. So, {A\nuo}men is a cauchy sequence. So, P(u',ug) =

lim A, uo(pointwise convergence) is in ®. We set
m—r o0

up := ug + P(u,v)
By the way which is similar to the proof of (4.9.5), P(u,v) € ®. This implies u; € D.

2
U, v
[lu — u1||2 = ||lu— u0||2 — 2Re(u — ug, P(u,v)) + |(|v||)2
by Proposition4.9.2
|(u, U)|2 2 |(u7v)|2 : 2
= ||u — uo||* = 2Re(u, P(u,v)) + 22— = ||u — uol||* — < inf |jv —ul|
|lv]|? l[I> veDo

This is a contradiction. So, (X, B(X), u, II,®) is a direct integral of Hilbert spaces. O

STEPS3. Construction of continuous unitary representation. We set
T!]U(f’ $) = U(Rgfa .Z‘) (f € CC(G)7x € X)

Because

(v(Ryf, ), v(Rgg,x)) = (v(f,x),v(g,2)) (Vf,g € Cc(G), Yz € X)
T, is a unitary operator on . Because Dy is dense in ©, T, has the unique extension on ®. For any f € C.(G) and
91,92 € G7 HT‘JIU(f? ) - quv(f7 )H < /’L(X)HRglf - Rng||L°°' SO7

G339~ Ty(f,-)eD
is continuous. Because T is unitary and ® is dense in ®, T is weak continuous. So, T is strong continuous. Let us take
1
{fn}nen C CF(G) such that fG fndgr =1 and supp(f,) C exp({X € M(n,C| ||X|] < ﬁ}) (Vn € N). Then {v(fn,")tnen

has a subsequence which converges some v € ©. By the same way as the proof of Theorem4.5.9, we can show the following.

(v(f,"),v(g,) = (v(fw),/Gg(y’l)Tle(g,-))Ar(y)dgr(y)) (Vf,g € C(Q))

v(g,) = /G o(y™)T; (g, ) Ar(w)dg, () (Vg € Co(G))

By the same way as the proof of Theorem4.5.9, ¢ is in the closed subspace generated by T(G)v. Because Dy is dense in
®, T is cyclic with cyclic vector v. Clearly the following holds.

(Tyv)(z) = T v(z) (Vo € X)

Here, T% is the representation by GNS construction for x € X. So,
#(0) = [ elauta) = [ (To@o@)inte) = [ (T0(@).0()dnte) = (T0.0) (Vg € C)

By Propositiond.3.7, (m, V) and (T, f)? H(x)du(z)) are isomorphic as continuous unitary representations. O
By Proposition4.3.8 and Proposition4.9.1, the following holds.

Theorem 4.9.2 (mautner-Teleman’s theorem). Let

(S1) G is a Lie group.

(52) (w,V) is a continuous unitary representation of G.
Then there is a a family of direct integral of continuous unitary representations {f)?; w(z)dpx(z)}ren such that

(i) (X, pa) is a finite measurable space (VA € A).
(i) f)?; wx(z)dpr(x) is a continuous cyclic unitary representation of G.

(iii) (7, V) and @,cp f)?; wx(z)dpx(z) are isomorphic as continuous unitary representations of G.
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4.10 Review

Please note that the statements in this subsection are generally inaccurate. In this chapter, the following mautner-Teleman
theorem is the main theorem(Theorem4.9.2).

Theorem (mautner-Teleman theorem). Let

(S1) G is a Lie group.

(52) (mw,V) is a continuous unitary representation of G.
Then there is a a family of direct integral of continuous unitary representations {f;:; w(x)dpx(z)}ren such that

(i) (Xx,pn) is a finite measurable space (VA € A).
(i) f)?: wy(z)dpr(x) is a continuous cyclic unitary representation of G.
(iii) (7, V) and @, p f)?; wx(z)dpx(xz) are isomorphic as continuous unitary representations of G.

This theorem states that any continuous unitary representation of Lie group is decomposed into irreducible continuous
unitary representations. The direct integral of continuous unitary representations {X, D, u,T,, H(x)} is a subset of
IT :=II,cx H(x) which satisfies the following main conditions.

(i) For any u,v € ®, (u(-),v(-)) is measurable and integrable.
(ii) {Ty}zex defines T which is a continuous and unitary action on D.

(iii) If v € IT and ||v(+)|| is measurable and bounded by a L? function and (v(-),u(-)) is measurable, v can be
seen as the element of ® in a sense.

In special, (T,D) is a continuous unitary representation of G.

I also think that the following Gelfand-Raikov Theorem(Theorem4.5.26) obtained in the process of showing mautner-
Teleman theorem is also a very significant theorem. This theorem states that we can distinguish any two element of Lie
group G by the unitary dual G of G. The definition of a unitary dual is the set of all continuous irreducible unitary
representation of G.

Theorem (I.M.Gelfand-D.A.Raikov Theorem). Let
(S1) G is a Lie group.

(S2) g1,92 € G.
(A1) Ty, =T,, (V(T,V)€G).

Then g1 = g2.

Below, I would like to review the process of obtaining these two theorems with my personal opinions and impressions.
We begin by examining the cyclic representation rather than directly examining the irreducible representation. The
definition of the cyclic representation (m,V’) with a cyclic vector v is the representation space is spanned by 7(G)v.
The definition of the cyclic representation is the representation whose any vector is a cyclic vector. One of the reasons
for focusing on cyclic representations is to investigate the Jordan normal form with respect to matrices that cannot be
diagonalized in matrix decomposition theory. Supposing (7, V') is a representation of Z, m(1) is similar a jordan block if
and only if (7, V) is cyclic[?].

By Zorn lemma and the same argument as the diagonalization of unitary matrices, we can show that any continuous
unitary representation of Lie group is decomposed into cyclic continuous unitary representations (Proposition4.3.8). So,
the proof of mautner-Teleman theorem is attributed to the case for cyclic representations.

We focus on matrix coefficients whose form is ¢ := (7(-)v,v) from a continuous cyclic representation (m, V') with a
cyclic vector v. ¢ satisfies the following condition.

N
> aim(gi)v =0 < > aip(gg) =0 (Vg€ G)

i=1 =1

This implies if (71(-)vy,v1) = (m2(-)ve, v2) then 71 and 7o are isomorphic as continuous unitary representations (Proposi-
tion4.3.7). So, this is the kicker to investigate ¢ := (7(-)v,v). This function satisfies the following conditions.

@) ele)z0
(i) ¢(g7) = »(9)
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(iv) Ip(g1) — ple2)]? < 5o(e)lo(e) — Replor ' 02)

V) I (f,9)p = [oe(zy™) f(y)g(2)dg (2)dg, (y) (f,g € Cc(G)), then (-, ), satisfies a nonnegative Hermitian
semibilinear form.

We call functions which satisfies these conditions positive definite functions even if they don’t have a form (7 (-)v,v). The
right regular action R preserves this nonnegative Hermitian semibilinear form and continuos. So, we construct continuous
unitary representation (7', H,). Taking a sequence of Cf (G) { fn}nen such that || f,||r1 () = 1 (Vn), by Banach-Alaogrou
Theorem (Theorem4.4.4), {f,}nen has a convergent subsequence which converges to some v € H, in x-weak topology.
Banach-Alaoglu Theorem states the unit sphere on of dual of a separable normed space is sequencial compact in *-weak
topology. v likes a dirac delta function whose support {e}. For any g € G, Tyv likes a dirac delta function whose support
{g7'}. So, v is a cyclic vector of H,. Assigning f = Tyv and g = v in (v), we see ¢ = (T'v,v). In special  can been seen
as a continuous positive definite function. This method of obtaining a continuous and cyclic unitary representation from
a positive definite function is the GNS construction.

The GNS construction is a powerful technique that will be used with great success throughout this chapter. For
example, if g; # go in G, there is f € CF(G) such that g1g5 ' ¢ supp(f) and f(e) = 1. So, the continuous cyclic unitary
representation by GNS construction for (R.f, f) separates e and g195 1. So, by GNS construction, the claim is established
with the ‘irreducible‘ part in Gelfand-Raikov replaced by ‘cyclic’.

We see GNS construction gives a map from the space of continuous positive definite functions to the set of all cyclic
continuous unitary representations. So, we focus on P; which is the set of all normalised continuous positive definite
functions whose value at e is 1. There are two possible ways to set a topology in P;. One is the topology from compact
convergence(Pontryagin topology). Another one is the x-weak topology. By the strong continuity (iv), these topology is
the same. This is Raikov-Godement-Yoshizawa Theorem(Theorem4.5.19). A sketch of the proof of this theorem is shown
below. Let us assume {¢p}tnen C Py converges to ¢ € Py in #-weak topology. Then for any f € C.(G), {f * ¢n}nen
converges to f x ¢ € P; pointwise. Because of (iv), {f * ¢n }nen is equicontinuous on any compact subset. By the same
argument of the proof of Ascoli?Arzel? theorem, {f * ,}nen converges to f x ¢. Because of (iv), taking f such that
supp(f) is sufficient small, [|gn — {f * 9ul|oc bnen and [ — 1 % @|loo bnen are uniformly small. So, {, }nen C Py compact
converges to ¢ € P;.

By this powerfull theorem, we can show important properties of the topology of P;. x-weak convergence preserves (iii)
and (iv) and boundedness of positive definite functions. By GNS construnction, *-weak convergence preserves continuity of
positive definite functions. So, Py is closed subset of *-weak topology. By Banach-Alaoglu theorem and L'(G)* = L>°(G),
P; is compact. Because P; is convex, by Krein-Millman theorem, any ¢ € P; can be uniformly approximated by some
convex combination of {¢,})_; C ex(P;) on any compact subset.

We see

ex(Py) =P, N® Q)

Here, ® is the map defined by GNS construction. Because by orthogonal projections we can get a convex combination
decomposition of positive definite function from a decomposition of a representation space of GNS construction, the C
part is shown. By Shur Lemma, we can obtain a decomposition of a representation space of GNS construction from a
decomposition of a element of P;. The above discussion show Gelfand-Raikov theorem.

Next step, we elaborate Krein-Millman theorem. I mean for each ¢ € Py, there is a probability measure p € P(Py)
such that there is Y C ex(P;) which supports p and

= /Y Pudp(r)

This is from Choquet Theorem(Theorem4.8.20).
I think our first step is to interpret the value ¢(g) in terms of inverted space and function. I mean for each g € G, we
interpret g as
fq P12 0 o(g)

By Raikov-Godement-Yoshizawa Theorem, f, is continuous. Because f, is convex and concave, if we define
p1 < p2 <= pi(f) < p2(f) (for any f which is a continuous convex function on Py)
then

p= /Pl Pudp()

for any 4 such that 6, < p. As shown below, we find a mesurable subset of IP; which is defined by continuous strictly
convex functions. If f € C(Py,R) is strictly convex, for any affine(convex and concave) function h which satisfies f < h,

{z € P1|f(z) < h(z)} C ex(Py)
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It is rational to obtain the minimam function. So, we define the following upper envelope function f.
f(x) == inf{h(z)|f < h,h € A(P})} (z € Py)

Here, A(PP;) is the set of all continuous affine functions on P;. Becuase f(z) is upper semicontinuous, {z € P;|f(z) < f(x)}
is measurable. Because convex combination of countable dense subset of {h € A(P1)|||h||lcc = 1} is continuous strictly
convex by Hahn-Banach theorem, there is a continuous strictly convex function on P;. So, we find p such that 6, < p
and p(f) = (). N

If h € C(Py,R) is convex, then —h = —h by applying Hahn-Banach theorem to a convex set {(x,r) € P|||0 < r < h(z)}.
This can be inferred by drawing a graph of h in the 1-dimensional case. By this fact and Hahn-Banach extension theorem
and Riez-Markov-Kakutani theorem, for any 4 such that 6, < pu, there is a regular borel measure L such that 4 < L and
L(f) = u(f). So, if we take p which is a maximal element of {pldy < pu} by Zorn Lemma, u(f) = u(f).

We set X := {2 € P1|f(z) = f(x)}. By Theoremd4.9.2, we can construct fX (x)dp(z) which is a direct integral unitary
representations from {®()},ceq(x). By the same Way as GNS construction, we show ff H(z)dp(z) is a continuous cyclic

unitary with some cyclic vector v and ¢ = (T'v,v). So, f + H(z)du(z) and 7 are isomorphic as continuous unitary
repesentations.






Chapter 5

Irreducible Decomposition of Unitary
Representation of Compact Group

5.1 Some facts admitted without proof

Theorem 5.1.1 (Stone Wierstrass Theorem). Let
(S1) X be a compact metric space.
(52) A cC C(X).
(A1) A is a C-vector subspace of C(X).
(A2) 1€ A.
(A8) If f € A, then f € A.
(A4) If f,g € A, then fg € A.
(A5) If x £y € X, there is f € C(X) such that f(z) # f(y).

Then A is dense subset of C(X) in uniformly convergence topology.

5.2 General topics on Bochner Integral

Definition 5.2.1 (Bochner Integral). Let
(S1) (X, B, u) is a measurable space.
(S2) Y is a Banach space.

Then

(i) We say F: X =Y is finite-value if there is S € B such that F(S) is a finite set and F(X \ S) = {0} and
pu(S) < oo. We set

| F@duo) = 3 auF@)

a€F(S)

(ii) We say F : X — Y is a strong measurable if there are {F,}52, such that for each n € N F,, is a finite
valued and {F,}22; almost everywhere pointwise converges to F'.

(i1i)) We say F : X — 'Y 1is Bochner integrable if F is strong measurable and there are {F,}°; such that for
each n € N F,, is a finite valued and {F,,}°2; almost everywhere pointwise converges to F and

/ F(z)du(x) := lim F,(z)du(x)
X

n—oo X

exists.
Because of the definition of Bochner integral, the following clearly holds.

Proposition 5.2.2. Let

129
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(S1) (X, B, u) is a measurable space.
(52) Y,Z is a Banach space.

(S3) F: X —Y is Bochner integrable.
(S3) T :Y — Z is bounded linear.

Then T o F' is Bochner integrable and
T/ F(x)du(x) = / T o F(x)du(x)
X X

Proposition 5.2.3. Let

(S1) X is a compact space.

(S2) B is a banach space.

(S3) F € C(X,B).

(S4) w is a finite borel measure on X.

Then F' is bochner integrable and
| [ P < [ 1F@)ldut)
bl bl
Proof. By (S1) and (S3), F(X) is compact. So, for each n € N, there is a finite open covering of F(X) O(F(z,,;)

1
(n=1,2,..a(n)) such that O(F(z, ;) is an open neighborhood of F(z,, ;) and O(F(z,;) C B(F(zn,), ﬁ) We can assume
that for each n € N and each i € {1,...,a(n+ 1)} there is j € {1,...,a(n)} such that O(F(2,+1,)) C O(F(2n,;)).

1
Folr) = F(zp1) x € F(X)NB(F(xna), Q—n)

1 X 1
F(zniv1) @€ FX)N(B(F(2ni+1), 577) \ Ujm BIE (@), 57))
Clearly, for any n € N, F}, is finite valued and
1
1Fae) ~ F@)ll < o
and )
| [ Fu@aut@) - [ Frn@da@ll < 3oux)
X X 2
So,
lim F,(z) = F(z) (Vz € X)
n—oo
and by (S2)
Jim. i Fo(x)du(x)
exists. O

5.3 General topics on Compact self-adjoint Operator

Definition 5.3.1 (Compact operator). Let

(S1) W is a normed linear space.
(5§2) V is a Banach space.

We say T : W — V is a compact operator if T is linear and T(B(0,1)) is a relative compact. We denote the set of all
compact operator on V' by Bo(W,V).

Proposition 5.3.2. Let
(S1) W and V and U are normed linear space.
Then
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(i) If V is a Banach space, then Bo(W,V') is a closed subspace of B(W,V).

(i) If T € Bo(W,V) and Wy which is a linear subspace of W, then Ty, is a compact operator.
(i) If T € B(W,V) and dim(ImT) < oo, T is a compact operator.

(i) If T € Bo(W,V) and S € B(V,U), then SoT is a compact operator.

(v) If T € BW,V) and S € Bo(V,U), then SoT is a compact operator.

Proof of (i). Let us fix any {F,}32; C Bo(W,V) such that F := lim F,, exists. Let us fix any {z,}5>,; C B(0,1). It is
n—o0
enough to show there is a subsequence { F(z,(,)) }ne; such that lim F(z,,) exists. Because {Fy,};>; C Bo(W,V), there
n— oo

are subsequence {z,, (1) }re, (n =1,2,...) such that fo reach n € N {z, . ()}, is a subsequence of {x,, &)}, and

1
1Ea(zp, 1) = Fn(ze,@)ll < — (VK12 1)

We set
¥(n) := ¢n(n) (n € N)
Let us fix any € > 0. There is ng € N such that

€
||[Fr — F| < 1 (Vk > ng)

1
and < g Let us fix any k,I > ng. Then (k) = @i (k) and (1) = ¢;(1) and ko > ng and Iy > no and (k) = @n, (ko)
0
and (1) = pny (Io)- So,

€ €
1E (@) = E@p)ll < 1o (@) = Fao (@y@)ll + 5 = [1Fno (T, 0:0)) = Fro (T, o))l + 5 < €
So, {F(zyk))}32, is a cauchy sequence. Because V' is Hilbert space, klim F(zy)) exists. O
—00

Proposition 5.3.3. Let

(S1) V is an inner product space.
(A1) T € By(V, V).

(A2) There is o which is a nonzero eigenvalue of T'.
Any W which is eigenspace of a is finite dimensional.
Proof. Then there is a orthonormality {v;}5°, C W. Because éT is a compact operator, éTW = {w e W||lw|| =1} is
compact. By Proposition2.5.19, W has finite dimension. O
Lemma 5.3.4. Let

(S1) V is a Hilbert space.

(A1) T is a self adjoint operator from V to V.

(A2) (Ku,u) =0 Vu € V).
Then K =0
Proof. Let us fix any v € V. We set w := v+ Kv.

0= (Kw,w) = (Kv+ K*v,v+ Kv) = 2||Kv||?

So, ||Kv|| = 0. This implies Kv = 0. O
Lemma 5.3.5. Let

(S1) V is a Hilbert space.
(A1) T is a self adjoint compact operator from V to V.
(A2) Ay :=sup,cy,jv)=1 (Kv,v) > 0.

Then there is a ug € V' such that
)\+ = (KUO,U()),KUQ = >\+7.L0
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Proof. Then there is {v;}32,{v € V| ||v|| = 1} such that

lim (Kv;,v;) = Ay

i—00
By Proposition2.5.20, we can assume there is vy, ug € V such that

w— lim v; = vy
17— 00

and

lim Kv; = ug
1—00

We will show (Kvg,vg) = At

(Kwvo,vo) = (Kvs,v;) + (Kv; — ug,v0 — v;) + (uo, vo — v;) + (Kvg, vo) — (Kv;,vp)
= (KUQ,Uo) = (K’Ui,?)i) + (K’I}Z — Ug, Vo — 'Ui) + (UO,UO — 'UZ') + ('U(),Kvo) — (’Ui,K’Uo)
— Ay (1 = 00)

Let us fix v € V such that ||v]| = 1. We set

. v+ tv
FE) = (ule) (0). o) = T (1] < 1)
then
) = (Kvg,vo) + 2tRe(Kvg,v) + t2(Kv,v)
[lvol[? + 2t Re(vo, v) + £2[|v]|?
So,

f(t)(||vo\|2 + 2tRe(vg, v) + t2||v|\2) = (Kwvg,vg) + 2tRe(Kvg,v) + t2(Kv7v)

Because f(0) = A, and f/(0) =0,
A+ Re(vg,v) = Re(Kvg,v)

And
At Re(vg,iv) = Re(Kwy,iv)

These imply
Ay (vo,v) = (Kvg,v)

This means
K’UO = )\+U0

The following Proposition clealy holds.
Proposition 5.3.6. Let
(S1) T is a self-adjoint continuous linear operator of Hilbert space V.
Then

(i) Any eigenvalue of P is a real number.
(i) If a1, a0 € R are different eigenvalues of P, Vo, L V,,. Here V,, is the eigenvalue space of a; (i = 1,2).

(iii) If (w, V) is a continuous representation of a topological group G and W is a G-invariant subspace of V,
then W+ is a G-invariant.

Lemma 5.3.7. Let

(S1) V is a Hilbert space.
(A1) T is a compact self adjoint operator from V to V.
(S2) o (T) is the set of all positive eigenvalues of G.

Any assumulation point of o (T) is zero.
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Proof. If #0,(T) = oo, then there is no accumulation points of o4 (7). So, hereafter, we assume #o4(T) = co. By
Proposition5.3.5 and Proposition5.3.3, there is a sequence of positive eigenvalue Ay > A2 > .... > 0 and {v;}$2,; C V such
that v; is an eigenvector of \; (i =1,2,...) and 4lim Kuv; exists.

/\2 < /\2+/\z+1 = HKUi —K’Ui_;,_1||2 —0 (Z — OO)

Lemma 5.3.8. Let

(S1) V is a Hilbert space.
(A1) T is a compact self adjoint operator from V to V.

(52) Vi is the minimum closed subspace of V' such that V. contains all eigenspaces whose eigenvalue is positive.
V_ is the minimum closed subspace of V' such that V. contains all eigenspaces whose eigenvalue is negative.

Then
V=Vi®eKer(T)pV_

Proof. We set V, := (V, @ Ker(T) ® V_)*. Because (V, @ Ker(T) @ V_) is T-invariant and T is self-adjoint, Vi is
T-invariant. By Proposition5.3.5, (Tv,v) = 0 (Vv € V,). By Proposition5.3.4, TV, = 0. So, V. = {0}. O

5.4 Matrix coefficient and Character of representation

Definition 5.4.1 (Character). Let G be a topological group and (w,V) be a finite dimensional continuous representation
of G. Then

X=(9) := Tracer(g) (9 € G)
We call x» a character of .

Definition 5.4.2 (Matrix Coefficient). Let G be a topological group and (w, V') be a finite dimensional irreducible contin-
uous representation of G and let v € V and f € V*.

B (v, f)(9) := f(m(g9) ™ )
Because 7 is a continuous representation, @, (v, f) is a continuous function on G.
The following clearly holds.
Proposition 5.4.3. We succeed notations in Definition5.4.2. Then ®, is a bilinear form on C.
Proposition 5.4.4. Let
(S1) G is a topological group.
(52) (w,V) is a finite dimensional unitary representation of G.

(S3) {v1,v2, ..., vm} is an orthonomal basis of V.
(54) mij(9) = (m(g)vj,vi) (9 € G,i,j € {1,2,...,m})
then
(1) Xm = 32321 Tii-
(ii) ;. (gh) = > mik(9)mk,;(h) (Vg,h € G,Vi,j € {1,2,...,m}).
(iii) i j(g7") = 7;.(9) (Vg € G,Vi,j € {1,2,...,m}).

Proof of (i). It is clear. O
Proof of (ii).
Wi,j(gh) = (w(gh)vj,vi) = (W(Q)W(h)vjavi) = (W(g)(Z(W( U],vk V), Z ) v, v;)( h)vj,vk)
k=1 k=1

m
E , 9)m i (h

Proof of (iii).

mii(97 1) = (g™ s, vi) = (vj, 7(g)vi) = (x(g)vi, v;) = 754(9)
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5.5 Schur orthogonality relations

Proposition 5.5.1. Let
(S1) G is a compact Lie group.
(52) (m;,V;) is a continous unitary representation of G on C (i = 1,2).
(S3) f € Homc(Vh, V2).
(54) We set f by

Then f € Homg(V1, Vo).
Proof. By Proposition5.2.3, f(v) exists and

17 ()] < /G ma(g) Fra (g~ olldg

Because m; and 7o are unitary representation,
/GI\Wz(g)fm(g’l)vlldg < /G [Im2(9) (g™ H][[v]ldg < /G LA Hvlldg < [1£1I[]v]]

So f is continuous linear map. Becuase dg is a Haar measure on G, clearly, f is G-invariant. O

Proposition 5.5.2 (Shur orthogonality relations). Let
(S1) G is a compact Lie group.
(S2) (m;,V;) is a continous irreducible representation of G on C (i = 1,2).
(A1) Either Vi or Vs, is finite dimensional.
(53) (u;,v) € V; (1 =1,2).
Then

0 s s
(®(ur,v1), ®(u2,v2))r2(c) = { dimV (Tuy, us)(Tor,03) Eﬂi zﬂz;

Here T is a unitary G-isomorphism from Vi to Vs.

STEP1. Case when m % my. We set f € Homg(Vi, Vo) by
f(v) == (v,v1)ve (v e V)
Proposition5.5.1, f € Home(Vh, Va) exists. In this case, by Shur Lemma, f = 0.

0=(f(u1)7u2):/(Wz(g)fﬂl(g)_luhuz)dg:/G(fﬂl(g)_luhWz(g)_luz)dg:/G(Uzmz(g)_luz)dg

G

= /(Fl(g)_luhvl)(vz’ﬂz(g)_luz)dg=/(Wl(g)_luhUl)(m(g)_luzaw)dg
G G

O

STEP2. Case when w1 ~ 5. In this case, by Shur Lemma, there is A € C such that T o f = Aidy,. By the argument
in STEP1,
(P(u1,v1), ®(u2,v2))12(q) = MTu1,uz)
And
Trace(T™" o f) = AdimVy
By Proposition5.2.2 and T~! is G-invariant,

T lof=T-1f
So,
Trace(T~ o f) = Trace(T™Lf) = TUf (1) = (T (2, 01 )va, =) = [Jon||(T~ g, —2)
[[v1]] |[v1]] [|o1]] [[o1]]
= (Tﬁlvg,vl) = (ve,Tv1) = (Tvy,v2)
So,

(@(u1,v1), ®(u2,v2))L2(q) = (Tur, uz)(Tv1,v2)
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By Shur orthogonality Relations, the following three holds.
Proposition 5.5.3. Let
(S1) G is a compact Lie group.

(52) R(G) := <{<I>7T(u7v)| (m, V) € Gy u,v € V}> Here, Gy is the set of all finite dimensional irreducible
continous unitary representations of G.

Then
(i) Let {u;}¥"V is a orthonormality base of V. For any (m,V) € é’f,

1

dimV

{ O, (us,uj)| 4,5 =1,2,...,dimV}

is a basis of ®(V,V*).
(i) The following is well-defined.
O, (u®v) = Pr(u,v)

(#iii) The following holds.
R(G) = @(n,v)eéfq’ﬂ(v ®V")

Proposition 5.5.4. Let

(S1) G is a compact Lie group.

(52) (m,V) is a finite irreducible continuos representation of G and X is the character of .

Then
(XT{'? XTr) =1

Proposition 5.5.5. Let
(S1) G is a compact Lie group.
(S2) (m;, Vi) are two finite irreducible continuos representation of G and X, is the character of m; (i =1,2).
(Al) Xy = Xma-

Then
T XX T

5.6 Orthogonal projection by character

Proposition 5.6.1. We succeed notations in Definition5.4.1.

(i) X is continuous.
(i) If m =~ mo then Xx, = Xn,-
(iii) Xx(g2g~") = Xx(z) (Vg,x € G).
(iv) Xx(97") = Xx=(9) (Vg € G).
Proof of (i). (i) is from Proposition5.6.1. O

Proof of (ii). Let us take T : (w1, V1) — (w2, Vo) be a G-isomorphism. Then T'om; = mooT. This means TomoT ! = .
So, Xm1 = Xma- O

Proof of (iii). For any g,z € G,

Xx(gzg™") = Trace(n(gzg™") = Trace(r(g)n(x)m(9)~") = Trace(n(x)) = xx(z)

Proof of (). For any g € G,

X=(9™") = Trace(n(g™")) = Trace("'n(g™")) = Xx(9)
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Definition 5.6.2 (7-component). Let
(S1) G is a topological group.

(S52) (mw,V) is a continous representation of G.

(83) (1,W) is a continous irreducible representation of G.

We set
V, = Z ImA
A€Homg(W,V)

We call this T-component of V.

Proposition 5.6.3. We succeed settings in Definition5.6.2. And if dimW < oo, for any A € Homg(W,V), ImA = {0}
or A: (1,W) — (w|ImA, ImA) is G-isomorphism.

Proof. Let us assume ImA # {0}. Because W is irreducible, Ker(4) = {0}. And, because A is G-linear, Im(A) is
G-invariant. So, A is bijective and A is G-linear and A~! is G-linear. Because Im(A) is finite dimensional, A=1 i
continuous. So, A : (7,W) — (w|ImA, ImA) is G-isomorphism. O

Definition 5.6.4 (Projection by character). Let

(S1) G is a compact Lie group.

(52) (7,V) is a continuous finite dimensional unitary representation of G.
We set
Prr(v) = Pr(v) = dime | X Ta)r(a)odg
We call P, the projection by T.
Lemma 5.6.5. Let
(S1) G is a compact Lie group.

(S52) (r,W) is a continuous finite dimensional irreducible unitary representation of G.

(52) (mw,V) is a continuous finite dimensional unitary representation of G.
then ImP, C V..
Proof. By Proposition2.6.21, there is mq,..., 7, € G'f such that

n
T™=®,_17

P, T:ZPm,T

Let us fix any ¢ € {1,2,...,n}. By Shur orthogonality relation, if 7 % m;, Py, ; = 0. If there is T : (7, W) — (m;, V;) which
is an unitary map and G 1bomorphlsm Let us take wy, ..., w,, which is a orthonomahty basis of W. By Shur orthogonality
relation, for any j,

This implies that

Pr, +(Tw;) = dimT/ xr(9)mi(9)Tw;dg = dimTZ/ (T(g)wi, wg) (mi(g)Twj, Twy) Twidg
G G

= dimTZ/ (mi(g)Twg, Twy) (m:(9)Tw;, Twy) Twidg = Tw;

So, Pr, » = idy,. By this, Py, -(V;) =ImT C V,. O
Lemma 5.6.6. Let

(S1) G is a compact Lie group.

(S2) (t,W) is a continuous finite dimensional irreducible unitary representation of G.

(S3) (', W) is a continuous finite dimensional irreducible unitary representation of G.

(S4) (m,V) is a continuous finite dimensional unitary representation of G.

(A1) (1, W) & (7', W).
then P-|V] =0.
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5.7 Peter-Weyl theorem

5.7.1 Irreducible decomposition

Theorem 5.7.1. Let
(S1) G is a compact Lie group.
(52) (mw,V) is a continous finite dimensional representation of G.
(S3) (-,+) is an inner product of V.

Then

(i) (w,V) is a unitary representation with respect to the following inner product

(1, 0) = /G (n(g)u, 7(g)v)dg

Here, dg is a Haar measure on G. By Proposition3.6.13, there is a Haar measure on G.
(ii) (mw, V) is irreducible < (m,V,(-,")x).
(i) If ™ is a continuous representation of G such that m and 7' are equivalent as continuous representations,
(m, V, (-, )x) and (7', V', (-,-)rr) are equivalent as unitary representations.
Proof. Because G is unimodular and C(G) C L*(G), (i) holds. Because (-,-) and (-,-)x) are equivalent, (ii) holds. O
The following Proposition clealy holds.
Proposition 5.7.2. Let
(S1) G is a topological group.
(S2) (m,V) is a continous finite dimensional representation of G.
(S3) P € Homg(V,V).
Then

(i) Any eigenvalue space of P is G-invariant.
(i) ImP is G-invariant.
Proposition 5.7.3. Let

(S1) G is a compact Lie group.
(S2) (m,V,(-,-)) is a unitary representation of G.
(S3) vo €V and ||| =1
(S4) P:V 3v— (v,u9)vg €V
(§5) ®:G > g— 7w(9)Pr(g)* € Bo(V).
Then

(i) ® is a continuous. And for any g € G, ®(g) is self adjoint.
(i) ® is Bochner integrable with respact to a Haar measre on G.
(iii) P = [, ®(g)dg is G-invariant.

(i) P is a self-adjoint compact operator.

(v) P is a nonzero map.

(vi) There is X\ # 0 such that eigenspace of P with respect to \ is not zero.
Proof of (i). For any v € V and g,h € G

|lw(g)Pr(g)*v — m(h)Pr(h)"v|| = [|7(g)(m(9) v, v0)vo — m(h)(m(h) v, vo)vol|

1w, 7(g™)wo)m(g)vo — (v, w (A~ Jvo)m(h)vol|

1w, 7(g™ wo)m(g)vo — (v, 7 (A~ )vo)m(g)vol| + [[(v, w(h ™ Ywo)m(g)vo — (v, m (R~ )vo)m(h)uol|
lollllm(g™ o — w (A~ )wollll(g)voll + [fullllw (A~ )vol Il (g)vo — m(h)voll

[1olI([lm (g™ Yvo — (A~ v + [[m(g)vo — m(h)vol])

So @ is continuous. By Proposition, for any g € G, ®(g) is compact. Because P is self-adjoint and 7(g) is unitary operator,
®(g) is self adjoint. O

IN I
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Proof of (#). This is from Proposition5.2.3 and (i). O

Proof of (iii). Let us fix any h € G and v,u € V. By Proposition5.2.2,
(x(h) /G 7(g) Pr(g)*dgv, u) = /G (n(h)n(g) Pr(g)"v, u)dg = /G (n(hg) Pr(hg) m(h)v, w)dg
- / (w(g) Pr(g) (R}, w)dg = ( / r(g)Pr(g) " dgr(h)o, u)
G G

So, w(h)P = Px(h) O
Proof of (iv). By the simila argument to the proof of (iii), P is self-adjoint. By the argument of proof of Proposition5.2.3,
P € By(V). By Proposition5.7.1, P € By(V). O
Proof of (v).

( /G 7(9)Pr(g)* dgvo, vo) = /G (7(9)Pr(g)" v, v0)dg = /G (Pr(g)*vo, 7(g)"v0)dg
- / (P* Pr(g) vo, 7(9)"v0)dg = / (P*Pr(g)*vo, 7(g)"v0)dg = / (Pr(9)*v0, Pr(g)*v0)dg = / 1Pr(g)*volPdg
G G G G

Because || Pr(e)*vo||> = 1, [ [|Pm(g)*vol|*dg > 0. O
Proof of (vi). By (v) and Lemmab.3.8, (vi) holds. O

In the following proposition, we give a proof for the general case as well as for the finite group case. The proof of
the finite group case shown here follows the same policy as the proof of the general case, but uses only knowledge of
linear algebra. Therefore, this proof has the advantage that the essence of the proof of the general case can be easily
understood. Note that the finite group case can be easily shown from the fact that < 7(G)v > is finite dimensional
G-invariant subspace for any vector v, apart from the proof given below.

Proposition 5.7.4. Let
(S1) G is a compact Lie group.
(S2) (m,V,(-,-)) is a unitary representation of G.
Then there is a finie irreducible G-subspace of V.
Proof in general case. By (v) of Proposition5.7.3, this Proposition holds. O

We will show a proof that does not knowledge of bochner integrals and self-adjoint compact operators in the case when
G is a finite group.

Proof in the case when G is a finite group. We will succeed notations the proof of Proposition5.7.3 . Then

P=3 w(g ")oPon(g)

geG

For any h € G,

Por(h) = n(g~\)o Por(gh) = 3" n(h) om(gh™) o Pon(gh) = n(h) o P
geG geG
So, P is G linear.

For each g € G, 7r~(g*1) o P o7(g) is finite rank operator. So, P is G finite rank operator. Then {v1,..,v,,} such that
S CP(v;) = Im(P). Let us fix {wy, ..., wn} which is an orthonormal basis of Im(P) + S w;. Because P| ", w;
is not zero, P| >, w; has nonzero eiggenvalue X # 0.

For any u € Ker(P — \I),

iPu u;)u

>/\>—‘
>/\>—‘

So,
Ker(P—\) C Z(Cui

i=1

These imply that K er(P — Al) is finite dimensional G-invariant subspace. O
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By Proposition5.7.4 and the same argument as the proof of Proposition4.3.8, the following holds.

Theorem 5.7.5 (Peter-weyl theorem I). Let (m,V) be a continuous unitary representation of a compact Lie group G.
Then there is W which is a subset of G-invariant finite dimensional irreducible subspaces such that

V= w
wew
In specail, if 7 is irreducible, dim(r) < co.

5.7.2 Orthonormal basis of L?(G)
Proposition 5.7.6. Let

(S1) G is a compact Lie group.
(52) (w,V,(-,)) is a finite dimensional unitary representation of G.

Then
{Pr(u,v)|u,v €V}

is G x G-invariant subspace of L*(G).
Proof. For any x,y,9 € G,
Ly % Ry®x(u,0)(g) = (n(zgy™") " u,v) = (m(g) ~'m(z) " u, m(y) " ) = Sx(m(z) " u, m(y) " v)(g)

So,
{®r(u,v)|u,v e V}

is G x G-invariant subspace of L%(G). O
By Proposition5.5.3, the following two holds.
Proposition 5.7.7. Let

(S1) G is a compact Lie group.
(S2) (m,V) is a finite dimensional G-invariant space of L*(G).

Then V C (V@ V*).
Proof. Let us fix {fi,..., fm,} which is an orthonormal basis of V. Then there are {h; ,}>2; C C(G) such that

nh_{go [[hin — filloo = 0 (Vi)

Let us fix any € > 0.

For any g € G
Lg™)fi =Y (Lg™ ") i £)Fi = Y ®(fi £)(9)
j=1 j=1
Then there exists n such that
_ - 1
1L hin(e) = D0 8o [y ne) o < e
Jj=1
and
L™ Dhin(e) = fill L2y < 5
So,
1fi = D @(fir 1) Ohyn(e)l]2 < €
j=1
This means f; € ®,(V ® V*). Since ®,(V ® V*) is a closed subspace of L?(G), f; € ®,(V @ V*). O

In the proof of Proposition5.7.7, we need only the fact that C'(G) is dense in L?*(G). Therefore, the following clearly
holds.
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Proposition 5.7.8. Let
(S1) G is a compact Lie group.
(S2) (w,V) is a finite dimensional continuous unitary representation of G such that V. .C L*(G).
(A1) VNC(G) is dense in V.
Then V C &,.(V @ V*).
Proposition 5.7.9. Let
(S1) G is a compact Lie group.
(52) g(G) = @(W,V)eéq)W(V @ V*). Here G is the set of all equivalent classes of irreducible representation of

Then R(QG) is dense in L*(G).

Proof. Be Proposition5.7.6, R(G)* is G-invariant. Let us assume R(G)* # {0}. By Proposition5.7.4 and Proposition5.7.7,
there are {fi,..., fm} C L*(G) such that {f1,..., fm} is an orthonormality and (fi,..., f,,) is a irreducible G-invariant
subspace and (fi, ..., fm) C R(G). So,

1=(fi,f:)=0

This is contradiction. O
Theorem 5.7.10 (Peter-Weyl Theorem II). Let

(S1) G is a compact Lie group.
Then

O (L@, VOV~ (L, LG))

is an isomorphism as continuous unitary representaions. And (L,V ® V*) is isomorphic to a direct sum of dimt of V.

Proof. The first part is directly followed from Proposition5.7.9. Let us take an orthonormal basis {vy, ..., v, } of V. Then
VeV"=a@2, Ve (v)* since Ve (v,)" LV ®  (v;)" for any ¢ # j. Clearly V ® (v;)* is isomorphic to V' as continuous
unitarly representations for any i. The latter half part holds. O

Notation 5.7.11. Let
(S1) G is a compact Lie group.
(S52) (1, W) is an irreducible unitary representation of G.
then we define ®,., ®, O,
(i) . - WRW*svwr (G>3g+— (t(g9)v,w) € C) € C(GQ).
(ii) @ = dimWo,.
(iii) ®, = dimW®,.
Proposition 5.7.12. Let
(S1) G is a compact Lie group.
(82) (r,W) € Gy.

Then
1

(Tijs Tha) = W@,ﬂk,l
Proof. Because for any i,j € {1,...,dim7} and g € G

7i,j(9) = @ (vi,v;)(97")
by Proposition3.6.14 and Shur orthognality relation,

1

(Ti,js Tot) = (Pr(v4,05), Pr(ve, 1)) = W(Si,jak,l
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By Proposition5.7.9 and Shur orthogonality relations and Proposition5.7.12, the following holds.
Theorem 5.7.13 (Peter Weyl Theorem II, matrix coefficient version). Let

(S1) G is a compact Lie group.
(82) (r,W) € Gy.

Then

(i) The following is a completely orthonomal system of L*(Q).
{(Vdim 77 j]i,j = 1,2,...dimT, (1, W) € Gy}

(ii) G is at most countable.
(iii) For any f € L*(G),
f=dimr Z (f,7i;)7i; (L*-convergence)

7€Gy,ij=1,....dimT
Proof of (i). This is followed by Proposition5.7.9 and Shur orthogonality relations and Proposition5.7.12. O

Proof of (ii). Because L%(G) is separable, L?(() has a countable complete orhonormal basis. So, this is followed by (i)
and Peter-Weyl I and Proposition2.5.12(iii).

Proof of (ii). This is followed by (i) and (ii) and Proposition2.5.12(ii).

5.7.3 Uniform approximate of continuous function

Theorem 5.7.14 (Peter-Weyl Theorem III). Let G be a compact Lie group. Then the C-vector space generated by the
following set is dense subset of C(G) in uniformly convergence topology.

{(t()u,v)|(1,V) is a continuous finite dimensional irreducible unitary representation of G, u,v € V such that ||u|| = ||v|| = 1}
Proof. By Peter-Weyl I and Proposition4.5.24,
ex(P1) = {(7(-)v,v)|(1,V) is a continuous finite dimensional irreducible unitary representation of G, v € V such that ||v|| = 1}

Because the trivial representation of G is finite dimensional irreducible, ex(P;) contains 1 which is (A2) in Theorem5.1.1.
Because ¢ € ex(P1) = ¢ € ex(Py), ex(P;) satisfies (A3) in Theorem5.1.1. By Proposition4.5.6, ex(PP;) satisfies (A4)
in Theorem5.1.1. By Gelfand-Raikov Theorem, ex(P;) satisfies (A5) in Theorem5.1.1. So, by Theorem5.1.1, the C-vector
space generated by ex(P7) is dense subset of C'(G) in uniformly convergence topology. O

Definition 5.7.15 (Class function). Let G be a group and f be a function on G. We say [ is a class function if

fa™ gz) = f(g9) (Va,9 € G)

We denote the set of all squared integrable class functions by L?>(G)A1. We denote the set of all continuous class functions
by C(G)A.

Clearly the following holds.
Proposition 5.7.16. Any character of compact Lie group is a class function.

Proposition 5.7.17. Let G be a compact group. Then L*(G)A? is closed subset of L?(G) and C(G)A? is closed subset of
C(Q).

Proof. Because f(z~'gz) = L,oR.f (Vx,g € G,Vf € C(G)) and L, o R, is continuous operator of L*(G) and C(G). So,
this Proposition holds. O

Proposition 5.7.18. Let G be a compact Lie group. We set

P(f)(g) == /G f(a gx)dg(x) (g € G)

then
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(i) P is the orthogonal projection of L*(G)A?
(ii) P(C(G)) = C(G)A4.

(i4i) P:C(G) — C(G)A? is surjective continuous in uniform convergence topology.

Proof of (i). Clearly P(L?(G)) C L?*(G)4%, and Po P = P and P is linear. For any g, f € L?(G),

PN =1 [ o | FoTandstudatal =1 [ [ s/ Tamdataldsto)

/I\glleHL o Ry fllr2dg(y /Hgllel\flledg( ) = llgllz=l ]2

and

0P = [ o) | ToTemdaaste) = [ [ o) T mdstu)data)

= [ [ stwmy ) F@astrdst) = | [ atweyaowiF@date) = [ [ st an)dat) Fedgta)

= (P(9). f)
So, P is continuous and self adjoint. Because of these result, (i) holds. O
Proof of (ii). Clearly P(C(G)) C C(G)*¢ and and P|C(G)A4 = id|C(G)A. O

Proof of (ii). For any f € C(G), f is uniformly continuous. So, P|C(G) is continuous in uniformy convergence topology.
By (ii), P|C(G) is surjective. So (iii) holds. O

Proposition 5.7.19. We will succeed notations in Proposition5.7.18. And let (t,V) € Gf. then for any i,j €
{1,2,...,dimt}
05

. T
dimt

P(ri;) =
Proof. For any g € G,

P(ri;)(g) = /G 7 (2 gz)dg ()

by Propositionb.4.4
— Z/ Ti, a Ta b )Tb’j(m)dg(sc)
by Proposition5.4.4

-> [ Fe@rastain st =3l ) [ Tt @dg(a)

by Shur orthogonality relations

1) 71 dgf (g) =0 71
= 04,5 7= Tii = 04,5 = T
Y dimT pt A9 J dzmTX

Theorem 5.7.20. Let

(S1) G is a compact Lie group.
(S2) (r,W) € Gy.

Then
(i) Zreéf Cx, is dense in C(G)A4

(it) {x-|7 € Gt} is an orthonomal basis of L*(G)*%
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Proof of (i). Let us fix any f € C(G)4?, ¢ > 0. Because P is continuous, there is § > 0 such that

g€ C(G) and ||lg = flloo <0 = [[P(9) = P(f)lloc <€
Because f € C(G)A4, P(f) = f. By Theorem5.7.14, there is g € Zreéf >ije(1,2,...dimry CTi,j such that [|lg — fllec < 6.
By Proposition5.7.19, P(g) € Zreéf Cxr. O

Proof of (ii). Let us fix any f € L*(G)A%\ {0}. By Theorem5.7.13, there is 7 € G and 4, € {1,2, ...,dim7} such that
(f,7i;) # 0. Because P is the orthogonal projection of L?(G)A¢, there is g € (L?(G)“4)* such that 7; ; = P(7; ;) +g. So,

di,j

dzmT

0# (f,7i) = (f P(7ig)) = =22 (f, xr)

This implies (f, x-) # 0. O

5.7.4 Component of irreducible decomposition
Proposition 5.7.21. Let

(S1) G is a compact Lie group.

(S2) (m,V) is an continuous unitary representation of G.
(83) (r,W) € Gy.

(S4) A€ Homg(W V).

(85) Po(v) = [ X(@)r(g)vdulg) (v € W).

Then
P |[ImA =id|[ImA

Proof. By Proposition5.7.12

Py (Aw;) = dimr / X-(@)(9) Awidg = dim / @) A(g >wzdg—dzmrz / @ A(r(g)ws, w;)w;dg

m m m

= dlmTZ/Xr 9)7i(g dgAw]—dzmTZZ/Tkk 9)7i.j(9)dgAw; = Aw;

k=1j=1

Proposition 5.7.22. Let

(S1) G is a compact Lie group.
(S2) (1, W1), (x,W>) € Gy.

then

b (1 ~7)
Xt * Xz = dz’mTXT T=T
0 (T #m)

Proof. For any h € G,
/GxT(y)xﬂ(g‘lh)dg = Z/Gm(g)nj,j(g—lh)dg
0,J

For any 7,

mi.i(g7 h) = (m(g~ R, v5) = (w(h)vy, 7 Zﬂy k() (vk, T Zﬂj k()i x(g

So, by Shur orthogonality relations,

dimt 1
D L resmista™ g = 32 300) [ ooy = w3 ) = 07 )

1,5,k =1
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Proposition 5.7.23. Let
(S1) G is a compact Lie group.
(S2) (r,W),(m,V) € G.

Then

0P — P, (r=mn)
Por={ " (30

Proof. Let us fix an orthonormal basis of V. For any v; € V, by Shur orthogonality relations,

Pr(Pr(vi)) = X523 (dim) (dimr) [ X+(9)7(9) [ Xr (B) (7 ()03, 05)v;dhdg
= >, x(dimT)(dimm) ) Jo x-(g fG X (R) (7 (R)vi, v;)(T(9)v;, vk )vpdhdg
= Zj o (dimT)(dim) fG x-(g fG X (h)7j.i(h) Tk, (g)vidhdg
=" kap(dimT)(dimT) Jo Ta.a(9) Jo T (h)7j.i(h)Th 5 (9)dhdguy

= (dim7)(dimm) Zjvkvavb(ﬂaj,Taya)(’ﬂ'k’j,’fra,a) = 07 20V;

Theorem 5.7.24. Let
(S1) G is a compact Lie group.
(52) (mw,V) is an continuous unitary representation of G.
(53) (r,W) € G.

then Py is the orthogonal projection of V.

Proof. By Proposition5.7.21,
P |V, =idy,

Let us fix any v € V. We will show there is V’ which is a finite dimensional G-invariant subspace of V' such that
P, (v) € V'. Let us fix {vy, ..., v, } which is a orthogonality basis of (7,TW). For any z € G,

7(@)P, (v) = / o @(zg)vdg = / SEROTEDS / RERNLOTEDS /G (e Tg)un, v (g)vdg
- ¥ @, rlads =Yoo /[ (rlahonlaods € 3 C [ wrtamtaudg = v

By Proposition5.7.23 and Proposition5.6.5, P, (v) = Pr(P-(v)) € P.(V') C V! C V,.
Lastly, we will show P* = P,. Let us fix any u,v € V. By Proposition3.6.14 and Proposition5.6.1,

(P (u),v) = ( /G @) (g)udg, v) = /G @) ((g)u, v)dg = /G (u, X (9) (g™ 1Y) dg
_— / (@ Dn(gYudg) = (u, Po(v))
G

So, P¥ = P;. O
Proposition 5.7.25. Let

(S1) G is a compact Lie group.
(S2) (m,V) is an continuous unitary representation of G.

(S3) (1,V) is an continuous finite dimensional unitary representation of G.
then Py . is G-linear.
Proof. For any x € G and v € V,
7(2)Pra(v) = o e @@y >vdg fgwx—ymw (eya)m(@)odg(y)
= [ X+ (wya~D)m(y)m(a)vdg(y fG X= ()7 (y)m(z)vdg(y) = Pr - (m(z)v)
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Theorem 5.7.26. Let

(S1) G is a compact Lie group.

(S52) (mw,V) is a continuous unitary representation of G.

then
V= ®T€éf V”'
Proof. By Proposition5.7.23, V, L V. (17 % m). So, it is enough tho show ﬂTeG = {0}. Let us fix any v € Nrea, VL.
Then for any x € G and T € éf, by Proposition5.7.25,
0= [ (Pr(rta (@) wds(@) = [ (x(a)P (r(ap)widg(a) == [ (Prela)u). w(a)u)dy(a)
G G
- | [ Sty s@uds(oig(e) = (1.x,)
Here,
f@)i= [ (x@nlg)o.nlg)dg (s < C)

G

For any x,y € G,
fly tay) = / (m(y ™ xy)m(g)v, m(g)v)dg = / (m(2)m(yg)v, 7(yg)v)dg = f(z)
G G

So, f € C(G)*4. By Theorem5.7.20, f = 0. So, |[|w||?> = f(e) = 0. O

5.7.5 Expansion formula of L? functions
Proposition 5.7.27. Let

(S1) G is a compact Lie group.

(S2) (r,W) is an irreducible unitary representation of G.

Then
o, (W W) =L*G),

Proof. Firstly, we will show that
o (WeW*) c LG),

For each f € W*, we set ®, s : W — L*(G) by
@, (w) = B, f) (w € W)

Let us fix any f € W*. Clearly @ ; is linear. By shur orthogonality relations, ®,  is continous. And for any h € G

O p(r(h)w) = f(r() " r(hyw) = f(r(h™1) " w) = L@y s (1(h)w)

This means that ®, ; is G-linear. So, ®,(W ® W*) C L*(G),.
Lastly, we will show that
L*(G), C &, (W @ W)

Let us fix wy, ..., w, € W which is a basis of W and A € Homg(W, V). For any ¢ and = € G,

(A (@) = (Lo-sAwi) () = (Al w)(e) = (A 7@ uwiswy)w)(e) = (A @i (a)uy)(e)
>~ (A, ) (e ()
So, L2(G), C & (W @ W*). O

Proposition 5.7.28. Let

(S1) G is a compact Lie group.



146 CHAPTER 5. IRREDUCIBLE DECOMPOSITION OF UNITARY REPRESENTATION OF COMPACT GROUP

(52) T € @.

for any f € L*(G)
P -(f)(z) = dim7x; * f(z) (a.e. x € G)

Proof. For any f € L?(G) and a.e z € G,

oo (f)() = /G (@) (g x)dg = /G D (gz)dg = /G @D f(g)dg = 5 * £(2)

Proposition 5.7.29 (Operator Valued Fourier Transform). Let
(S1) G is a compact Lie group.
(52) (1,W) is a continuous unitary representation of G.
(S3) f e L*(Q).
Then
(i) For each w € W, there is the unique element I(7, f)w such that

(u, I(, f)w) = /G (u, F(g)(g)w)dgu(g) (Vu € W)

(ii) I(7, f) is bounded and ||I(7, f)|| < [|fllz2(q)-

Without fear of misinterpretation, we denote I(r, f) by 7(f). We call G > n — I(x, f) the operator valued fourier
transform of f.

Proof of (i).
|/ u, f(9)T(9)w)dgi(9)] < |[fl|L2(cllull - [[w]| (Vu € W)

So, by Riez representation theorem, (i) holds.
Proof of (ii). (ii) is followed by the above equation.
Proposition 5.7.30. Let

(S1) G is a compact Lie group.

(S2) (m,V) is a continuous unitary representation of G.

(83) f € L*(G).
Then

(i) ©(f xg) =7n(f)m(g) is a compact Lie group.

(i) m(R.f) = w(f)m*(z) (Vz € G).
(iii) 7(Lyf) = 7(z)n(f) (Vz € G).
Proof of (i).
(f*g):Lf*g(z)ﬂ(I)d T :/ / flzy™) //f g(yz)dg(y)m(y~)m(yx)dg(x)
= *17r -1 X *1 *1 7r:1: ac = *17r *17r x
f/Gf(y)(y)/G()ydg /f /() dg(z)dg(y) /ny)(y)(g)dg()

:/Gf(y)w(y)ﬂ(g)dg(x):W(f)ﬂ(g)

Proof of (ii).
r(Rof) = /G f(gz)m(9)dg(g) = /G f(gz)m(gz)m(zV)dg(g) = /G f(gz)m(gz)dg(g)n () = ()™ (x)
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Proof of (iii).

w(Lf) = [ e gr)dsle) = [ S gm0 dato) = =) [ S0 = n(a)m(f)
O
(1)(ii) in Proposition5.7.30 characterize the operator valued fourier transformation. See Theorem3.1 in [28].
Proposition 5.7.31. Let
(S1) G is a compact Lie group.
(S2) (t,W) is a continuous finite dimensional unitary representation of G.
Then
P (f) = dimW . (7(f)) (Vf € L*(G))
Proof. For any y € G,
L GUIRRELORDY L@@ v)as@))
(2]
-/ 3 7)oy (058 )t / 3 e e te)
—Z/ f(2)7i(2)dg(@)(7( ”Ja”z Z/ f(@)7ii(x)dg(@)7;,i(y~ Y
:ZLf(z)Tl,l(xy 1 Z/ f :Z:y Tzz dg /f l’y XT x 1)dg( )
1 1
— [ 1 @) = | L @idg@)) = o P
G G mT
O
Theorem 5.7.32 (Plancherel formula for compact Lie group). Let
(S1) G is a compact Lie group.
(S2) f e L*(G).
then
f= Z O (1(f)) (L? convergence)
TEéf
We set u by the counting measure of Gf. Then
f= @r(f)du(r)
Gy
The right side is a bochner integral on the L*(G) valued function. We call u the Plancherel measure on G.
Proof by Peter-Weyl Theorem III.. This is followed by Theorem5.7.24 and Proposition5.7.26 and Proposition. O

Proof by Peter-Weyl Theorem, II.. By Proposition5.7.27 and Theorem5.7.24, P.(L*(G)) = ®,(V®@V*) for any (1,V) € G.
By Proposition5.7.5, P.(f) = ®_(f) (Vf € L?(G)). By Peter Weyl Theorem II and Proposition2.5.17,

fF=Y 9.(7(f) (Vf € L*(@))

TEéf

Proposition 5.7.33. Let

(S1) G is a compact Lie group.

(52) (m,V) and (1,W) are continuous unitary representations of G.
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(83) T :V — W is an isomorphism as continuous unitary representations of G.
(S4) f € L*(G).

Then
m(f) =T '7(f)T

Proof. For any u,v € V,

(u, 7(f)v) = (Tu, Tr(f)v) = /

(Tu, Tf(g)m(g)v)dg = / (Tu, f(g)r(g)Tv)dg = / (u, T f(g)7(9) Tw)dg
G G G
— (T 7 (f)Tv)

5.7.6 Example:Fourier series expansion
By Lemmad.6.7, the following holds.

Proposition 5.7.34. The following p is a Haar measure on S*.
1 2m
wf) =5 [ flewp(if))do (f € C(S"))
0
Proposition 5.7.35. Let
(S1) (1,W) is a unitary representation of T*.
Then (1, W) is irreducible <= dimt =1 and there is n € Z such that
T(exp(i02m))v = exp(inf2m)v (VO € R,Yv € W)
We denote this irreducible representation by T,

Proof1 of = . By Shur Lemma, dim7 = 1. Since 7 is unitary, 7(S') can been seen as elements of S*. By Theorem3.4.14,
7 is C%-class. We set f(6) := 7(i027) (0 € R). Because f(6 + h) = f(0)f(h) (V0,h € R),

f1(0) = f/(0)£(6) (V0 € R)
So, taylor series of f converges on R. This implies that there is o € C such that
f(0) = exp(iah2r) (V6 € R)
Because Im(f) € S', @ € R. Because f(1) =1, a € Z. O

Proof2 of = without Theorem3.4.14. By Shur Lemma, dim7 = 1. Since 7 is unitary, 7(S*) can been seen as elements
of S1. We set
f(8) :=7(i027) (0 € R)

and
Y(0) := exp(ib) (0 € (—m, 7))

There is § > 0 such that f((—4,0)) C ¥((—m, 7)) We can assume f|(—6,0) # 1. So, there is ty € (—0,d) \ 0 such that
f(to) # 1. There is a € (—m, ) such that f(¢y) = exp(ic). Because v is injective,

k k k
f(2—mt0) = exp(i2—mo¢) (Ym € Z4,Yk € Z such that |2—m\ <1
Because the both sides are continuous,

«

£(0) = eaplizy-

62m) (V6 € (—|tol, [to]))

@
We set 3 := o Becuase f is homomorphism,
04T

f(0) = exp(ip27) (VO € R)

Because f(1) =1, g € Z. O
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Proof of <. It is clear. O
By Proposition5.7.35, the following holds.
Proposition 5.7.36. Let

(S1) 1, is an irreducible unitary representation of T' for n € Z.
(S2) xn is the character of T,.

(83) 714 is the matriz coefficient of T,.
Then

(i)
11(2) = xn(z) = 2" = exp(i-n-arg(z)) (Vz € S")
(i1) .
(f,m1) = % ; f(expif)exp(—inddld = f(n) (Vf € L*(S*),VnN)

By Peter-Weyl II and Proposition5.7.36 and Proposition2.5.12, the following holds.

Theorem 5.7.37 (Fourier expansion formula). For any f € L*([0,2x])

f= lim Z f(n)xn (L?-convergence)

N~>oo

By Peter-Weyl IIT and Proposition5.7.36 and Proposition2.5.12, the following holds.

Theorem 5.7.38 (Wierstrass Theorem). For any f € C(S') and e > 0, there is a finite subset N C N and a_n,a_N1, ..., AN
such that

N
Hf_ Z aanHoo<6
n=—N

5.7.7 Characterization of compact Lie group

Theorem 5.7.39. Let us G be a compact topological group. Then G is a Lie group <= G has a continuous finite
dimensional faithful unitary representation. In special, if G is a compact Lie group, then there is a C¥-class diffeomorphism
from G to some closed subgroup of U(n) for some n € N.

Proof of = . By Proposition3.4.11, there is an open neighborhood U which does not contain subgroups without {e}. By
Peter-Weyl Theorem I, for any 7 € G, Ker(7) is closed subset of G. By Gelfand-Raikov theorem, G = U__sKer(7)°UU.
Because G is compact, there are finite 7, ..., 7, € Gy such that G = U, Ker(r;)° UU. Because U does not contain
subgroups without {e}, N Ker(r;) = {e}. Then @, 7; is a continuous finite dimensional faithful unitary representation
of G. O

Proof of <= . Then G is isomorphic to closed subgroup of U(n) C GL(n,C) as toplogical groups for some n € N. So, G
is Lie group. O

5.8 Review

The main theorems of this chapter are Peter-Weyl’s Theorem I-III, embedding any compact Lie group into U(n), Plancherel
formula for compact Lie groups. In this section, we review these theorems, noting their relationship to the Mautner-
Teleman theorem. We also explain how this is a generalization of the theory of Fourier series expansions. The key facts in
this chapter are various capabilities of ‘averaging‘ by Haar measure in compact Lie groups, Shur Lemma, Gelfand-Raikov
Theorem.

The Mautner-Teleman theorem guarantees that any unitary representation of a Lie group can be decomposed into
a direct integral of irreducible unitary representations. The following Peter-Weyl Theorem I guarantees that this direct
integral is a discrete direct sum of finite-dimensional irreducible unitary representations if the Lie group G is compact. In
partlcular the irreducible unitary representation of a compact Lie group is always finite-dimensional. This means G=3G i
Here G is the set of all equivalent classes of continuous irreducible unitary representation of G, and G ¢ is the set of all
equivalent classes of continuous finite dimensional irreducible unitary representation of G.
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Theorem 5.8.1 (Peter-weyl theorem I). Let (7, V) be a continuous unitary representation of a compact Lie group G.
Then there is D which is a subset of G-invariant finite dimensional irreducible subspaces such that

V= @W
WebD

The proof of Peter-Weyl’s Theorem I, by using Zorn’s Lemma, boils down to the proof of the claim that any unitary
representation of a compact Lie group has a finite dimensional G-invariant subspace. Such an invariant subspace can be
realized as the eigenspace of a G-linear map composed by acting on all group elements in their projection onto a suitable
1-dimensional space and averaging them. If the group is a finite group, this operator is a finite-dimensional matrix, its
eigenspace will be one-dimensional. In the general case, this sum is the Bochner integral, and the operator formed by the
sum is compact operator, so its eigenspace is finite-dimensional.

The irreducible unitary representation of S! is, by Shur’s lemma and the real analyticity of finite dimensional representa-
tions of Lie groups(Theorem3.4.14), we find that it is exhausted by homomorphisms of the following form(Proposition5.7.35).

Tn: St Sz 2" =exp(i-n-arg(z)) € S* (n € Z)

Thus, any unitary representation of S can be decomposed into a direct sum of these representations.
Peter-Weyl’s Theorem II gives the irreducible decomposition of L?(G) using Peter-Weyl’s Theorem 1.

Theorem 5.8.2 (Peter-weyl theorem IT).

O (L,B,cq,V OV = (LLXG))
Here, for each (1,V) € Gy andv® f € V@ V*,

(v @ f)(g) = f(r(g~" ) (9 € G)

Ly(v® f) =7(z)ve f (z € G)
Lyh(g) = h(z"g) (h € L*(G), 9,2 € G)
We set

A := {Vdimr7, j|(1,V) is an representative of Gy and {v1, ..., Ugim- } is an orthonormal basis of V and 1 < i,j < dim7}

Here, 7; ; is defined as bellow for each i, j.

71,5 (9) = (T(9)vj,vi) (9 € G)

The Peter-Weyl Theorem III guarantees that any continuous function f on G can be uniformly approximated by elements
of a vector space B generated from the above set A.

Theorem 5.8.3 (Peter-Weyl Theorem III). For any € > 0, there is a a1,...,an, € C and 7j, j,, ..., Tj, i, €A

The proof of this theorem uses Stone Wierestrass’s theorem(Theorem5.1.1) on uniform approximation of continuous
functions on compact metric spaces. By Gelfand Raikov’s theorem and the theory of positive definite functions, B contains
constants and is closed by products and complex conjugates. Stone wierestrass theorem, such a space is , guarantees a
uniform approximation of continuous functions on G. By applying Peter-Weyl’s Theorem III to the case G = S!, we
obtain the following approximate theorem.

Theorem 5.8.4 (Wierstrass Theorem). For any f € C(S') and € > 0, there is a finite subset N C N anda_y,a_ny1, ..., aN

such that
N

1f(z2) = Y anz"| <e (V2 e Sh)

n=—N
By Peter-Weyl Theorem I and Gelfand-Raikov Theorem, the following is shown(Theorem5.7.39).

Theorem 5.8.5. Any compact Lie group is isomophic to a closed subgroup of U(n) for some n € N
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By Peter-Weyl Theorem II and Shur’s Lemma, the above set A of matrix coefficients corresponding to all irreducible
unitary representations is guaranteed to be an orthonormal basis of L?(G). Since L%(G) is separable, by Peter-Weyl’s
Theorem 11, @f is at most countable set. Due to the real analyticity of finite-dimensional representations of Lie groups,
each 7; ; is real analytic. From the above, we can say that this family of functions is an easy-to-handle family of functions.
By the theory on orthonormal bases of Hilbert spaces, The square integrable function on G can be expanded by such a
tractable function as by such an easy-to-handle function.

f= Z dim7(f,7i ;)7 (L*-convergence)
T€G,1<0,j<dimT
This equation has two other expression. The one is the expression by characters(Proposition5.7.28 and Theorem5.7.20).
f= Z dim 737 * f (L?-convergence)
TEGf

The another one is the expression by operator valued fourier transform.
Theorem 5.8.6 (Plancherel formula for compact Lie group). Let

(S1) G is a compact Lie group.

(S2) f e L*(Q).

then
f= Z O’ (7(f)) (L* convergence)
TGGf
Here,

()= [ War(o)rdy (1 € L(G)
G
o (v @ f)(g) = dimf(r(9~")v)
We set u by the counting measure of Gf. Then

f=[ @(r(f)dp(r)

Gy
The left side is a bochner integral on the L(G) valued function. We call p the Plancherel measure on G.

The mapping G > 7 7(f) is called the operator valued fourier transform of f. Operator valued fourier transform
have the following properties.

(i) m(f = g) =m(f)m(g) (Vf,9 € L*(G)).
(i) m(Raf) = 7(f)7*(x) (Vo € G).

It is known operator valued fourier transform is characterized by these properties[28]. In the case when G = S, 7,,(f) =

f(n) = (f,7) and Py, (£)(8) = f(n)ewp(ind).

By applying Peter-Weyl’s Theorem II to the case G = S', we obtain the following Fourier series expansion formula.
Theorem 5.8.7 (Fourier series expansion formula). For any f € L?([0,27])

N

— 1 ¢ 2_
f= ]\;gnoo ;Nf(n)xn (L*-convergence)






Chapter 6

Homogeneous space

6.1 (“-class structure

Theorem 6.1.1. Let
(S1) Gy is a Le group which is locally isomorphic to a Lie subgroup of GL(n,C) Gs.
(A1) H is a closed subgroup of Gy such that dimLie(H) > 0.
(S2) b := Lie(H).
(53) g1 is a complementary space of b in g := Lie(Gy).
(S4) k = dimg; and 1 := dimh.
Then there is a C¥-class manifold structure of G/H such that
(i) p: Gy 2 g gH € G1/H is a continuous map and an open map.
(ii) G1 X G1/H > (g1,92H) — g192H is C¥-class.
(iii) For any g € G and h € H, there is € > 0 such that
Bi(0,¢€) x Bi(0,¢) 3 (X,Y) — gExp(X)hExp(Y) € G

and
Br(O,¢) 5 X — w(gExp(X)) € G/H

are C¥-class diffeomorphism.
We call G/H homogeneous space or homogeneous manifold.
STEP1. Definition of the topology of G/H. We set
p:G>9g—gHeG/H
and
O(G/H) :={AC G/H|p~'(4) € O(G)}
Clearly, p is continuous. Also, for each O € O(G),
P~ (p(0)) = UpenOh
So, p is an open map. Because p is surjective, for any O1 € O(G/H), there is Oy € O(G) such that
p(02) = Oq

And clearly, for any O € O(G) and g € G,
Lgop(0) =poLy(0)

So, Ly is a homeomorphism of G/H.
We will show G/H is a Hausdorff space. Let us fix g1,92 € G such that g1H # g2 H. So, g;lgl ¢ H. Because H is a
closed set, there is U which is an open neighborhood of e such that

U g 'qiUNH = ¢

This implies that
glUH N goUH = ¢

So, G/H is a Hausdorff space. O

153
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STEP2. Construction of a local coordinate system of G/H. There is ¢g > 0 and € > 0 such that Exp|B(O,¢) is a C“-class
homeomorphism to an open set of G and

Exp(B(0O,¢))Exp(B(0,¢€)) C Exp(B(O,¢p))

and
p: (8. NB(O, ) ® (hN B(O,«)) 2 X +Y — Exp(X)Exp(Y)

is a C“-class homeomorphism. We set for each g € G
pg 1 (8. NB(O,€)) 2 X — gEap(X)H € gExp(B(0,€0))H

Clearly, gExp(B(O,€))H € O(G/H) and p, is surjective. We will show p, is injective. Let us fix any X1, X2 € g, such
that pg(X1) = pg(X2). Then, becaluse Exp(B(O,€))Exp(B(0,€)) C Exp(B(0,€)),

Exp(—Xz)Exp(X1) € HN Exp(B(0, €))
By von-Neumann-Cartan’s theorem, we can assume
H N Exp(B(0,€)) = Exp(B(0,€) Nh)

So,
Exzp(X:) = Exp(X2)Exp(B(0O,€) Nh)

Because p is injective, X; = Xs.
We can assume for any X € B(O, €)g1, there is C¥-class m; and my such that for any Z € B(O, €)g1

Exp(Xs+ Z) = Exp(Xo + m(2))Exp(ma(2)), m1(Z) € g1,m2(Z) € b
Let us fix any g1, g2 € G such that
91Exzp(g1 N B(O,€))H N g2 Exp(g1 N B(O, €))H # ¢
Let us fix any X, € p;.' (g1 Exp(g1 N B(O,€))H N g2 Exp(g1 N B(O,€))H). There is X5 € g1 N B(O,€) and h € H such that
gz_lglEmp(Xl)h = Fzp(Xs)

So, there is > 0 such that
92 '1Exp(X1 + B(0,6))h C Exzp(B(0,€))

We set
O(Y) = log(r(95 ' g1 Eap(X1 + Y)h)) — X5 (Y € B(O,6) Ng1)

Then 1 is C%-class and
G Exp(X1 +Y)h = gaExp(Xz +9(Y))

So,
g2 Bxp(Xo +9(Y)) = g2 Exp(Xa + mi((Y))) Exp(ma(¢(Y)))

This implies that
Pga © g (Y) = m(y(Y))

Consequently, {p,}sec defines the C¥-class structure of G/H. O
STEPS3. Showing G x G/H > (g1, 92H) — g192H is C¥-class. For any Y € Lie(G) N B(O,¢) and X; € g1 N B(O,¢)
Pgrg2 (91 BxpY g2 Bxp(X1)H) = pg, 4, (9192 Bxp(Ad(g™Y ) Exp(X1)H) = pg, g, (9192 Exp(E(Ad(971Y, X1))) = £(Ad(g71Y, X1)
Here, ¢ is C¥-class mapping such that Exp(Y')Exp(X}) = (Y, X1) (VY € Lie(G) N B(O,¢),¥X] € g1 N B(0,¢€)). O
STEP/. Proof of (i#ii). By STEP2., there is § > 0 such that

0:91NBE(0,0) x h N B(0,0) > (X,Y) — Exp(X)Exp(Y) € G

is C¥-class diffeomorphism and
g1 N Bx(0,6) > X — n(Exp(X)) € G/H
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is C%-class diffeomorphism. So,
Bi(0,6) > X — w(gEzp(X)) € G/H

is C%-class diffeomorphism. There is € > 0 such that
Ad(h)B;(0,€) C B;(0,9)
Let us fix any g € G and h € H. We set
p: Br(O,€) x B(0,¢) 3 (X,Y) — gExp(X)hExzp(Y) € G
Then p is clearly C*¥-class and Imp is an open set. Because gExzp(X)hExp(Y) = gExp(X)Exp(Ad(h)Y)h,
Imp>xe (pr(o g ah™)), Ad(h " )pa(o (g 2h ™)) € g1 N B(0,6) x h N By(0,6)
is the inverse of o and C“-class diffeomorphism. O

Proposition 6.1.2. Let G be a Lie group and N is a closed normal subgroup of G. Then G/N is a topological group such
that
G/N x G/N 3 (g1N,gaN) = g19; ' N € G/N

is C¥-class.

Proof. From Theorem6.1.1, C*¥-class and the action of G on G/N is C*-class. Since

GxG2(g1,02) > 195 €G

G/N x G/N 3 (g1N,gaN) = g195 ' N € G/N
is C¥-class. O
Theorem 6.1.3. Here are the settings and assumptions.

(S1) G is a Lie group.

(52) M is a locally compact Hausdorff space.

(53) G continuously and transitively acts on M.

(S4) o € M.

(S4) H:={h € Glh-xo=2x0}. We call H the isotropy subgroup regarding x.

Then

(i) H is a closed subgroup of G.
(i) 7: G/H > gH — gz € M is a homeomorphism.
(i5i) In addition, let us assume M is a C*° class manifold and the action of G on M is C*-class. Then 7 is
a C*°-class diffeomorphism.

Proof of (i). We set
T:Go>g—~>grge M

Since M is a Hausdorff space, {zo} is a closed subset of M. In addition, 7 is continuous. Therefore, H = 77! ({zo}) is
closed. 0

Proof of (ii). Clearly 7 is well-defined and bijective. Let p : G — G/H denote the natural projection. For any open subset
Uin M,
p i (U) =7 (V)
and 7~ 1(U) is open set since 7 is continuous. From the definition of the topology of G/H, 7=1(U) is open set. Therefore,
7 is continuous.
So, it is enough to show 7 is open map. We set g := Lie(G) and h := Lie(H) and pick a complement of ) q. By the
proof of Theorem6.1.1, there is € > 0 such that for any g € G

¢g:qNB(0,2¢) > X — gexp(X)H € G/H

is a local diffeomorphism to an open neighborhood of gH. Since M = Ugeanm(d4(qNB(0,€))), by Baire Category Theorem,
there is g € G such that w(¢4(q N B(O, 2¢)))° # ¢. Since

g ' m(9g(aN B(O,26)))° = m(¢e(q N B(O, 26)))°
, T(Pe(qN B(O,2¢)))° # ¢. So, m is an open map. O
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Proof of (). Since
m(¢g(X)) = T(gexp(X)) (VX € N B(O, 2¢)))

7 is C'*°-class. We set
T:M>g-20—~gHeG/H

Then 7 is clearly well-defined and C*° class and the inverse map of . O

6.2 Topological Properties

Proposition 6.2.1. Let G be a Lie group and H is a closed subgroup of G such that H and G/H are connected. Then
G is connected.

Proof. We will show the contraposition. Let us assume that G is not connected. Let GGy denote the connected component
of G that contains e and p : G — G/H be the projection. Since Gg is an open subset of G and p is an open map, p(Gy)
is an open subset. Next, we will show

P(Go)* = p(Gj)

Clearly p(Go)°® C p(G§) holds. For aiming contradiction, let us assume p(G§) N p(Go) # ¢. Then there is ¢’ € G§ and
g € Gg such that ¢’ HNgH # ¢. That implies ¢’ € gH. Since H is connected and contains e, H € Gg. Therefore, ¢’ € Go.
That is contradiction. So p(Gg)° = p(G§).

Since G§ is an open subset of G and p is an open map, p(Gy)® = p(G§) is an open subset. Since p(Gy) contains H,
G/H is not connected. O

Proposition 6.2.2. Here are the settings and assumptions.
(S1) G is a Lie group.
(S2) H is a closed subgroup of G.
(S8) p:G>g+— gH € G/H.
(54) ¢ € C([0,1],G/H).
Then there is a ¢ € C([0,1],G/H) such that poc = ¢.

Proof. We set g := Lie(G),h := Lie(H). Let us pick a complement of b in g, denoted by q. Since I'mé is compact, from
Theorem6.1.1, there are € > 0, g1,...,gm € G, 0 =19 < t3 < ... < t,, = 1 such that

qN B(O,e) x hN B(0,¢) 3 (X,Y) = exp(X)exp(Y) € G
is a diffeomorphism to an open subset of G and
é(ti—1,t;) C giexp(qN B(O,€))H (i =1,2,...,m)
Then, for each i € {1,2,...,m}, there is a; € C([t;_1,t;], G) such that
é(t) = giexp(a;(t))H (Vt € [ti—1,1])
And for each ¢ > 1, there is h; € H such that
gi—1exp(ai—1(ti—1))hi = giexp(a;(ti-1))
We set

| giexp(a;(t)h; t € ticr,ti],i<m
t) = { Gmezp(a3(8)) 1€ [t to]

Then ¢ € C([0,1],G) and poc = é. O
Lemma 6.2.3. Here are the settings and assumptions.

(S1) G is a Lie group.

(52) H is a closed subgroup of G.

(S3) p:G>g— gH € G/H.

(84) Let Co([0,1],G/H) :={c e C([0,1],G/H)|c(0) = ¢(1) = H}.
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(S5) For each c € Cy([0,1], G/H),

Ae) = 0 d(0),d(1) are in the same connected components. Where, d € Cy([0,1],G) such that pod = c.
TV 1 Otherwise.

Then
(i) X is well-defined.

(i) For any c1,co € Co([0,1],G) such that there is a homotopy from ci to co preserving start point and end
point, A(c1) = A(ca).

Proof of (i). For aiming contradiction, let us assume that there are dy,ds € C([0,1], G) such that pod; = ¢ (i =1,2) and
d1(0),d;(1) are in the same connected components of H and d2(0), d2(1) are in different connected components of H. Since
H > h+~ h™! € H is connected, d;(0)~!,d;(1)~! are in the same connected components of H. From Proposition3.4.6,
any connected component of H is path-connected. Therefore there is o € C([0,1], H) such that «(0) = d;(0)~! and
a(1) = dy(1)~1. By setting ¢ - a, we can assume that d;(0) = d1(1) = e.

We set e := d; ' -dy. Then e € C([0,1], H). And, e(0) = do(0) and e(1) = dy(1) are in different connected components
of H. That is a contradiction. O

Proof of (ii). Let us fix a homotopy ® from ¢; to co. It is enough to show that for each ¢, there is € > 0 such that A\(®(s, -))
is constant for any s € [t — €,t + €]. We set g := Lie(G),b := Lie(H). Let us pick a complement of b in g, denoted by g.
Let us fix any sq € [0,1].

Since Im® is compact, from Theorem6.1.1, there are € > 0,5 > 0, g1,...,9m € G, 0 =ty < ts < ... < t;, = 1 such that

qN B(0,¢) x hN B(0,¢€) 3 (X,Y) — exp(X)exp(Y) € G
is a diffeomorphism to an open subset of G and
®([so — &, 80 + 6] x [ti—1,t:]) C giexp(aN B(O,€))H (i =1,2,...,m)
Then, for each i € {1,2,...,m}, there is a; € C([so — 9, so + 0] X [t;—1,t;], G) such that
D(s,t) = giexp(a;(s,t))H (Vs € [so — d, 80 + d], ¥Vt € [ti—1,1])
And for each ¢ > 1, there is h; € C([sg — d, sp + d], H) such that
gi—1exp(a;—1(ti—1))hi(s) = giexp(a;(ti—1)) (Vs € [so — &, 80 + 9])

For each s € [sg — 4, 59 + 4], we set

es(t) = { giexp(ai(

t
gmexp(ai(

)
t)
Then ¢, € C([0,1],G) and pocs = P(s,:). Since hy is continuous, ¢.(0) and c.(1) is continuous. Then {cs(0)|s €
[so —d, 80+ 6]} are in the sample connected components of H. And {cs(1)|s € [sp — , sg + 0]} are in the sample connected
components of H. Therefore, \(®(s,-)) is constant for any s € [t — €, t + €]. O

hl(S) te [ti_l,tdﬂ: <m
) t € [tm—1,tm]

Proposition 6.2.4. Here are the settings and assumptions.

(S1) G is a connected Lie group.
(S§2) H is a closed subgroup of G.
(S8) p:G>g9+— gH € G/H.
(A1) G/H is simply connected.

Then H is connected.

Proof. For aiming contradiction, let us assume that H is not connected. Let Hy denote the connected component of H
which contains e. Pick another connected component of H, H;. Since G is connected, there exists ¢ € C([0,1],G) such
that ¢(0) = e and ¢(1) =: hy € Hy. We set ¢ := poc. From the definition of ¢, A(¢) = 1. On the other hand, since G/H is
simply connected, ¢ ~ {H}. From Lemma6.2.3, A(¢) = 0. That is a contradiction. O

Example 6.2.5. If G := R" and H := Z, then it is known that 71 (G/H) = Z(See [24]). Therefore, G/H is not simply
connected.
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Proposition 6.2.6. Here are the settings and assumptions.

(S1) G is a connected Lie group.

(S2) H is a closed subgroup of G.

(S8) p:G>g9+— gH € G/H.

(A1) G/H is simply connected.

(84) Let G denote the universal covering of G.

(S5) Let H denote the analytical subgroup of G.

(86) Let w denote the projection from G to G.
Then Z = ker(w) C H.
Proof. First, we will show o

ZH = Y(H)

Clearly, ZH C 7—'(H). Let us fix any § € 7~ *(H). Then there is ¢; € C([0,1], G) such that ¢;(1) € H and § = [¢1]. From

Proposition6.2.4 , there is co € C([0, 1], H) such that c2(1) = ¢1(1). From the definition of analytic subgroup, [c2] € H.
Then

g = [crcy el

Since [c1cy '] € 771 (e), § € ZH. Therefore, ZH = n~(H).

So, ZH is a closed subgroup of G. Since the definition of m, Lie(ZH) = b. Next, we will show ZH = H. From the
uniqueness of analytic subgroup, it is enough to show that ZH is connected. Since G /H is simply connected and G is
connected, from Proposition6.2.4 , it is enouth to show G/H is homeomorphic to G/ZH. We set for each g € G, [d] € G,

[c] - gH = c(1)gH
Clearly the action is well-defined and continuous and the isotoropy group is 7#=1(H) = ZH. From Theorem6.1.3, we get
G/H ~CJZH

Consequently, ZH = H. So, Z C H. O

6.3 Various Types of Homogeneous Space

Definition 6.3.1 (Involutive automorphism). Let G be a Lie group. We call o € Auto(G) a involutive or involution if
ogoo =idg. We set G° .= {g € Glo(g) = g}. And we denote the connected component of G° which contains the unit
element by G§.

Clealy the following hold.
Proposition 6.3.2. G° and GF a closed subgroup of G.
The following definition is from [9].

Definition 6.3.3 (Symmetric Pair, Symmetric Space, Riemann Symmetric Pair). Let G be a Lie group and o be a
involution of G. If H is a closed subgroup of G such that G§ C H C G°. Then we call (G, H) be a symmetric pair and
G/H be a symmetric space. In addition, if Ad(H) is compact, we call (G, H) be a Riemannian symmetric pair.

Example 6.3.4. Let G be a Lie group and H := {e} and o :=id. Then (G, H) is a symmetric pair.
The following two definition is from [2].
Definition 6.3.5 (Reductive Homogeneous Space). The followings are settings and assumptions.
(S1) G,H C GL(n,R) be connected linear reductive Lie groups.
Then we call G/H a reductive homogeneous space.
Definition 6.3.6 (Reductive Symmetric Space). The followings are settings and assumptions.

(S1) G,H C GL(n,R) be connected linear reductive Lie groups.
(S2) o is a involution of G.

Then we call G/H a reductive symmetric space if H is an open set and is a subgroup of G°.
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6.4 Invariant measure

6.4.1 Existence of Invariant measure

Definition 6.4.1 (Invariant measure). Here are the settings and assumptions.

(S1) G is a Lie group and m := Lie(G).
(S2) H is a closed subgroup of G.
(583) w is a Baire measure on G/H.

We say p is a invariant measure on G/H if for any f € C.(G/H) and any go € G

/G F(go - 2)dp(z) = /G f(@)du(z)

We say p is a right invariant measure on G

Notation 6.4.2. Let G be a Lie group and go € G. For each x € G/H, 74,(z) = go - x.
Lemma 6.4.3. Here are the settings and assumptions.

(S1) G is a Lie group and g := Lie(G) and m := dimg.

(S2) H is a closed subgroup of G and b := Lie(H) and k := dimb.

(S3) m:G>g+—gH € G/H.

(S4) 7¢ : G/H > zH — gzH € G/H (g € G).

(S5) q is a complement space of h in g and | := dimgq.

(S6) z € G.

(S7) § > 0 such that ®, : B;(0,5)Nq> X — zexp(X)H € G/H is a local coordinate around w(x) in G/H.
We set U := B;(0,d)Nq.

(S8) wa(e) is a m-th antisymmetric tensor field on Tr)(G/H).
(S9) For each X € U,

wéz(x)(vlv ey Ul) = We(((dTa:Ezp(X))ﬂ(e))ilvl7 ceey ((deExp(X))ﬂ(e))ilrUl) (Ula VS T‘@m(X)(G/H))

Then w” is C¥-class I-form on ®,(U).

Proof. 1t is enough to show a representation matrix (d7,gzp(x))r(e) is C¥-class. For each y € G/H, we denote the local
coordinate around y defined in the proof of 6.1.1 by 1. So, it is enough to show

UxU> (Xv Y) — 7/};(1@ (TJ;E‘wp(X)"/)w(e)(Y)) €q
is C¥-class. By the proof of 6.1.1, there is € € (0, ) such that
©:qNBr(0,e) x hN Bi(O,€) 3 (X,Y) = exp(X)exp(Y) € G

is a C¥-class homeomorphism to an open neighborhood of e. We can assume Exp(U)Exp(U) € ImO. For each (X,Y) €
U x U, there is the unique (a(X),8(Y)) € N Bi(O,¢€) x h N B;(O, €) such that

TzEmp(X)w‘rr(e) (Y) = E.Z‘p(Oé(X, Y))E‘Tp(ﬁ(X7 Y))
and a and g are C*-class. And for any X,Y € U,
11[};(1%) (TwEwp(X)q/}Tr(e) (Y)) = OZ(X, Y)

So,
UxU> (X, Y) — 1#;(1%) (Tszp(X)ww(e) (Y)) €q

is C%-class. ]

Lemma 6.4.4. We will succeed notations in 6.4.4. And here are the settings and assumptions.
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(A1) For any x,y € G, there is o € {—1,1} such that
w® =ow? in &, (U)N &, (U)
(S1) For any x € G, there is ¢, € C¥(D,(U)) such that for any q € @,(U),
wy = Go(Q)d(V3)g A .. A (),

Here W, := & 1.

(52) We set
0q = |02(@)|d(V3)g A A A(TF), (2 € G, q € @(U))

and define p: G/H — {—1,1} by

wg = p(q)wq(z € G, q € 25(U))

Then & is C*-class form on G/H and for any ¢ € G/H and g € G there is 044 € {—1,1}
(d7g)wq = 0g,90q
and G/H is orientable.

Proof. Let us fix any g,z € G. We set ¢ := 7(z) and p := w(e). Then for any v,...,vx € To(G/H),

((d7g)@0)q(v1, s V&) = Wgq((dTg) g1, .-, (dTg)quk) = p(9@)we ((dTgs )¢ (dTg) V1, ey (dTga )¢ (dTg) Uk)
= we((dr2) s vy sy (A7) o) = p(99) p(q)i0g (V1 vy vk)

O
Lemma 6.4.5. We will succeed notations in 6.4.4. Then
WS pepyi = A€t (dTepapx)) ™ (AY L) oBapxym A - A (V5w papx)n (VX € U)
Proof. Let us fix any X € U. We set g := zExp(X) and ¢ := 7(g).
xr T a
Wt = det({ (= )gea) 1) (W) A o A (dTF),
oy,
. . . . . 0 3] k
We denote the inverse of jacobi matrix of (dr,), with respect to {(W)q}j and {(W)p}j by {@;r}5,—1- Then
k
(drg), p 8\I/j g
So,
v O
Wy ((@)qei) = aj,i
Consequently,
W;Ewp(X)H = det<dTwEwp(X))7l(d‘lli)wEwp(X)H ARTIA (d\IJI;)a:Ea:p(X)H
O

Lemma 6.4.6. We will succeed notations in 6.4.4. And here are the settings and assumptions.

(A1) For any h € H,
|det((dmn)p)| =1

Then for any x,y € G, there is 0 € {—1,1} such that

w® = ow? in B, (U) N &, (U) (6.4.1)
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Proof. Let us fix any ¢ € ®,(U) N ®,(U). Then there are X,Y € U such that
m(xExp(X)) = ¢ = w(yExp(Y))
We set g := 2Exp(X) and yo := yFExp(Y) and h := y; 'z¢. Then by Lemma6.4.5,

(6.4.1)
< |det((d7z,)p)| = |det((dTy,)p)|
= |det((dm)p)| = |det((dry,), ) det((drz,)p)| = 1

Lemma 6.4.7. We will succeed notations in 6.4.4. Then
(dTh)p = Adg/h(h) (Vh S H)

and
_ det(Adg(h))

 det(Adg (h))
Proof. Let us fix any h € H. For any t € R and X € g,

det((dmh)p) (Vhe H)

mpm(exp(tX)) = hExp(tX)H = hExp(tX)h *H = Exp(tAd(h)X)

So,
(dTh)p = Adg/h (h)

Let A, B,C be the representation matrices corresponding to Adg(h), Adgsy, and Ady(h) with respect to g, respectively.
Let us fix any X € g. There are Y € g and Z € b such that X =Y + Z. Adg(h)X — Adg,s(h)X € b and Adg(h)Z € b.

So,
=29
This implies det(A) = det(B)det(C). O
Lemma 6.4.8. We will succeed notations in 6.4.4. And here are the settings and assumptions.
(A1) For any x,y € G, there is o € {—1,1} such that
w® =ow? in &, (U)N &, (U)
(S1) g € G.

(52) (Ua,%a) and (Ug, ) are local coordinates on G/H and gUs N U, # ¢.
(S5) For any v € Uy and y € Ug

wy = P (z)dpa A .. ANddam, wy = Pa(y)ddg1 A ... ANddgm

Then, for any x € UgN Lg_an,
Dp(x) = |det(J (Yo 0 g © 9)(Y5(2)))[Palgr)

Proof. Let us fix any x € Ug N Tg_an. Then
Wy = @5($)(d¢571 A A d¢57m)x

and
Wye = a(gx)(d¢a,1 ARTA d¢o¢,m)gz
So,
? 0] 0 9] 0
(oo G )e) = n AL () o ()
and 5 5
wgm(dLg((awﬁ X )a)s oy dLg((m)m)) = |detJ (o © 7g 0 ¢p)(Vp(2))|(ddp,1 A .. Addgm)a

These implies that
Dp(x) = Pa(gr)|det] (o 0 79 0 P3)(¢s(x))]
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Theorem 6.4.9. Here are the settings and assumptions.
(S1) G be a Lie group.
(S2) H be a closed subgroup of G.

(A1) For any h € H,
(detAda ()| = \det(Ady ()

Then
(1) There is C*®-class form @ on G such that for any g € G there is o, € C(G/H,{—1,1})
drgw = ogw
(i) G/H is orientable by &.
(iii) The measure induced from @ is G invariant. Specially, G/H has a invariant measure.

Proof. (i) is from Lemma6.4.4. (ii) is from Lemma6.4.6. We will show (iii). We set k := dim(G/H). Let us fix
feC¥(G/H) and g9 € G. For x € G/H,

(7g0./)() := f(go)
By (ii) and the second contable axiom, there is {U;, 15, Vi, ®;, p;i 12, such that {U;,1;}$2, is a local coordinate system of
G/H and {U;,;}32, is local finite and for each i V; € O(R¥)

i Ui =V
is an homeomorphism and {U;, 1;}32, preserves a orientation of G and for each ¢ and = € U;
wy = i(x)(ds1 Ao ANdig)a
and ®; > 0 and {p;}2, is a partition of unity subordinating {U,;}32,. We set for each i, f; := fp;. By Lebesgue’s

convergence theorem,
oo

fw= fiw»/ Tgo fW = / Tgo Jiw
G/H ; G/H G/H 7 ; G/H 7

So, it is enough to show for each 4

fiw = / Tg()fiw
G/H G/H

By Lemma 3.6.10, we can assume that for each 4, there is j such that supp(7,,fi) C U;. Because supp(f;) is compact,
there is an open set U/ such that
supp(f;) c U/ C U;
and
supp(Tq, fi) = Tg_olsupp(fi) C Tg_olUZ-' cU;
We set ¢; := 1/);1 and V; := ¢;(U;) and ¢; == 1/1;1 and V; := ¢;(U;). By change-of-variables formula for integral and
Lemma6.4.8,

[rtio= [ oty (), (0)ds

G ¥i(7g0 U;)

= [ ooty @)@ o)
111_7'(7';10 U;)

:/ B fi(@i(i 0740 0 $5(2)))
’Pj(TgoUg)

X |det(J (i 0 Tgy 0 ¢5)) (15 © Too i 0 9 0 Ty, 0 Bj(x))))| !
XD (1hj 0 Ty Lhi 0 1 © Ty, 0 95(x))))

|| 56 et o7 0 6,)) 0 075 0 )
<, (1 0 7371 04(0)

/ F(:()) @1 (y)dy
g

- /Gfiw
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Proposition 6.4.10. Here are the settings and assumptions.

(S1) G be a Lie group.

(5§2) H be a closed subgroup of G such that dimLie(H) > 0.

(S3) € > 0.

(S4) g := Lie(G), b := Lie(H).

(S5) q is a complement subspace of b in g.
Then there are {g;}32, C G and {U;}2, such that U; is a open neighborhood of 0y (Vi) and U; C Bi(O,€) Nq (Vi) and
{m(g:iExp(U;)) }ien is an open covering of G/H and for any i € N #{j € N|n(g; Exp(U;)) N n(g9; Exp(U;)) # ¢} < 0.

Proof. There is V' which an open neighborhood of e in G such that V4 C Exp(B(O,¢)) and V is compact. There are
{g0.:}o, and {eg;}N°, C (0, 00) such that 7(V*) C UN°, w(go s Exp(B(O, €,:))) and go i Exp(Bi (0, €0.i) € Exp(Br(O, €)go.i
(V).

And for each s € N there are {g, ; 1, and {e,;}7*, C (0, 00) such that 7(V*5)\m(V3+5) € UNs 7(gs i Exp(Bi (0, €s.4)))
and gs,iExp(Bk:(Oa es,i) - Exp(Bk:(O7 e)gs,i (VZ)

We set {g:}21 = {gs,ils,7 € N,1 <@ < N} and {U;}52, := {Usls,i € N;1 <4 < Ng}. We will show for any ¢ € N
and s € N,

7(ges) & 7(V*2)

For aiming contradiction, let us assume s € N and i € N such that 7(gs;) € T(V**2). So,
(95 Bap(Br(0, €5,4))) C m(Exp(Bi(0,¢€))gs) C n(V*F?)
This contradicts with
(95 Brp(Bi(0, €,4)) N m(V2)" 3£ ¢
Nextly, we will show for any ¢ € N and s € N,

(gs,i) (Vo) = ¢

For aiming contradiction, let us assume s € N and ¢ € N such that 7(gs ;Fzp(Bi(O,€0;)) N w(VT) £ ¢. Then there
is X € By(O,¢€) and u € V2 such that m(Exzp(X)gs;) = m(u). So, 7(gs;) = 7w(Exzp(X)u) € w(V+?). This is a
contradiction. So,

(gs,iE‘rp(Bk(Ov 6871'))) n 7T(Vvs) =¢

By the same argument as the proof of Proposition6.4.10, the following holds.
Proposition 6.4.11. Here are the settings and assumptions.

(S1) G be a Lie group such that dimLie(G) > 0.
(S2) € > 0.
(S3) g := Lie(G) and m := dimg.
Then there are {g;}32, C G and {U;}$2, such that U; is a open neighborhood of 0., (Vi) and U; C By (O,€) Ng (Vi) and
{9:Exp(U;)}ien is an open covering of G and for any i € N #{j € N|g;Exp(U;) N gjExp(U;) # ¢} < oc.
Proposition 6.4.12. Here are the settings and assumptions.
(S1) G be a Lie group.
(S2) H be a closed subgroup of G such that dimLie(H) > 0.
(53) € > 0.
(84) g := Lie(G), b := Lie(H).
(S5) q is a complement subspace of b in g.
Then there are {g;}32, C G and {U;}32, and {h;}52, C H and {V;}52, such that U; is a open neighborhood of Oy (Vi) and

U; C Bx(0O,¢)Nq (Vi) and V; is a open neighborhood of 0, (Vj) and V; C Bi(O,€) N (V4) and V; is a open neighborhood
of 0; (V§) and g;Exp(U;)h;Exp(V;) € O(G) (Vi,7) and for any i,j € N

Ui xV; 3 (X,Y)w giExp(X)h;jExp(Y) € g;Exp(U;)hjExp(V;)

is a C¥-class diffeomorphism and {g; Exp(U;)h; Exp(V;)}i jen is a local finite open covering of G and {m(g;Exp(U;)) }ien
is a local finite open covering of G/H and {h; Exp(V;))}jen is a local finite open covering of H.
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Proof. Let {g:}32, and {U;}72, be the one in Proposition6.4.10. Let {h;}32, and {V;}32, be the one in Proposition6.4.11.
By Theomrem6.1.1, we can assume for each 7,7 € N

Ui xV;2(X,)Y)— giEap(X)h;Exp(Y) € G

is a C*-class diffeomorphism to an open neighborhood of g;h;. So, it is enough to show {g;U;h;V;}; jen is local finite.
Let us fix any 4,5 € N. For each i',5’ € N,

giUih;V; N guUphji Vi # ¢ = 7(g:Us) N (g Us) # ¢

So,
#{i" e N|3j’ s.t ¢;U;h;V; N g Uphj Vi # ¢} < 00

We denote this set by I. Let us fix any i € I. Because (g;,Ui,) 1g:U;h;V; N H is compact, there are j1, ..., jar such that
(9ioUio) " '9iUih;V; N H C Uglyihy, Vi,
This implies
{5'19:Uih;Vy 0 91 Uighi Vi # ¢} C Uali {4’10y, Vi, N by Ve # 6}

So,
#{7'19:Uih;V; 0 giyUigh;Vjr # ¢} < >0

Theorem 6.4.13. Here are the settings and assumptions.

(S1) G be a Lie group.
(§2) H be a closed subgroup of G such that dimLie(H) > 0.

(A1) For any h € H,
|detAdg(h)| = |det(Adg (h))]

(S3) wm is a left invariant meausre induced by a left invariant form on H.
(S4) payu is a invariant measure induced by Theorem6.4.9.

(S5) pe is a left invariant meausre induced by a left invariant form wgy on G.

Then there is ¢ € R such that for any f € C.(Q)

/G f@due(e) =c [ F@)ducu()

G/H

Here
FloH) = /H F(gh)dpur(h) (gH € G/H)

f is well-defined and f is continuous.

STEP1. f is well-defined and f is continuous. If gy H = go H, because gglgl € H,

/f(glh)duH(h)=/ f(9295191h)duH(h)=/ Fg2h)dpg ()
H H H

So, f is well-defined. Because f is uniformly continuous and gExp(U)H is an open neighborhood of gH for any open
neighborhood of e U, f is continuous. O

STEP2. Construction of a left invariant measure p from invariant measures on G/H and H. We set

1:CHG@)3 fr [ f@)ducn(o) € B
G

By Riez-Markov-Kakutani Theorem, I induces the baire measure p on G. O
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STEP3. Construction of a local coordinates system. We set g := Lie(G) and b := Lie(H). We fix q which is the comple-
ment of h. k := dimq and m := g and [ := q. There is §; > 0 such that

Bi(0,61)Ng x Bi(0,61) N> (Y, Z) — exp(Y)exp(Z) € G
is a C%-class diffeomorphism to an open neighborhood of e. For each ¢ € G and h € H,
9(Bzp(Br(0,61) Na)h(Bi(0,61) Nh) = gh(Bxp(Adg(h™")Br(0,61) N a)(Bi(0,61) Nh)
So, there is d; > 0 such that
Bi(0,62) Ng x Bi(0,62) N> (Y, Z) — gexp(Y)hexp(Z) € G

is a C%-class diffeomorphism to an open neighborhood of gh. There are {¢;}32; € G\ H U{e} and {h;}52; C H and
{U;}$2, and {V;}$2, such that s U; is an open neighborhood of 0j (Vi) and V- is an open neighborhood of 05 (Vi) and
{m(9:Us)}$2, is a local finite covering of G/H and {h;V;}$2, is a local finite covering of H and {g;U;h;V;}$5_, is a local
finite covering of G. We denote a partition of unlty correspoinding to {m(g;U;)}52; by {a;}$2; and denote a partition
of unity correspoinding to {h;V;)}3; by {$;}32;. Then clearly {a;3;}75_; is a partition of unity correspoinding to
{9iUih;V;}75-1- .
STEP). Construction of a C*°-form w. We set for each ¢,5 € N,

W, Bap(X)h, Bap(v) = P1,i(g:Exp(X)) @2 (b Exp(Y))dp] ;AddT A AdSF ;Addy ;AdD5 i A..NdDY ; (X € Uy, Y € Vj,i,j €N)

We will show w is well-defined. Let us fix any 41, ji1,92,j2 € N, X; € U, Y1 € Vj,, Xo € Uy, Yo € Vj, such
9i, Exp(X;,)hj, Exp(Y;,) = gi, Exp(X;,)hj, Exp(Y;,). We set

g1 = 9, Exp(Xi,), 92 = i, Exp(Xi, ), hy := hj, Exp(Y},), he == h;, Exp(Yj,)

Because ho := g5 ‘g1 € H, n(g1) = 7(g2). So, by Lemma6.4.4,
@iy (91)dd1,5, N dBL, A A GG, = Prilg2)ddr s, A DT, A N dOY,

So, hoh1 = hy. Because py is left invariant, by Lemma3.6.6,

Dy j, (ho)dy ;, Nd@3 5, A .. ANy, = Do g, (hoha)ddy ;, Ade3 5, A ... Adh ;.

= det(J(é1 0 Ly,-1 0 ¥2)(¢2(h1))) 1,y (1) ddy j, NdGS 5, Ao A depy

=&y, (h1)dot ;, AdT ;Ao Addh
So, w is well-defined. O
STEPS. The measure induced by w is equal to . Let us fix any f € C.(G).

o0

fw= / faiasw

*/G iJZZI g:Uih; Vi e

= / f(giExp(X)h;Ezp(Y))ai (g Exp(X))oz(h; Exp(Y))®1,i(9i Exp(X))®2,i(h; Exp(Y))dXdY
ij=1" ¥1,i(Us)x¥2,5(V5)

= / ®1,i(gi Exp(X))ar(giExp(X Z/ f(giBxp(X)h; Exp(Y))as(h; Exp(Y))®s,i(h; Exp(Y))dY dX
Y1 L(UL) 2 J(‘/J

= Zal(giExp(X))/ D1, (gi Exp(X / f(giExp(X)h)dpm (h)dX
— "Z"l z(Uz)

o0

= / o1 (9 Bxp(X))®1,i(gi Exp(X)) f(9: Bxp(X))dX = f(@)dpc u(z) = I(f)
Y1,:(Us) G/H

So, w introduces p. By Proposition3.6.8, w is left invariant form. Consequently, there is ¢ € R such that w = cwg. This

implies p = cug. O
In speciality, the following holds.

Proposition 6.4.14. Here are the settings and assumptions.

(S1) G be a compact Lie group.
(S2) H be a closed subgroup of G.

Then G/H has a invariant measure induced by a C*> form.
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6.4.2 [P(G/H)
By the same argument as the proof of Proposition3.6.16, the following holds.
Proposition 6.4.15. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G.

(A1) For any h € H,

|det Ad(h)| = |det(Adg (h))]
Then LP(G/H) is separable for any p € NN [1,00).
By the proof of Proposition6.4.15, the following holds.
Proposition 6.4.16. Here are the settings and assumptions.
(S1) G be a Lie group.
(S2) H be a closed subgroup of G.

(A1) For any h € H,
|detAdg (h)| = |det(Adg (h))]

Then there is at most countable subset of Co.(G/H) which is dense in LP(G/H) for any p € NN[1,00).

6.5 Basics of Fiber bundle

Definition 6.5.1 (Topological transformation group). Let G be a topological group. And let' Y be a topological space. If
n: G XY =Y satisfies the following conditions, we say G is a topological transformation group of Y respects to 0.

(i) nle,-) = idy.
(i) 1(g2,n(g1,-)) = 1(9291,-) (Vg1,92 € G).
If is clear what n is, we denote gy :=n(g,y) -

Definition 6.5.2 (Effective topological transformation group). Let G be a topological transformation group of a topological
space Y respects to . We say that G is effective if n(g,-) = idy only if g = e.

Definition 6.5.3 (Coordinate bundle). We call
B = (B7Xu Kpﬂ {‘/j}jELh {(bj}jEJa G)
a coordinate bundle if

(i) B, X,Y are toplogical spaces. B is called a bundle space or total space. X is called a base space. Y is
called a fibre.
(i) p: B — X is a surjective and continuous map. p is called a projection.
(iii) G is a topological transformation group of Y respects to n and G is effective.
(11t) {V;};es is an open covering of X. We call each V; a coordinate neighborhood.
(iv) ¢j : V; x Y — p=Y(V;) is an isomorphism. We call d)J_l :p H(V;) = V; XY a local trivialization or a
coordinate function. For each x € V;, we call Y, :=p~'(x) a fiber on x.
(v) podj(xz,y)=a (Vje JVreV;,VyeY)
(vi) If VinV; # &, for each v € V;N'V;, we define ¢; , : Y =Y by

$ia(y) = diz,y)
Then there is the unique g;;(x) € G such that
0 © Pia(-) = 1(g5i(2). )

18 an tsomorphism.

(vii) g;i:ViNV; = G is continuous.
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Memo 6.5.4. I think, roughly speaking, a coordinate bundle is a pair (B, X, Y, p) with local trivializations ({V; }icr, {@: }ier
which induce a system of coordinate transformations {g; ;}i jer. Steenrod Theorem, which is showed later, states a system
of coordinate transformations induces a local trivializations.

Definition 6.5.5 (Equivalent in the strict sense between two coordinate bundles). Let

By = (B1, X1,Y,p1,{V1j}jen, {05} ien,, G)

and
By := (B, Xo, Y, p2,{Va,j }je s, {05 }je s, G)
are coordinate bundles. We say that 281 and By are equivalent in the strict sense if
(i) B1 = By, X1 = X0,Y1 =Y5,G1 = Go.
(1) Fiz any j1 € Jv and jo € Jo such that Vi j, NVa,, # ¢. For any x € Vi j, N Va,,, there is unique
Gjs.j1 (@) € G such that
Gjaji (T) = 030 0 P12
and
Gjagr 2 Vi NV, = G

18 continuous.
Proposition 6.5.6. The relation in Definition6.5.5 is equivalent relation.

Definition 6.5.7 (Fibre bundle). We define that a fibre bundle is a equivalent class by strict sense equivalent of coordinate
bundles.

Clearly the following holds.

Proposition 6.5.8 (Smooth bundle, Holomorphic bundle.). Let

(51)
B :=(B,X,Y,p,{V;}jer,{9j}jes, G)isacoordinatebundle.

(52) X,Y,G are C*-class manifolds.

(A1) G is a Lie group.

(A2) The action of G on X is C*®-class.

Then B is a C*°-class manifold. We call B a smooth corrdinate bundle.

And we call B is a holomorphic coordinate bundle if X,Y are complex manifolds and G is complex Lie group.

Definition 6.5.9 (Bundle map). Let

%1 = (Bla Xla Yapla {VLj}jEJU {¢17j}j€J17G)

and
%2 = (BQa X27 Y7 P2, {%,j}jEJz7 {¢2,j}j€szG)
are coordinate bundles. We call (h,h) a bundle map from B, to By if

(i) h: By — By is a continuous map.
(ii) h: X1 — Xo is a continuous map.

(iii) For each v € X, 2’ := h(z) and Y, := p~1(x) and Yy :=p~1(2') and hy := h|Y,. Then hy : Y, — Yy is
an homeomorphism.

(iv) For any x € V1 j Nh=t(Vay), there is unique gy j(z) € G such that
¢;}l(m) ohg 0 P12 = Gr,j(T)-
(i) G VijNh~t(Var) — G is continuous. We call g j a mapping transformation.
We also call h itself a bundle map and call h a map induced by h or call h the induced map from h.

Proposition 6.5.10. The followings hold.

(i) The identity map of any coordinate bundle is a bundle map.
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(ii) The composition of any two bundle maps is a bundle map.
Proof of (i). This is clear because of the definition of coordinate bundle. O
Proof of (ii). Let
%i = (Bza Xiv vaiv {Vvi,j}je.]m {¢j}j€]i7 G) (7’ = ]-7 27 3)
be corrdinate bund}es angl (hlg Hl) be a bundle map from B; to Bs and (ha, h}) be a bundle map from B5 to B3. We set
hs := hy o hy and h3 := hs o hy. Clearly, hs and hs are continuous. For any x € X, clearly,
h3,z = hQ,}fl(x) © hl,x

So, hs3; is a homeomorphism from Y to Yy, (4)-

Let us fix any z € V3 ; N 5371(‘/37;“). Clearly

By !

- —1,,- -1
(Vs) =h1 (ha (V)
This implies

- - -1

hi(z) € he ~(Vak)
Because {V2 ;} e, is an open covering of X, there is j € Jy such that

Bl(x) S VQ’j
So,
¢37}Li5(x) © h3,z © ¢1,z
~1
- ¢3,h_2(h_1(;c)) © hQ,x o h2,z © ¢1,z
~1 B ~1
= Oy () © 120 © P2k (2) © Do gy, () © P20 © P12
= G2k, (M(2))g1,5,i(2)

Clearly ga. k. j(h1(-))g1,5,:(-) is continuous on Vi ; N ]{3_10/3}]9) Nhyt(Vay). O
Definition 6.5.11 (Equivalent between two coordinate bundles). Let

By := (B, X1,Y,p1, {Vij}jen, {0 jen, G)
and
By = (Ba, Xo,Yop2, (Vo }jem {05} jesn: G)

are coordinate bundles. We say that B; and By are equivalent if there is h such that (h,idx) is a bundle map from B
to %2.

The following is clear from the definition of bundle map.

Proposition 6.5.12. Let
B = (B1, X1, Y, p1, {V1,5}jen  {01,5}jen, G)
and
By := (B, Xo, Y, p2, {Va j }jesn {025 jes: G)
are coordinate bundles. And (h,h) is a bundle map from B, to By. Then the followings hold.
95,i(2)9i,k(x) = gjn(x) (Vo € Vi NVipgnh™ (Vo)) (6.5.1)
951 (M())gi x(x) = gjr(x) (Y2 € Vipg Nh™H (V1N Vo)) (6.5.2)
Lemma 6.5.13. Let
By = (B, X1, Y, p1, {Vij}ien {15 jen G)
and
By = (Ba, Xo, Y, p2, {Va,j }jesns {02,5 }jesnr G)

are coordinate bundles. And let us assume h is a continous map from X, to Xo. and there is {9i,j}ijes such that for
each i,j € J gi; € C(V;Nh=Y(Vi),G) and the followings hold.

5,i(®)gi k() = Gjk(x) (Vo € Vi N Vi Nh™ (Vo))

95,4 ((x))gik (2) = gju(x) (Vo € Vipg A (Vi N Vay))
Then there is a bundle map h from B to By such that h is the induced map from h and for eachi,j € J g; ; is a mapping
transformations of h.
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Proof. For each ¢ € J; and j € Jy such that (V1N TL*I(VQJ)) XY # ¢, we set

h(¢ri(x,y)) = ¢2,(h(@), gii(x)y) ((z,y) € (VigNh™ (Vo)) x Y)

We will show h is well-defined. Let us assume (z,y) € (Vi,; Nh~}(Va;)) x Y and (2/,y') € (Vi,y Nh™Y(Va;7)) x Y and

b1i(x,y) = dru(z',y)

Then
z=podii(z,y) =poru(r,y) =2’
So, ¢1,i(z,y) = ¢1,/(x,y"). This implies
giri(x)y =y
So,
G5.i(x)y = Gj,i(x)gii (2)y = g0 ()Y’
So,

¢a,5(h(x), Gj.i(x)y) = G2.5.1(2)(95,i()Y) = b2 js hx) © ¢2_;,’;L($) © b hiw) (G (2)y') = ¢2,j/,ﬁ(z)(gj’,j(}_l(fl?))gj,i' (2)y)

= bo i) Gy (2)Y) = ba,jr (h(x), gjr o (x)y')

Consequently, h is well-defined. Clearly, h is continuous. Also, clearly, for any = € V4 ; Nh~1(Va ), h|Y; is an homeomor-
phism from Y, to Y3,y and

¢;7]17E($) oho ¢1,7L,z - gj,i(l')
O
Lemma 6.5.14. The followings are the settings and assumptions.
(51)
B := (B, X1, Y, p1, {V1,j}jern {01, } e, G)
and
By := (Ba, X2, Y, p2, {Vaj }jesns 102,5}je s, G)
are coordinate bundles.
(A1) X, = X,.
(A2) There are gy, ; : V; NV}, = G:continuous map(j € Ji, k € Jo) such that
Gk.j(2)gj.i(x) = gri(x) (Vo € VN V3N VE), g4 (2)gk.j(x) = g7 ;(x) (Yo € VNV N V)
Then B1 and Bs are equivalent.
Proof. 1t is from Proposition6.5.13. O

Lemma 6.5.15. The followings are the settings and assumptions.
(51)
B1 = (B1, X1, Y, p1,{V;}jes: {dj}jen. G)
and
By := (B2, X2, Y, p2,{Vi}jes.{d;}ies, G)
are coordinate bundles.
(A1) X1 = Xs.
(A2) There are \j : V; — G:continuous map(j € J) such that

9i.4(@) = Xi(@) g1 ()X (2) (Yo € V;NVj)

Then B1 and Bo are equivalent.
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Proof. We set
Gij(®) == Ni(2) L gi i (2) (x €ViNY)

Then
90,5 ()90 () = Ni(2) " gi 5 () gk () = Ni(2) " gin(2) = gin(2)
and
91, (2)3i,5 () = Mo (2) " gra (@i (@) i (@) 7 g3, () = Mo(2) " gr,i(@)gi (@) = A (@) " gr5(2) = gr g ()
So, B and B, are equivalent from Lemma6.5.14. O

Definition 6.5.16 (System of coordinate transformations). Let
(S1) G is a topological group.
(S2) X is a topological space.
We call ({V;}jer,{gi,j}ics) a system of coordinate transformations in X with values in G if
(i) {V;}jes is an open covering of X.
(ZZ) 9ji € C(‘/J ﬂ‘/;‘,G) (V’L,] S J)
(i4) gk.j © gji = Gk n Vi NV, NV (Vi j k€ J).
Clearly the following holds.
Proposition 6.5.17. Let
(S1) G is a topological group.
(52) X is a topological space.
(5S3) ({Vi}ies,{9i;}ics) is a a system of coordinate transformations in X with values in G.

Then the followings hold.

(1) gii =e (YieJ).
(ii) gij = g5, (Vi,j€J).
Theorem 6.5.18 (Steenrod’s theorem). Let
(S1) G is a topological group.
(52) X is a topological space.
(S3) ({Vi}ies,{9:i;}ics) is a system of coordinate transformations in X with values in G.
(S4) Y s a topological space.
(S5) G is a topological transformation group of Y.
(A1) The action of G on'Y is effective.
Then

(1) There is B,p,{¢;}jcs such that (B, X,p,{V;};jcs, Y. {®;}jcs) is a coordinate bundle and for any j,i € J
such that VN V; # ¢, for any x € V; NV, in V; NV,
;11; o ¢i,z =05,
(1t) If By and By are topological spaces which individually satisfy (1), (Bi,X,p,{V;};es,Y, {qﬁ}}jej) and
(B2, X,p,{Vi}jes.Y, {gb?}jeJ) are equivalent.

STEP1. Construction of B and {¢;},cs. Hereafter, let us assume the topology of J is the discrete topology. We set
T=XxYxJ

We define the relation of T' by

(z,9,7) ~ (@', ¥ k) : <= z=2" and y = g ;(x)y
We will show ~ is a equivalent relation of T. Because g;; = e, the reflexivity of ~ holds. Because g;; = e, by (S5), the
reflexivity of ~ holds. Because g; ; = gj_;, by (S5), the symmetry of ~ holds. Because gx ; © gji = gk, by (S5), the
transitivity of ~ holds. So ~ is a equivalent relation.
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We set
B:=T/~
and
q:T 3 (z,y,)) = [z,y,j] € B
and

p:B>3[x,y,jl—mzeX

By the definition of ~, p is well-defined. And, clearly, p is surjective. Let us assume that the topology of B is the final
topology of B induced by ¢. For any O € O(X),

¢ '(pH0) =0 xY x{jeJV;n0 # ¢}
In this equation, the right side is an open set of T'. So, p is continuous.
We define ¢; : V; x Y — B by

¢;(z,y) = [z,y,]]
Clearly, ¢; is continuous and

¢;:V;xY CB
and

po¢; = idy,
O

STEP2. Proof of that ¢; is an isomorphism. By STEP1, it is enough to show that ¢; is bijective and an open map. We
will show that ¢; : V; x Y — p~1(V}) is surjective. Let us fix any [z,y, k] € p~1(V;). Clealy x € V), and

(mvyv k) ~ (wvgj,k(l')yvj)
So,

[z, y, k] = ¢;(, gj,x(x)y)
So ¢; is surjective.

Nextly, we will show that ¢; is injective. Let us fix any (z,y), (2',y’) € V; x Y such that [z,y,j] = [’,7/,j]. Then
x =2z and
95.5(@)y =
Because g; j(x) = idy,, y = y'. So ¢; is injective.
Lastly, we will show that ¢; is an open map. Let us fix W; x Wy C V; x Y which is an open set. For any k € J such
that Vi NV #£ ¢, weset 75 : (Vi NV;) XY — (Vi NV;) x Y by

rik(@,y) = (T, 95%(2)y)

By (S5), r; x is continuous.
We will show for any W € O(V; x Y),

oW = U W) x{k} (6.5.3)

kEJ,ViNV; ¢

Let us fix any (z,y) € (V; N Vi) x Y such that 7, x(x,y) € W. Because

¢;(x, gk (@)y) = [rjx(), 5] = q(z,y, k) (6.5.4)
in (6.5.3), the right side is containd the left side. By (6.5.4), it is clear that in (6.5.3), the left side is containd the right
side. So, (6.5.3) holds. Clearly, in (6.5.3), the right side is an open set. So, ¢, is an open map. O

STEPS3. Proof of (i). By STEP1 and STEP2, it is enough to show that for any ¢,j € J such that V; N V; # ¢ and any

zeVinV; #¢ 1
jw © Pie = G (6.5.5)

Forany y €Y
° ¢ix(y)
([z,y,1])
([, 95.:(x)y, 41)
954 (@)y
So (6.5.5) holds. O

e
= ¢'.—71
%,

J
J
J
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STEPS3. Proof of (ii). _
G152 00" =gji(x) = ¢3) . 0 b2ix (Vi,j, Vo € ViNVj)

When we set A\;(x) := e (Vi,Va € V), {\;}; satisfies the conditions of Lemma6.5.15. So, B and By are equivalent. [
Proposition 6.5.19 (Tangent bundle). The following are settings and assumptions.

(S1) {M,{(U;, i) }icr} is a n-dimensional C*-class manifold.

(52) B :=Ugep{z} x Tp(M)).

(S8) p: B> (z,X)—~xz € M.

(54) Y :=R™.

n 0
(55) ¢i 2 Ui XY 2 (z,0) = (2,35, vj a—w] ) € B.

Then {B,p, M,R™ {(U;, ¢i) }icr, GL(n,R)} is a coordinate bundle. We call the fibre bundle of the coordinate bundle
tangent bundle of M.

Proof. Clearly,
pogi(z,v)=a (Vie [Vx €U ,veEY)

and
¢:i(U; x Y) =p~ " (Uy)

and ¢; is injective and ¢; is C*°-class and ¢; 1is C°°-class. So, ¢; is a local trivialization. And
7w © Diw (V) = J (8], 0 $i0) (v)

and
UinU; 3z~ J(¢;,0¢ia) € GL(n,R)

is C>-class. So, {J ((b;; © ¢i2) frev,nu; is a system of coordinate transformations. Consequently,
{B7pa M7 Rna {(Uiy ¢i)}i617 GL(’I’L, R)}
is a coordinate bundle. O

Definition 6.5.20 (Cross section). Let
B :=(B,X,Y,p,{Vj}jes,{8;}jcs, G)

is a coordinate bundle. We say s : X — B is a cross-section if s is continuous and po s = id|X .
If B is a smooth bundle ans s is C*° class the we call s a smooth section. If B is a holomorphic bundle ans s is a
holomorphic the we call s a holomorphic section.

Definition 6.5.21 (Vector Bundle, Line Bundle). Let
B:=(B,X,Y,p,G)

be a fibre bundle. We say B is a vector bundle if Y = R™ and G = GL(n,R) and G acts on'Y with g-v =gv (9 € G,v €Y).
We say B is a complex vector bundle if Y = C™ and G = GL(n,C) and G acts on'Y with g-v=gv (g € G,v €Y).
We say B is a holomorphic vector bundle if B is a complex vector bundle and a holomorphic fibre bundle.
We say B is a line bundle if B is a vector bundle and dimV = 1.

Definition 6.5.22 (Principal Bundle). Let
B:=(B,X,Y,p,G)

be a fibre bundle. We say B is a principal bundle if Y = G and G acts on'Y with g-h = gv (g,h € G) in B.
Definition 6.5.23 (G-equivariant fibre bundle). The followings are settings and assumptions.
(i) B:={B,X,Y,n,{Viticr, H,K} is a fibre bundle.
(i) G is a topological group.
(ii) G acts on B and X, indivisually.



6.6. HOMOGENEOUS VECTOR BUNDLE 173

Then we say B is G-equivariant fibre bundle if
w(g-u) =g -m(u) (Vg € G,Yu € B)
When B is G-equivariant we say 7 is G-equivariant.
Clearly, the following holds.
Proposition 6.5.24. The followings are settings and assumptions.
(i) B:={B,X,Y,n,{Vi}ic1, H, K} is a fibre bundle.
(ii) G is a topological group.
(iii) B is G-equivariant.
Then for any x € X and g € G,
7 z)sb—g-ben g )
18 a homeomorphism.
Definition 6.5.25 (G-equivariant vector bundle). The followings are settings and assumptions.
(i) B:={B,X,V,7,{Viticr, H, K} is a vector bundle.
(i) G is a topological group.
(i1i) B is G-equivariant.
Then we say B is G-equivariant vector bundle if for any x € X and g € G,

7 z) b g-ben Mg )

18 @ linear isomorphism.

6.6 Homogeneous Vector Bundle

Definition 6.6.1 (local cross-section). Let G be a Lie group and H be a closed subgroup of G and = : G — G/H be
the projection and U be an open neighborhood of mw(e). We say s : U — G is a local cross-section if s is C*°-class and
pos=1idlU.

Theorem 6.6.2. Let G be a Lie group and H be a closed subgroup of G and w: G — G/H be the projection. Then the
followings hold.

(i) There is an open neighborhood of m(e) U such that B :={G,G/H, H,{gU}q4cq, H} is a principal bundle.

(i) B has a local cross-section.

Proof of (i). We set b := Lie(H) and denote a complement of h by g.
By the proof of Theorem6.1.1, there exists r > € > 0 such that

Y :BO,r)Ngx B(O,r)Nh > (X,Y) — exp(X)exp(Y) € G

is a C¥-class diffeomorphism to an open neighborhood of p := 7(e) and exp(B(O,¢€))exp(B(O,¢€)) C exp(B(O,r).
We set U := w(exp(B(0,€) Nq)).
We set
¢p U x H> (m(exp(X)),h) = exp(X)h € G

Since v is a diffeomorphism, X is identified uniquely. So, ¢, is well-defined and C*-class. And clearly 7o ¢, = id|U and
Im¢, C 7= 1(U). Let us fixany g € 71 (U). Then 3X € B(O,e)Ngand h € H such that g = exp(X)h = ¢,(m(exp(X)), h).
So, ¢, is surjective. Let uf fix any X1,X2 € qN B(O,¢€) and hy,hy € H such that exp(X1)hi = exp(X2)he. Then
exp(X1) = exp(Xa)hohyt and hohi! = exp(—Xo)exp(X1) € exp(B(O,r). Since 1 is injective, hohy ' = e. That implies
X1 = X,. For each h € H, by von-Neuman Cartan Theorem, ¢,|U x exp(h N B(O, €))h is a C¥-class diffeomorphism to
an open neighborhood of h. So, ¢, itself is C¥-class diffeomorphism to 7= *(U).
For each g € G, we set
brig) : gU x H > (m(gexp(X)), h) — gexp(X)h € G

As same as the above argument, ¢, () is a C¥-class diffeomorphism from gU x H to an open subset 7 (gU).
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Nextly, let us fix any € g1UNgaU. Then wy € giexp(B(0, €)Ngq) and wy € gzexp(B(0, €)Nq) such that m(wy) = 7(ws).
Then hg := w;lwl € H. So,
¢7r(g1)(w17 h) =wrh= w2h0h = ¢7r(g2)(w27 hOh)

This means that
¢ (92),x (b‘rr(gl), (h) = (wglwl)h

and ¢7r(g2) z d)ﬂ”(gl)ﬂc = L(wglwl)' Since

m(g1Exp(B(0,€) Nq)) 3 w(w1) = w1 € g1 Exp(B(O0,€) Nq)
and

m(g2Exp(B(0,€) N q)) > w(wa) — we € goExp(B(0,€)Nq)
are C% class,

gUNgU>z+— (bﬂ,(g o d)ﬂ'(gl)J? = Lw;1w1 €eH

is C¥ class. Consequently, 7 : G — G/H is a C¥ class principal bundle whose structure group is H. O

Proof of (ii). We succeed notations in the proof of (i). We set
s:m(exp(B(0,€e)Nq)) > w(exp(X)) — exp(X) € G
Then s is clearly a local cross-section. O

Theorem 6.6.3 (Homogeneous vector bundle). The followings are settings and assumptions.
(i) G is a Lie group.
(i) H is a closed subgroup of G.
(i1i) (m,V) is a continuous representation of H.
(iv) (g1,v1) ~ (g2,v2) : <= Fh € H 5.t gy = goh and vy = 7(h) 1v,.
(v) p: GxV 3(g,v)— [g,v] € G/ ~. Let us define O(G/ ~) by p. We set G xgV =G/ ~.
(vi) ¢: GxgV 3|[g,v]—gH € G/H.
Then

(i) ~ is an equivalent relation on G x V.
(i) q is a vector bundle whose fibre is V and whose structure group is H.
(iti)) G acts on G xgV by g - [x,v] := [gz,v] g,x € G,v € V.
(v) For each g € G,v €V, {p(gU X (v+ B))}U:nei. of e, Benei. of0 1S a basis of neiborhoods of [g,v].

Proof of (i). It is clear from the def. of ~. O

Proof of (ii):q is well-defined and continuous. We set h := Lie(H). Let q denote a complement of §j. Firstly, from the
def. of ~, g is well-defined. By the proof of Theorem6.1.1, there is € > 0 such that for each g € G ¢4 : N B(O,¢) 5 X
gexp(X)H € G/H is a homeomorphism from q. := q N B(O, €) to an open neighborhood of gH.

For each g € G, ¢ (¢,4(qc)) = p(B(O,¢€) x V). Because p~1(p(B(0O,€) x V)) = B(O,e)H x V and B(O,¢)H x V is an
open set, ¢~ (¢4(qc)) is an open set. So, ¢ is a continuous. O

Proof of (ii):Local trivializations. For each g € G, we set ¢, : gexp(q.)H x V 5 (gexp(X)H,v) — [gexp(X),v] € Gxg V.
Clearly, 1, is well-defined and continuous and Imi, C ¢~ (dg(qc)) and g o 9, (gexp(X)H,v) = gexp(X)H (VX € q.).
Let us fix any [z,v] € ¢~ (¢4(qe)). Then Ih € H and X € q. such that zh = gexp(X). So, [x,v] = [gexp(X), m(h~)v] =
¥y (gexp(X), m(h~1)v). Consequently, 1, is a local trivialization. O

Proof of (ii):A system of coordinate transformation. Let us fix any

gy (greap(X1) H, v1) = g, (g2eap(e(X1))H, v2) € ¢~ (6, (96)) Mg~ (g, (a0))

Then ve = 7((g2exp(X2)) tgrexp(X1))vi. So, {1y }gec defines a system of coordinate transformation with the Lie group
H. O

Proof of (iii). It is clear from the def. of action. O
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Proof of (iv). Tt is clear from the def. of topology of G x g V. O
Theorem 6.6.4. The followings are settings and assumptions.

(i) G is a Lie group.
(i) H is a closed subgroup of G.
(i1i) (m, V) is a continuous representation of H.
(iv) T(G/H,G xpg V) is the set of all cross sections of q.
(v)e:H>h— (1,h,h) € Gx HxH.
(vi) (g,h1,ha) - f(x) :=m(ha) (g~ xh1) (g,h1,h2) €EGx Hx H,z € G, f € C(G,V).
(vii) C(G,V)'H) .= {f € C(G,V)|u(h)f = f (Yh € H)}. In this note, we sometimes may denote C(G,V)*(H)
by (G, V)H.
Then

(i) G x H x H acts on C(G,V) based on the def. of (vi).
(ii) C(G,V)*H ~T'(G/H,V) as purely algebraic representation of G. Remark that here we don’t care about
any topology of them and G acts on T'(G/H,V) by g-s(xH) := gs(g~'aH) for g,x € G,s € T(G/H,V).
Proof of (i). It is clear from the def. of action. O

Proof of (ii). Let us fix any ¢ € C(G,V)*¥. And let us ®(¢)(g) := [g, ¢(g)]. We will show ®(¢) is well-defined. Let us fix
any gi,ge € G such that g; ~ go. Then there is h € H such that g = g2h. So,

() (91H) = [g1,6(91)] = [g2h, ¢(g2h)] = [g2h, w(h) "' B(g2)] = [g2, d(92)] = ®(¢)(g2H)

We set b := Lie(H). Let q denote a complement of . Because ®(¢)(gexp(X)H) = [gexp(X), d(gexp(X))] g € G, X € q
such that || X|| < 1, ®(¢) € C(G/H,G xg V). Clearly qo ®(¢) = idg g, therefore ®(¢) € I'(G/H,G xg V).

Let us fix any s € I'(G/H,G xg V). Let us fix any ¢ € G. Then there v € V such that s(gH) = [g,v]. We
set U(s)(g) = v. P¥(s)(g) := v. Let us fix any ¢ > 0. By (iv) of Theorem6.6.3, there is § > 0 such that for any
X € g5 :=qN B(0O,9), s(gexp(qs)) C p(gexp(ge x (v+ B(O,¢€))). So, there is Y € q. and u € v+ B(O, ¢) such that

s(gexp(X)) = [gexp(Y), u]

Because s(gexp(X)) = [gexp(X), ¥(s)(gexp(X))], there is h € H such that gexp(X)h = gexp(Y) and m(h)~tu
U(s)(gexp(X)). Because of the proof of Theorem6.1.1, if we take ¢ to be sufficient small, then h = e. So, ¥(s)(gexp(X)) €
(v 4 B(0,€)). Therefore, ¥(s) is continuous. And clearly ¥(s) € C(G,V)“H),

Clearly, ® o V = idr(g/u,v) and ¥V o ® =ide (g vyum. And

(g ¢)(z) = [x,9- d(x)] = [z,0(g " x)] = [gg 'z, 09 '2)] =g [g7 'z, 0(g" " 2)]
= g®(¢)(g 'x) = (g 2(9))(z) (Vg,z € G,Y¢ € C(G, V)"

6.7 Invariant metric

6.7.1 Existence of Invariant metric

Notation 6.7.1 (P1(V)). Let V be a R vector space. Let Py(V') denote the set of all positive definite symmetric bilinear
function.

Clearly the following holds.
Proposition 6.7.2 (Isotropy Representation). The followings are settings and assumptions.

(i) G is a Lie group and g := Lie(G).
(i) H is a closed subgroup of G and b := Lie(H).

Then for any h € H
g9/b > [X] = [Ad(h)X] € g/b

is well-defined. Let denote Ady,y(h) the map. We call (Adg,y,8/h) the isotropy representation.
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Definition 6.7.3. The followings are settings and assumptions.
(i) G is a Lie group and g := Lie(G).
(i) H is a closed subgroup of G and b := Lie(H).

Then for any h € H
(h-B)(X,Y) = B(Adgy(h™1)X, Adg sy (h~1)Y)

The action is a representation of H. Let us denote the H-invariant element of P+ (V) by P (V).
Theorem 6.7.4. The followings are settings and assumptions.

(i) G is a Lie group and g := Lie(G).

(i) H is a closed subgroup of G and b := Lie(H).
Then

(i) G/H has a G invariant riemannian metric <= g/b has an inner product with which Adgy is a unitary
representation of H (i.e. P1(g/h) # ).

(ii) For each P € Py (g/h)*, we set
O(P)p(n(g, X +0),n(g,Y +h):==P(X +b,Y +bh) (p€G/H,ge G st gH=p X,Y €9)

and
Mg X +0)(f) = Slimof(gexp(tX) g € G, f € Cy(G/H))

Then ®(P) is well-defined and G-invariant C*-class riemannian metric and
®: Pi(g/n)" — M(G/H)"

is an isomorphism as linear space. Here, M(G/H)% denote the set of all G-invariant C*°-class rieman-
nian metric on G/H.

Proof for sufficient condition in (i). Let us fix P € Py (V). Let us fix any p € G/H and u,v € T,(G/H). Then there
are g € G and X,Y € g such that

p=gH,u(f) flgexp(tX)H),v(f) flgexp(tY)H) (Vf € Cp(G/H))

B %\t:o B %h:o

We set
By(u,v) :==P(X +b,Y +h)

We will show B, is well-defined ragarding X, Y, g. Clearly B, is well-defined regarding X,Y. And any h € H,
ghexp(tX) = gexp(tAdgy/y(h)X)h
and
P(X +b,Y +b) = P(Adg/y(h)X + b, Adg/y(h)Y + )

Therefore By, is well-defined regarding g. And clearly B is C*°-class and G-invariant. So B is a G-invariant rieamannian
metric. O

Proof for necessary condition in (i). Let us fix B which is a G-invariant riemannian metric. We set
P(X +5,Y +b):= Ba((X +1),u(Y +b))
Here, ¢ is defined by

UZ+0)(f): flexp(t2)H) (f € CF(G/H)

T dt
Since B is G-invariant,
By ((dmh)*u, (dr,)*v) = B (u,v) (Vh € H,Yu,v € Ty(G/H))

Here, 7, is defined by
Th(gH) = hgH (gH € G/H)

Clearly,
' (d73,)*L(X) = (Adg)p(R)(X +b) (Vh € HVX € g))

Therefore, P € P4 (g/h). O
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Proof of (ii). (ii) is from the proof of (i). O
So, clearly the following holds from Theorem5.7.1.
Proposition 6.7.5. The followings are settings and assumptions.
(i) G is a Lie group and g := Lie(G).
(ii) H is a compact subgroup of G.

Then G/H has a G invariant riemannian metric.

6.8 Induced representation

Theorem 6.8.1 (Induced Representation). The followings are settings and assumptions.
(i) G is a compact Lie group.
(i) H is a closed subgroup of G.
(i1i) (m,V) is a continuous unitary representation of H.

(iv) For each fi, fo € C(G,W), (f1, f2) = [5(f1(9), f2(9))wdu(g). Here, pu is the normalized Haar measre
on G.

Then

(i) C(G/H,W)"H) is a pre-Hilbert space and is an unitary representation space of G with the inner product.
We call the completion of it the induced representation from w and denote the completion by L*(G, W)
and denote the representation by L*-Ind(H 1 G)(n) or L?-Ind$,.

(i) For any f1, fo € C(G/H, W)L(H),
(s o) = / (F1(9), fo(9))dn(gH)
G/H

Proof of (i). Tt is clear. O
Proof of (ii). It is clear from Theorem6.4.13. O

Induced Representation can be defined with homogeneous bundle as below.
Theorem 6.8.2. The followings are settings and assumptions.
(i) G is a compact Lie group.
(ii) H is a closed subgroup of G.
(iii) (w,V) is a continuous unitary representation of H.
(iv) For cach g € G and [¢', 1), lg', va] € g~ (gH), we set (g, vl g, va]) i= (vr,02).

(v) Forsi,s2 € '(G/H,GxgV), (s1,82) := fG/H(sl(gH), so(gH))du(gH). Here p is the normalized invari-
ant measure on G/H.

Then

(i) The inner product defined in (iv) is well-defined.

(ii) T(G/H,G x g V) is a pre-Hilbert space and is an unitary representation space of G with the inner product
defined in (v).

(iii) The completion is isomorphic to L?(G, W) as continuous unitary representations.
Proof of (i). For each [¢/,v1] = [¢",v3],[d',v2] = [¢",v4] € ¢~ (gH),

1—1 1 1—1 1

(I¢', vl [gs v2]) = (vi,02) = (n(g' ' g") Mg, (g ") " va) = (vs,v4) = ([g", v3), [¢", va])

Therefore, the inner product is well-defined. O
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Proof of (ii). Clearly I'(G/H,G xy V) is a C-linear space and G acts on I'(G/H,G xg V). Since G is compact, the
inner product converges in any case. Since p is G-invariant, G acts I'(G/H, G x g V') as unitary operator. Let denote the
isomophism from C(G,V)*) to T'(G/H,G xy V) by ®. Clearly, for each s € T(G/H,G xy V),

|s]| =0 <= & (s) =0
Consequently, (ii) holds.
Proof of (ii). Tt is clear from (i).
Clearly the following holds.
Example 6.8.3. The followings are settings and assumptions.

(i) G is a compact Lie group.
(i) H is a closed subgroup of G.

Then L?-Ind(H 1 G)(1) ~ L*(G/H). Here, 1 is the trivial representation of H.

6.8.1 Frobenius Reciprocity

Proposition 6.8.4. The followings are settings and assumptions.

(i) G is a compact Lie group.
(ii) H is a closed subgroup of G.

(iii) (w,V) is a finite dimensional continuous representation of H.
Then

(i) C(G,V)~C(G)®V as representation of G x G x H.
(ii) C(G,V)"H) ~ (C(G) @ V)"H) as representation of G.
(iii) If 7 is an unitary representation, L*(G/H, W)*H) ~ (L2(G) @ V)"H) as representation of G.

Proof of (i). Let {v;}7, denote a basis of V. Let us fix f € C(G,V). Then for each g € G, there are 3lf1(g), ..., fm(9)

such that f(g) = >, fi(9)vi. We set ®(f) :=> 1", fi @ v;.
Let us fix ¢ € C(G) ® V. By Proposition2.1.3, there exists {f;}/"; C C(G) such that ¢ = Y I" ¢; @ v;. We set

U($) = (f1, s fim)-
Clearly @, ¥ are C-linear and ® o ¥ = idc(g)gy and ¥ o @ = idc(q,v)-

m(h)Lg, Ry, f(9) ZLglezfz ZZLglezfz h)vi,vj)v; = ZZLgleach (m(h)vi, vj)v;

i=1 i=1j=1 j=1i=1
So,
®((91,92, 1) - ) = ®(m(h)Lg, Ry, f) :iiLmRyzﬁ (h)vi, vj) @ v; = ZL91R92fZ®Z h)vi, v;)v
j=1i=1
ZZLglezfi(E@W( Jvi = (91,92, h Zfz®vz: (91,92, h)®(f)
i=1
Consequently, ® is G-invariant. O

Proof of (ii). (ii) is clearly from (i).
Proof of (ii). (iii) is clearly from (i).
Proposition 6.8.5. The followings are settings and assumptions.

(i) G is a compact Lie group.
(ii) H is a closed subgroup of G.
(i1i) (m, W) is a finite dimensional continuous representation of H.

() (1, V;) is an irreducible continuous representation of G.



6.8. INDUCED REPRESENTATION 179

Then, for each T € G,

0 TET
Homg(Vy, Ve @ Homy (Vi |H,W)) ~ { Homu (Vo[ H,W) 7=

as vector Spaces.

STEP1: When T 2 m: By Peter-Weyl theorem, Hom g (V;|H, W) is finite dimensional. Let us fix a basis of Hom g (V;|H, W)
{¢i}™,. Let us fix any ¢ € Homg(Vy,Vy @ Homy (Vo |H,W)). We define ¢4, ..., s by

p(v) = Z@-(g)@wi (v € Va).

Clearly, ¢1, ..., om € Homg(Vy, V;). By Shur Lemma, ¢ = ... = ¢, = 0. O

STEP2: When T = 7: 1 continue to use the notations from STEP1. In the case, by Shur Lemma, there exist ¢y, ..., ¢, € C
such that ¢; = ¢;idy, (Vi). Therefore,

¢ =1idy. ® Z ;.
i—1

This means
Homg(Vy, Ve @ Homyg (Vi |H,W)) ~ Homy (V,|H, W)

Proposition 6.8.6. The followings are settings and assumptions.
(i) H is a topological group.
(i1i) (m,W) is a finite dimensional continuous representation of H.
() (1,V) is a continuous representation of H.
(v) n(H) :={(h,h)|h € H}.
Then,
(V* x W)T"H) ~ Homy (V, W)
Proof. That can be proved from the same thought as the proof of Proposition6.8.4. O

Theorem 6.8.7 (Frobenius Reciprocity Theorem). The followings are settings and assumptions.
(i) G is a compact Lie group.
(i) H is a closed subgroup of G.
(i1i) (m, W) is an irreducible continuous representation of H.

() (7,V;) is an @rreducible continuous representation of G.

Then,
()
Homy (n|H,7) ~ Homg(, Ind$)
(ii)
[7|H : 7] = [IndGT : ]
(iii)

IndSr = Orealr|H 7]

Proof of (i). By Peter-Weyl Theorem,
L*(G) =~ SoecVo OV
Then
L?(G/H,W)
by Proposition6.8.4
=LXG) oW = (@,.eVe@VyeW) M~ V,e VW) ~a V,®Homy(V, W)

So, by Proposition6.8.5,
Homg(m, L*(G/H,W)) ~ Hompg (7|H,T)
O

Memo 6.8.8. Frobenius Reciprocity Theorem can be purely algebraicly proved. The proof needs only Peter-Weyl Theorem
and Shur Lemma and FExpressing induced representation as temsor space.






Chapter 7

Classification of irreducible representations
of compact classical groups

7.1 Facts without proof

Proposition 7.1.1. Here are settings and assumptions.

(S]) A = {aihj}i?j S M(n, (C)

Re(ar1) —Im(ai1) ... Re(arn) —Im(ain)
Im(a11) Re(arq) ... Im(ar,) Re(ain)
(52) A=
Re(an1) —Im(an1) ... Re(ann) —Im(ann)
Im(an1) Re(an1) ... Im(ann) Re(ann)
Then

detA = |detA'|?

7.2 Complex Analysis

Proposition 7.2.1. Here are settings and assumptions.

(S1) {aa}taczn C C such that #{ca|a, # 0} < co.
(S2) P(t) =3, aat™ (t € C™).
(A1) P =0 in T".

Then P =0 in C".

Proof. For aiming contradiction, le us assume a,, # 0 for some «. Let 3 the biggest index of {«a|a, # 0}. with respect to
lexicographic order. We can assume (3; # 0. For any r > 0,

|P(r,1,...,1)| = [*P P(1,...,1)| = 0

By increasing r — oo, we get co = 0. This is contradiction. O

7.3 A,_1 type case

7.3.1 Main theorem

The propositions shown in this section will not be presented with proofs in this subsection, but will be presented with
proofs in the subsections that follow.

Definition 7.3.1 (Torus, Maximal Torus). Here are settings and assumptions.
(S1) G is a compact Lie group.
Then

181
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(i) We say T C G is a torus of G if T is a connected commutative closed subgroup of G.

(i) We say T C G is a maximal torus of G if T is a torus and there is no torus which contains T as a proper
subset.

Notation 7.3.2 (Diagonal Matrix). We set

tt 0 0
diag(ty, te, ..., ty) == 0t 0
0 .. 0 t,

Notation 7.3.3 (Lexicographical order on Z™). We denote the lexicographical order on Z"™ by <.
Proposition 7.3.4 (Maximal torus of U(n)).
T :={diag(ty,ta,....,tn)| [t1| = ... = |ta] =1}
is a maximal trus of U(n).
The following is clear.
Proposition 7.3.5 (Irreducible representation of maximal torus of U(n)). Let us o € Zn.
Xo : T 2 diag(ty,to, ..., tn) — t0 .10 € St
18 a continuous homomoriphism.
Proposition 7.3.6 (Weight, Weight vector). We will succeed notations in Proposition7.3.5. Let
(S1) G is a compact Lie group.

(S2) (m,V) is a finite dimensional continuous representation of G.

(S88) For each A € Z, we denote xx component of w|T by V.
Then

(i) We say A\ € Z is a weight of V' with respect to T if V\ # {0}. We call an element of V\ a weight vector
for each weight .

(ii) We say A € Z is the highest weight of V' with respect to T if X is the mazimum weight with <. We define
the highest weight vector in the same way.

(i) We call the multiplicity of xx in Vy the multiplicity of the weight \.
Notation 7.3.7 ((Z")+). We set
(Z") 4 := {X € Z™|\ is monotone decreasing.}
The following is the main theorem in this section. In the last part of this section, we give a proof of this theorem.
Theorem 7.3.8 (Cartan-Weyl theorem of the highest weight). The followings hold.

(i) Let us assume (mw,V) be a continuous irreducible unitary representation of U(n) and X\ be the highest
weight of w. Then \ € (Z™)4 and the multiplicity of X is 1.

(i) Let us fix any A € (Z™)y. Then there is the unique continuous irreducible unitary representation (mw,V)
whose highest weight is A, ignoring isomorphism as continous unitary representation.

7.3.2 General topics on compact Lie group
By Zorn’s Lemma, the following holds.

Proposition 7.3.9 (Maximal torus of a compact Lie group). For any compact Lie group G, there is a maximal torus of

G.

Proof. We set
% :={T C G|T is an abelian subgroup of G}

For any 21 is any totally ordered subset of €, U € T. So, T has a maximal element T'. Because T is an abelian subgroup
of G, T =T. So T is a maximal torus of G. O
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Proposition 7.3.10 (Weyl group). Let

(S1) G is a compact Lie group.
(52) T is a mazimal torus of G.

(58) We set
Ng(T):={g€Glgtg " €T (Vt € T)}

(S4) We set
Za(T):={geGlgt=tg (VteT)}

Then

(i) Ng(T) is a compact subgroup of G.
(i) Zg(T)="T.
(i) Za(T) is a compact normal subgroup of Na(T).

We call the quotient compact group Ng(T)/Za(T) the weyl group of G. We define the action of the weyl group on T by
w-t:=wtw ' (we€ Ng(T)/Za(T),t € T)

Proof of (i). Let us fix any g1,92 € Ng(T) and t € T. Because g; ‘tg1 = (g1t~ 'g;y ')~ and t, g1t~ 'g;* € T, gy 'tg1 € T.
So, g1 ' € Ng(T). Because (g1g2) 't(9192) = g1 (95 'tg2)g; ' and g5 'tgs € T, (9192) 't(9192) € T. So, g1g2 € Ng/(T).
Consequently, N¢(T) is a subgroup of G.

For each t € T, we set a;(g) = gtg™" (9 € G). 0y is continuous for any ¢ € T. Because Ng(T) = Nero; (T), Na(T)
is closed subset of G. O
O
O

Proof of (ii). Clearly Zg(T) is abelian compact subgroup of T and T' C Zg(T). So, T = Z¢(T).
Proof of (iii). For any g € Ng(T), gZc(T)g~' = Zg(T). So, Zg(T) is a normal subgroup of Ng(T).
Definition 7.3.11 (Flag variety). Let G be a compact Lie group and T be a maximal torus of G. We call G/T the flag

variety.

7.3.3 The maximal torus and Weyl group of U(n)
Proposition 7.3.12 (Maximal torus of U(n)).
Zyw)(T) :=={g € U(n)|gt =tg (Vi € T)}
is equal to T. In special, T is the maximal torus of U(n).
Proof. Let us fix any g € U(n). We take ¢t € T such that ¢; # t; (Vi # Vj).Then
9i.it; = 9igti (Vi,])

So, gij = 0i,j9ii (Vi,7). Then g = diag(g1,1, ..., gn,n). Because g € U(n), g € T. So, Zy)(T) =T. O

By the proof of Proposition7.3.12, the following holds.

Proposition 7.3.13. We set
Trey = {t € Tl # t; (% #¥)))
Then for every t € Tyeq, Za(t) =T.

Proposition 7.3.14 (Weyl group of U(n)). Let

(S1) For compact group G and the mazimal torus T, we set
Ng(T):={g € Glgtg ' € T (Yt T)}

(52) We set
Wo(w)(t) = (tw—1(1)7 ...,tw—l(n)) (U} € B, te (Cn)

Here, ®,, is the symmetric group of degree n. We set W := mo(,,).
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(53)
oW xT> (w,t)— wt e GL(NC)
Then the followings hold.

(i) For anyw € &, andt €T,
To(w)tmo(w) ™! = diag(ty-1(1)s s tw-1(n))

So, mo(w) € Ng(T).
(i) ®: W xT > (0,t) = ot € Ng(T) is a bijection.
(ii) W and Ng(T)/T are isomorphic as groups.

Proof of (i). Tt is clear. O

Proof of (ii). Let us fix any 0 € W and t € T. For any s € T, ots(ot)™t = oso~! € T by (i). So, ®(W x T) C Ng(T).
Let us fix any g € Ng(T). Let us fix t € T,c,. We set s:= gtg™'.
Because s and ¢ have the same set of eigenvalues. So, there is w € &,, such that

s = (tw—l(l), ...,tw—l(n)>

By (i), this means that s = mo(w)tmo(w™?). So, t = mo(w™1)gtg  mo(w). We set t; := mo(w™1)g. By Proposition7.3.13,
t1 € Zg(T). t = ®(mp(w), t1). So, @ is surjective.

Let us fix any 01,002 € W and any t1,ts € T such that o1t; = oats. Then 05101 = tgtfl € WNT = {e}. This implies
01 = 02 and t1:t2. O

Proof of (iii). Weset ¥ :=® tand P: W xT > (w,t) — w € W and ¢ := PoW. Clearly ¢ is surjective and ¢~*(e) = T.
So it is enough to show ¢ is homomorphism. For any 01,002 € W and any t1,t5 € T,

o1ti09ty = 0102051t102t2 = ®(0109, U;ltlo'gtg)
So, ¢ is homomorphism. O
By Shur Lemma, the following clearly holds.
Proposition 7.3.15. Let

(S1) G is an abelian Lie group.
(S2) C:={p € C(G,SY)|¢ is a continuous homomorphism between groups.}
(53) mo(g)v :=w(9)z (9 € G,z € C,p € C).

Then

(i) For any T e @G, x, € C.
(i) ©:C3>¢p—m, € G is bijective whose inverse is ¥ : G 31 yr € C.

Hereafter, we equate ¢ € G and O(p).
Proposition 7.3.16. Let T be the maximal torus of U(n). Then
T ={ulr ez}
Hereafter, we equate A\ € Z™ and x € G.
Proof. This proof is similar to the proof of Proposition5.7.35. We set

f(01,...,0,) = T(exp(if 1 27), ..., exp(i6,27)) (01, ...,0,, € R)

Then
F(0+ hes) = f(0)f(he;) (V0 € R™,Wh € R, Vi)
s 8 8
f.n_ Of n .
50, (0) = 5-(0)(6) (v6 € R".Vh € R, Vi)
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Because f(0) =1 and I'm(f) C S, there are ay, ..., o, € R such that
f(0) = exp(ibya12m)...exp(ib, o, 2m) (VO € R™)
Because f(e;) =1 (Vi), ay,...,ap, € Z. Consequently,
T={ulr ez

We denote the inverse of
Z" 3 A= x\€C

by W. O
The following clearly holds.
Proposition 7.3.17. We succeed in notations of Proposition7.3.15 and Proposition7.5.16.
(S1) W C U(n) is the weyl group of U(n).
(S2) (w-)(t) :=pw™t-t) (weW,peC,teT).

Then W continuously acts on C' and
w-p=wU(p) (Yw e W,V € O)

Proposition 7.3.18. Here are the settings and assumptions.

(S1) T is the mazimal torus of U(n).

(52) (mw,V) is a continuous unitary representation of U(n).

(S3) A€ Un).

Then
Va={w e V|r(g)w = xx(g)w (Vg € T)}

Proof. We denote the right side of the above equation by W. Let us fix any w € ZAeHomG(
Ay, ..., Ay € Home(xa, ) and vy, ..., v € V such that w = Y% A;v;. So, for any g € G,

) ImA. Then there are

XX,T

m

m(g)w = ZW(Q)Aivi = ZAiX)\(g)'Ui =xx(9) ZAiUi = xa(g)w

i=1

So, ZAeHomc(xmr) ImA C W. Because W is closed, V), C W.
Let us fix any w € W. We set Py := P,,. By Proposition7.3.15 ,

P,\w:/Gmﬁ(g)wdgZLWXA(g)wdg:Lwdg:w

By Theorem5.7.24, w € V. O

7.3.4 Weyl Integral Formula

Notation 7.3.19 (Geg, Treq). Here are the settings and assumptions.
(S1) T is the mazimal torus of G := U(n).

Then Greg := {g € G|g has no duplicate eigenvalues.} and Treg :=T N Greg.

Proposition 7.3.20. Here are the settings and assumptions.

(S1) G :=U(n).

(S2) T be the mazimal torus of G.

(S3) € > 0.

(S4) ¢ := Lie(G), b := Lie(T).

(S5) q is a complement subspace of b in g.
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Then there are {g;}2, C G and {U;}32, such that U; is a open neighborhood of 0y (Vi) and U; C Bi(O,€) Nq (Vi) and
{m(g;Exp(U;)w) Yienwew is an open covering of G/H and for any i € N, wg € W #{(j,w) € N x W|n(g; Exp(U;)wo) N
(g5 Exp(Uj)w) # ¢} < oo.
Proof. There is V which an open neighborhood of e in G such that V* c Exp(B(O,¢)) and V is compact. There
are {goi}o and {ep;}r° C (0,00) such that 7(V* - W) C UN°, m(goiExp(Bk(O,€p,))) and go;Fxp(Bi(O,ep,) C
Exp(Br(0,€)go.i (V).

And for each s € N there are {g, ; }*, and {e,;}1*, C (0, 00) such that 7(V*HsW)\7(V3+sW) C UN 7(gs i Exp(Br(0, €5.4)))
and g, ; Exp(By (0, €5,) C Exp(Bi(0,€)gs,i (Vi).

We set {g:}2; = {gsls,7 € N,1 < i < Ny} and {U;}2, := {Us4ls,i € N;1 < i < Ng}. We will show for any i € N
and s € N,

m(gs.) ¢ m(VoT2W)

For aiming contradiction, let us assume s € N and i € N such that 7(gs,;) € 7(V*T2W). So,
7(9gs,i Bep(Bi(0, ¢5,0))) C w(Exp(By(0,€))gsi) C m(VIHW)

This contradicts with
7(gs i Eap(Bi(0,€5:))) Nw(VHPW) #£ ¢
Nextly, we will show for any ¢ € N and s € N,
7(gs,i Exp(Bi (0, €0:))W) N (VW) = ¢

For aiming contradiction, let us assume s € N and i € N such that 7(gs ;Exp(Bk(0,€0,:))W) N 7(VSTW) £ ¢. Then
there is X € By(O,¢€) and u € V2 and wy, wy € W such that m(Exzp(X)gs,iw1) = m(uws). So,
7(9s.i) = gsiT = gs.sunTwy ' = Bxp(—X)uwawy 'wi Twy ' = Exp(—X)uwyw; T € 7(VH2W)
This is a contradiction. O
Notation 7.3.21 (A(t) (t € Trey), T, (0 € &y,)). Here are the settings and assumptions.
(S1) G :=U(n).
(S2) T is the maximal torus of G.
Then
(1) A(t) := min{|arg(t;) —arg(t;)| |i # j}. Here, let us assume arg(z) € [0, 2m).
(ii) For o € &,,, we set
T, = {t € T’reg|arg(to(i)) < arg(ta(iJrl)) (V’L)}
Theorem 7.3.22. Here are the settings and assumptions.

(S1) T is the mazimal torus of G := U(n).
(S2) A:G/T xT > (¢T,t) — gtg—' € G.
(58) W is the weyl group of G.

Then

(i) A is well-defined and surjective C*¥-class map.
(1) A|G/T X Tyeq is a surjective map onto Treg.
(iii) For each g,¢g' € G and t,t' € T,

A(gT,t) = A(§'T,t) <= JweW stgdT=guw 'T andt' =w-t

Here, w - ty 1= wiow L.

Proof of (i). Because T is commutative, if g1,92 € G and t1,to € T and (17, t1) = (92T, t2) then

g1t197 " = 9205 't1(9295 1 91) Tt = 9295 to1t197 L9205 T = gatags L9197 tgags T = gatags *

So A is well-defined. And clearly A is surjective.
We take {m(g; Exp(U;))}; and {h;Exp(V;)}; as the coverings in Proposition6.4.12. For each i,j and X € U; and

Y eV,
A(g;iExp(X),hjExp(Y)) := g;Exp(X)h; Exp(Y)Exp(—X)g; *

K2

So, A is C¥-class. O
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Proof of (ii). Because for any g € G and t € T gtg~! has no duplicate eigenvalues <= t has no duplicate eigenvalues,
(ii) holds. O

Proof of (iii). The <= part is clear. We will show the == part. Let us fix any g1, g2 € G and t1,ty € T}y such that
gltlgfl = 92t2g51. We set g3 := g;lgl. Then )
t1 = gstags
Because t1,ty € T}.¢q, there is w € W such that
tg = ’wilg3t2(’wilg3)71

So, w™tgs € Zg(t2). By Proposition7.3.10, t3 :== w~= g3 € T. So, g3 = wtz. Then

goT = glgng = glwflwtglwflT = glwflT,tl = wt3t2t§1w71 = whow ! = w -ty

O
By Theorem?7.3.22 and Proposition5.5.5 and Proposition5.6.1, the following holds.

Proposition 7.3.23. Here are the settings and assumptions.

(S1) G :=U(n).

(52) T is the mazimal torus of G.

(S3) (m;,V;)(i=1,2) are two continuous finite dimensional representation of G.

(A1) X, [T = X | T
Then w1 ~ my.
Proposition 7.3.24. Here are the settings and assumptions.

(S1) G :=U(n).

(S2) T is the maximal torus of G.

(S3) t:= Lie(T), g := Lie(G).

(84) g1 :={X € g|X;; =0 (Vi)}
Then

g=m +t
Proof. Clearly, g1 Nt = ¢ and g D g1 +t Let us fix any X € g. Then
X =Y +diag(X11, ... Xn.n)
Here,
Yii=01-6,;)X:; (4,j=1,2,...,n)
Then Y € g;. Because X is skew-Hermitian, X ; € iR (Vj). So, diag(X1,1,..., Xnn) € t. So,
gCo+t
O

Proposition 7.3.25. Here are the settings and assumptions.
(S1) G :=U(n).
(52) T is the mazimal torus of G.
Then there is {V;}2, such that {w - V;}jenwew is a local finite open covering of Treq and for any i,j sup{|arg(t;) —

1 1
arg(t;)||t € V;} < §inf{A(t)\t € V;} and for any s € N #{j|A(t) > 3 (FteU;)} <ooand V; C T, (Vi).

Proof. We set
1
Ts = {t € Tyeg|A(t) < §}7TM =TsNT, (seN,o € 8,)

Because T} . is compact, there are {U17i}£\21 which is a open covering of T} . and N; is the minimum numver of open
covering of Ty .. Let us fix s € NN [2,00). Because Ti. \ Ts_ ;. is compact, there are {Us,i}é\,:sl which is a open
covering of Ty ¢ \ Ty 1 . and N is the minimum numver of cardinalities of all open coverings of T . \Tsofl’e. Clearly,
Uwew US4 {w- US,i}IN:sl is a local finite open covering of T.., and satisfies the condition in the claim of this Proposition. O
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Proposition 7.3.26. Here are the settings and assumptions.

(S1) G :=U(n).
(S2) T is the mazimal torus of G.
(S3) g := Lie(G), b := Lie(T).
(S4) q is a complement subspace of b in g.
(55) We set
A:G)T xT > (gT,t)—gtg ' €T

Then there are {g;}2, C G and {U;}2, such that U; is a open neighborhood of 0y (Vi) and U; C By(O,€) Nq (Vi)
and {7 (g;:Exp(U;)w™1) x w - V; }ienwew,jen is a local finite open covering of G/H X Tyeq and {Am(g; Exp(U;)w™) x w -
Vi}ieNwew,jen is a local finite open covering of Greg.

Proof of the first part. We will succeed in notations of Propositions7.3.26 and Proposition7.3.20. Let us fix any (g7T',t) €
G/H x Tyey. There is w € W such that (gwT,w™' -t) € G/H x T.. Then there are i,j such that (guwT,w™'-t) €
7(9;Exp(U;)) x V;. Then t € w-V;. And there is u € Exp(U;) such that gwT = g;uT. Because gwT = gTw and
giuw 1 Tw,

gT = giuw™'T

So, (¢T,t) € n(g:Exp(U;)w™t) x w - V;. Consequently, {7 (g; Exp(U;)w™") x w - V;}ienwew,jen is an open covering of
G/H X Tyeq.
Let us fix any 4, jo € N and wy = mg(0g) € W. Let us fix any ¢,j € N and w = mp(0) € W such that

7(gio Exp(Usy Jwg ') % wo - Vi, N7(gi Bap(Us)w™) x w - Vj # ¢

Because Vj,,V; C Te, wo = w. So, Vj, N'V; # ¢. Because giouwo_lT = giouTwO_1 and giow 'T = g;vTw™ ! for any
u € Exp(U;,) and v € Exp(U;), 7(gi, Exp(Us,)) Nw(g: Exp(U;)) # ¢. So,

(iajaw) € B:= {(Zajv w)lTr(g'LUz) N 7T(giol]io) 7é ¢aw = wOa‘/j N ijo 7& d)}
Because B is finite, {7 (g; Exp(U;)w™") x w - V; }ienwew,jen is a local finite open covering of T}.,. O
Proof of the last part. By the first part, clearly {An(g; Exp(U;)w™") X w - V; }ienwew,jen is an open covering of Ty..,. We
set X; := ¢g;Exp(U;) (i € N).
Let us fix any ig,jo € N and wy € W. We set

Wo = {w € W|3i,3j s.t Ar(Xiywg") x wo - Vj, N An(X;w™) x w-V; # ¢}

Clearly, Wy is a finite set.

We set
Jo = {j € N|Fi, Jw s.t An(X;,wyt) x wo - Vi, N An(Xw™) x w -V # ¢}
and
e:=inf{A(t)[t € V},}
Then

€ .
At) > ) (Vt e V;,Vj € Jy)

So, from the definition of {V;};en, Jo is a finite set.
We set
Iy == {i € N|3j, Jw s.t An(Xiywyt) x wo - Vj, N An(X;w ™) x w-V; # ¢}

From the definition of {X; };en, Io is a finite set. Consequently, {An(g; Exp(U;)w™) x w-V;}tien wew,jen is local finite. [
Proposition 7.3.27. Here are the settings and assumptions.

(S1) T is the mazimal torus of G := U(n).
Then

(i) T\ Tyeq is a zero set with respect to a Haar measure on T.

(i1) G\ Greg is a zero set with respect to a Haar measure on G.
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Proof of (i). Clearly, T'\ Tycq C U; ;T; ;. Here, T; ; := {t € T|t; = t;}. So, it is enough to show T} ; is a zero set for any
i,7. We can assume i =n — 1,7 = n. We set

0: T3t (t1, .y tn1,tn_1) € T,C :={t € T|rank(Jo(t)) < n}
Clearly C =T and T,,_1,, C ¢(C). By Sard’s Theorem(See [23]), ¢(C) is a zero set. So, T),_1 , is a zero set. O

Proof of (ii). By (i), G/T X T \ Tyeq is a zero set. And A : G/T x T — G is a C¥-class surjective and Grey = A(G/T x
T\ Treg). So, by a Lemma for Sard’s Theorem(See [23]), G4 is a zero set. O

Proposition 7.3.28. Here are the settings and assumptions.
(S1) T is the mazimal torus of G := U(n).
Then for any f € C(G)
1 _
[ t@dg = [ [ flatg™idet(a g litalor)
G n.Jg/rJrt
Here,
det(dAgr,py) = det(dLgp-14-1 0 dAgpsy 0 j o dTg X dLy o)

i:Te(9) = g1 ®t — g1 x tis the natural isomorphism and j : Ter(G/T) x Ty(T) — Tigr,)(G/T x T) is the natural
isomorphism.

STEP1. Construction of a partition of unity. By Proposition7.3.27, it is enough to show

| twia= [ F(gtg™")det(d Az p)dtd(gT)
G - Ja/T JTyey

reg

Let {m(g:U;w™') x w-V;}i jenwew be the open covering of G/T X Tyeq and { f; jw}ijenwew be a partition of unity with
respect to {m(g;Uiw™) x w- V;}i jeNwew-
We set )
930 (AT 1) = o wlgw™ T 1) (9T,0) € w9 BeplU) x Vi € Now € W)

We will show g; ;. is well-defined. Let us fix any g1, 92 € m(g;Exp(U;)) and t1,t2 € V; and w € W and 4,5 € N. such
that A(¢17T,t1) = A(g2T,t2). This means that gltlgfl = ggt2951. Because t1,ts € T., by Theorem7.3.22, t; = t5 and
g1T = g2T. So, w-t; =w-tz. And

g 'T = g Tw™! = gsTw ™" = gow™'T

So, ¢i,jw is well-defined.
We will show {gi j.w}ijenwew is a partition of unity on Gy, with respect to {Am(g;Uiw™) x w - V;}i jenwew. Let
us fix any @ € Geq. We set
I:={(i,j) € N}|z € An(g;U;) x Vit

Then, by Theorem?7.3.22,
I xW ={(i,j,w) €€ N*|z € Ar(q:Uiw™") x w- V;}

So,

Yoo giw@ = > giw@ =Y Y gijw()

i,jEN,weWw (i,§)el,weW weW (i,5)el

Let us fix any w = mo(0) € W. And let us fix any i1, 2, j1,j2 and hy, € g;, Exp(U;,) and h;, € g;, Exp(U;,) and t;, € Vj,
and tj, € Vj, such that z = (w(h;,w™1),w - t;,) = (7(hi,w™),w-t;,). Then, because t;,,t;, € Te, t;, = t;,. And

hil’wilT = hilTwil = hiQT’UJ71 = higwilT

So, there is the unique z,, € G/T x T, such that Azx,, = z and

Y gigw@) =D % > fuilww) = 3 ST

weW (i,5)el weW 7 (i,5)el weW
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STEP2. Proof of our integeral formula. We set W, := ¢; Exp(U;) (i € N).

flg)dg = / £(9)9i..w(9)dg = 1(9)9i.5.0(9)dg
/,eg Z;D Ar(Wiw= 1) xw-V; » z;) Ar(Wiw =) xw-V; ”
,Z/ 1 Fr(hw™"),w - t) fi ja (7 (hw™"), w - t)|det (dA (r (w1 ,w-t)) | dg
iygw Wiw—1) xw-Vj
1
=— FgT,t)|det(dAx(hw1) 1)) | dpcyr (9T ) pr (1)
n-Jg/TxT

The following clearly holds.
Proposition 7.3.29. We succeed notations in Proposition7.3.24. Here are the settings and assumptions.
(S1) X;; =E;; —E;; (i <j).
Then By :={X; ;}i<j is a basis of the complexification of g1 and By U iBy is a basis of g.
Lemma 7.3.30. We succeed notations in Proposition7.3.28. Then
(i) det(dAgr.p)) = det(Ad(t) =g, — idlg,).
(it) det(Ad(t)"|g, — idlg,) = |D(t)|*.
Proof of (i). Let us fix any X € g1 and Y € t. Then
dAgrpyojodry xdLioi(X +Y) = dAgrey ojodry x dLi(X,0) + dAgryy 0 jodrg x dLi(0,Y)

Here,
dAgry 0jodry x dLi(X,0) = a5 A(gexp(sX)T,t) = %I gexp(sX)texp(—sX)g™!
s=0 s=0
= dils\ gtg gt texp(sX)texp(—sX)g ! = %I gtg tgexp(sAd(t™1) X)exp(—sX)g™!
5=0 s=0
= dLg,-1Ad(g)(Ad(t™ )X — X)
and
dAgryy 0jodry x dLi(0,Y) = —  A(gT,texp(sY)) = 4 gtexp(sY)g™*
' ds|,—o ds|,—o
d 1 _
= ) gtg lgttexp(sY)g Tt = dLgiq-1Ad(g)(Y)
s=0
So,
det(dAgry)) = det(Ad(g))det(F)
Here,

F:gixt2(X,Y) = (Adt™HX - X, Y)egxt

Because clearly T -g; C g1 and g1 - T C g1, Ad(t )X € g1 (Vt € T,VX € g1). So, ImF € g; x t. This implies that
det(F) = det(Ad(t~*)|g1 — idg,). And, by Proposition3.5.15, det(Ad(g)) =1 (Vg € G). O

Proof of (ii). It is enough to show that (ii) holds for any ¢ € T;.,. Let us fix any ¢ € T;.,. We succeed notations in
Proposition7.3.29.
t .
(Ad(t)™" —id)X;; = (= DX (Vi <Vj)
So, by Proposition3.13.3,

det(Ad(t)™! —id) = (Hi<j|(% - 1))?

ti

by |t;| =1 and L = > (Vi < V9)
ti ot

= (Wigy|(t: = t))))* = [D(@)

Lemma?7.3.30 and Proposition7.3.28 implies the following.
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Theorem 7.3.31 (Weyl Integral Formula). For any f € C(U(n)),

1
[ @t = [ [ totg™ D0 Pdprtan 67

7.3.5 The highest weight of U(n)
Definition 7.3.32 (Multiplicity of weight). We will succeed notations in Proposition7.3.5. Let

(S1) G is a compact Lie group.
(52) (mw,V) is a finite dimensional continuous representation of G.

(S3) NeZ™.
We call my := dimV) the multiplicity of .

Definition 7.3.33 (Symmetric function). Let T be the mazimal torus of U(n). We say f € C(T,C) is a symmetric
function if
f(x) = f(wz) (Vz e T,Vw e W)

We denote the set of all symmetric functions by C(T);.

Definition 7.3.34 (Alternating function). Let T be the mazimal torus of U(n). We say f € C(T,C) is a altenating
function if
f(z) = sign(w) f(wz) (Vz € T,Yw € W)

We denote the set of all symmetric functions by C(T')sgn-

Definition 7.3.35 (Laurant polynomial). Let T be the mazimal torus of U(n). We say f € C(T,C) is a Laurant function
if
f(z) = Z agtt (z € T),#{K € Z"|ax # 0} < 00

Kezn

We denote the set of all Laurant polynomials by R(T). We set
Ryz(T) :={f € R(T)|Every coefficient of f are in Z}

and
Rz(T)l = Rz(T) N C(T)1

Proposition 7.3.36. Here are the settings and assumptions.

(S1) T is th mazimal torus of U(n).

(52) W :=7o(8,,).

(53) (m,V) is a finite dimensional continuous representation of G.
(S4) A(V,T) :={\ e T|Vx #{0}}.

(§5) N € Z™ is the highest weight of (m,V).

Then

(i) For any w € W and A € Z™, w(w)|Vy is a bijection fo V.
(ii) WAV, T) C AV, T).
(iii) For any o € Z™, My = My -
(iv) A(V,T) is finite set.
(v) Vi = myxx as continuous unitary representation of T. The right side is a discrete direct sum.
(Vi) XriT = D oxea(v,r) MAXA
(vit) Xxi € Rz(T)1.
(viii) A € (Z™)4.
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Proof of (i). Firstly we will show m(w)|Vy C Viyn (Yw € W,¥A € T). Let us fix any w € W and any A € Z" and any
veVyandany te€T.

—1 -1

r(t)m(w) = w(w)r(w - o = 7(w)xaw ™t B = xa(w L (W)Y = e
So, by Proposition7.3.17, m(w)v € V,,.x. Because m(w™!) is the inverse of 7(w), m(w)|Vy is bijective. O

Proof of (ii). For any w € W and any A € A(V,T), by (i), Vip.x = w(w) - Vi. Because w(w) - Vi # {0}, Vip.a # {0}. So,
w-Ae AV, T). O

Proof of (ii). This is followed by (i). O

Proof of (iv). Because xx, % Xx, (VA1 # VA2), by Theoremb.7.26, V' = @ ez V. Because dimV < oo, A(V,T) is a finite
set. O

Proof of (v). Clearly V) is finite dimensional T-invariant space. Let us fix wy, ..., w,, which is the orthonormal basis of
V. We set
Pz :=z2w, (z€C,ie{1,2,..,m})

By Proposition7.3.17,
Pixa(t)z = zxa(H)w; = zr(t)w; = 7(t)zw; = 7(t) Py(2)

and Cw; is T-invariant. So, P; : (xx,C) — (7|Cw;, Cw;) is an isomorphism as continuous unitary representations of 7'
Consequently, (v) holds.

Proof of (vi). (vi) is followed by (v) and Theoremb5.7.26. O
PTOOf Of (U”) By (Vi)a Xr|T € RZ(T) By (1)7 X=|T € C(T)l SO7 Xr|T € RZ(T) O
Proof of (viii). (viii) is followed by (i). O
Notation 7.3.37 (S, A,). For a € Z7,

a . ' Z 1o

oed,
. 1 oo
: —' Z sign(o)t
€6,
Proposition 7.3.38.
(i) {Sa}taczn is a basis of Ry(T);.
(i1) {Aataczn is a basis of Rz(T)sgn-
1
Proof of (i). Let us fix any = Y0 @at® € Rz(T);. Let us fix any a € Z™ such that a; > ... > a;. Then
n!
Gpa = @ (Vo € &)
So,
1
1 Zaato‘ = Z a0 Se(t)
a Q1> >
O

1
Proof of (ii). Let us fix any — Z aqt® € Rz(T)1. If there are 4, j such that o; = «;, then a, = 0 by the definition of
the altenating function. Let us ﬁx any a € Z" such that ay > ... > a,,. Then

ayo = sign(a)a, (Vo € &,,)

So,

% Z Ao t™ = Z oAy (t)

L. Zan
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Proposition 7.3.39.
(i) {Satacz is a basis of Ry(T)1.
(i1) {Aataczr is a basis of Rz(T)sgn-
By the orthogonality of trigonometric functions, the following holds.

Proposition 7.3.40. For oy > ... > o, and f1 > ... > By,
(AaaAﬁ)Lz(T) = { 0 o ;é B

7.3.6 Weyl Character Formula
Theorem 7.3.41 (Weyl character formula). Here are the settings and assumptions.
(S1) T is the mazimal torus of U(n).

(S2) (m,V) is a finite dimensional irreducible continuous representation of G.

(588) M\ is the highest weight of .
Then
(i)
Yo, sgn(o)to A+e)
Mi<icj<n(ts — tj)

Xr(t) =
Here, p:=(n—1,n—2,...,1,0).
(i1) dim(Vy) = 1.

Proof. We set
D(t) :==1Li<icj<n(t:i — t;) (t €T)

Then x.(t)D(t) is an alternating laurant polynomial, there is {aq }aezr such that #{a|a, # 0} < co and
A (OD() = 3 aaAa(t) (vt € T)

By Proposition7.3.40,

1= Z |aoz|2

«

By Proposition7.3.36(vii), for any a a, € Z. So 3la such that |a,| = 1. By Proposition7.2.1,
X=D = A, (in C")

or
XrD = —A, (in C")

Let m, denote the multiplicity of A\. And we can assume a; > ... > «,. The maximal index of D(t) with respect to
lexicographic order is (n — 1,...,1). And the maximal index of x, with respect to lexicographic order is myA. So,

m)\t()‘l'*'"_l"“’/\”H) = @ (in (C")

and
m)\t()\1+n—1;<'~7A7L+1) = —ta (Hl C’ﬂ,)

This implies that my = 1 and
M4+n—-1,. )\, +1) =«
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7.3.7 Cartan-Weyl Highest Weight Theory
Theorem 7.3.42. The followings hold.
(1) For any ¢ € Rz(T)1, ®(¢) := Do € Rz(T)sgn-
(it) @ : Rz(T)1 — Rz(T)sgn is surjective.
Proof of (i). It is clear. O
Proof of (ii). Let us fix any ¢ € Rz(T)sgn. There is N € N such that p(t) = 3t = NN € Py(T)gn. For any
«a € 7™ such that a; = a9, a, = 0.
For any ¢ € T such that ¢; = t2, p(t) = 0. By Proposition7.2.1, For any z € C" such that z; = 22, p(z) = 0.

For each o € Z™ such that a; > g, Go = —as, ,o. Here, S1 o is the permutate of 1 and 2. So, there is ¢ € Pz(T) such
that

p(t) = (t1 — t2)q(?)
For any t € T such that t; = t3,
q(t) =
So, by the same argument as the above, there is € Pz(T') such that

q(t) = (tr — t3)r(t)

By repeating this argument, we find that there is ¢ € Pz(T') such that

¢ = D1y
O
Theorem 7.3.43. The followings hold.
(i) For any ¢ € C(U(n))4", (¢) := ¢|T € C(T):.
(ii) @ : C(U(n))A? — C(T); is surjective.
Proof of (i). Tt is clear. O

Proof of (ii). We set G := U(n). Let us fix any ¢ € C(T');. For each g € G, let denote the set of all eigenvalues of g by

{)‘1(9)7 sy >\7L(g)} And
Y(g) := d(A1(9); -, An(9))

Because ¢ is symmetric, v is well-defined. We will show ) is continuous. Let us fix any g9 € G. Let denote Ay, ..., A, the
distinct set of eigenvalues of gg. Denote the degree of \; as zero point of characteristic polynomial of g by k;.

By Rouche’s Theorem(see [19]), for any € > 0, there is 6 > 0 such that g has just k; eigenvalues(allow multiplicity) of
g in B(\;,€) for any g € B(go,d). So, 9 is continuous. Clearly, ®(¢)) = ¢. So, ® is surjective. O

Theorem 7.3.44 (Cartan-Weyl Highest Weight Theory). The followings hold.

(i) Let us assume (m, V) be a continuous irreducible unitary representation of U(n) and A be the highest
weight of w. Then \ € (Z™)4 and the multiplicity of X is 1.

(i) Let us fix any A € (Z™)y. Then there is the unique continuous irreducible unitary representation (w, V)
whose highest weight is X\, ignoring isomorphism as continous unitary representation.

Proof of (i). (i) is from Weyl Character Formula(Theorem?7.3.41) and Proposition7.3.36. O

Proof of (ii). The uniqueness is from Proposition7.3.23. We will show the existence. For aiming contradiction, let us
assume that there exists A € Z" such that A is different from the highest weight of any irreducible continuous unitary
representation of U(n). We set

pi=(mn-1,..,1)
Because Ay, € Rz(T)sgn, by Theorem7.3.42 and Theorem?7.3.43, there is ¢ € C(U(n))?? such that D(t)y = Ay;,. For
any 7 € U(n), by Weyl Integral Formula

/ x+(9)B(g)dg = / X (D@ D) Pdt = / Auimrip () Angp (D)t = 0
U(n) T T

Here, a(mr) is the highest weight of 7. By Theoremb.7.20, v is zero function. This is contradiction. O
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7.3.8 Review

In this subsection, we show the result of classification of irreducible continuous unitary representations of U(n). By Peter
Weyl Theorem, it is enough to classify finite dimensional irreducible continuous unitary representation of U(n).

We focus the set of all the set of all eigenvalues of g € U(n), T := T™. We can simplify discussions about U(n) to
discussions about 7" in some cases. In specialty, Weyl Integral Formula is really usefull.

Theorem 7.3.45 (Weyl Integral Formula). For any f € C(U(n)),
1 _
f@) (o) = [ [ flotg™)D) Pdurtangr(a)
U(n) n-Jag/rJr

By this theorem, we can simply integral of class function on U(n) to simply integral of symmetric function on 7. Let
recall the proof of Weyl Integral Formula.

A:G)T xT > (gT,t) — gtg' € G
is n!-th covering map of G and &,, acts on A~!(g) for each g € G. That implies
1 _
f@) (o) = o [ [ Hate™idet(@A g ldurtdugy(aT)
U(n) n-Jag/rJT
In the proof of this equation, we need take a good partition of unity of U(n). By focusing the decomposition
u(n) =u(n); &t
and action on u(n); and t, we get
det(dAyr,)) = det(Ad(t")[u(n), — idu(n),)
Here,
u(n); ={X € u(n)|X,;, =0 (i)}
By complexifying u(n); and showing E; ; are eigenvector of the complexification of Ad(t71)|u(n); — idju(n); with

t
respect to (t—J —1) (Vi #Vj), we get

det(Ad(t™Y)[u(n)1 — idju(n),) = |D(t)|?

Consequently, we get Weyl Integral Formula. By Weyl Integral Formula and Shur Orthogonality Relation, we can sim-
plify the classification of continuous finite dimensional irreducible unitary representations of U(n) to the classification of
{x=|T|7 is a continuous finite dimensional irreducible unitary representations of U(n)}.

We focus the fact Dy, |T is an alternating Laurant polynomial on T with Z-coefficients. We can show {As}ar>. >a,
is an orthonomal system of L?(T") and a basis of Rz(T)sgn. Here,

1
A, = ] Z sign(o)t”®, Rz(T)sgn = {p|p is an alternating Laurant polynomial on T with Z-coefficients.}
foe®,

It is important that the decompositions of Dy with {A4}a,>...>a, correspoinds to the decompositions of |T as continuous

unitary representation of 7. The last decomposition is called a branching rule. Thanks to these insight, we can classify

U(n) by the highest weight of each 7 € U(n). In specialty, we get the following Weyl character formula.
Theorem 7.3.46 (Weyl character formula). Here are the settings and assumptions.

(S1) T is the mazimal torus of U(n).
(S2) (m,V) is a finite dimensional irreducible continuous representation of G.
(5§8) M\ is the highest weight of .

Then
(i)
Zoe(’ﬁn Sgn(o)t”'o‘+p)
h<icj<n(ti — t;)

X (t) =

Here, p:=(n—1,n—2,...,1,0).
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(ii) dim(Vy) = 1.

Inversely, for each A € (Z)7 = {a € (Z)|a1 > ... > a}, there is ¢ € C(U(n))*? such that (¢|T)D = Ax;,. Here
p:=(n—1,..,0). That facts from the correspondance

A)\+p()‘1(g)7 ooy )‘n(g))
D(/\l(g)a (33} )‘n(g))

Un)sgr— eC

By completeness of character about U(n), we can show there is m € U(n) such that the highest weight of 7 is A.

7.4 Noncompact Lie Groupx

For noncompact connected simple Lie groups, there non trivial continuous irreducible unitary representations are infinite
dimensional[3]. In [1], the answer of the excerisel2.3 shows a proof for SL(n,R). I guess a full proof is followed by the
result of classification of simple Lie algebras.



Chapter 8

Examples of Lie groups, Homogeneous
spaces, Representations

8.1 Lie Groups

8.1.1 RX C*

Example 8.1.1 (R*). Clearly R* is Linear Liegroup of GL(1,C). So R* is Lie subgroup of GL(1,C). And clearly
Lie(R*) = R.

Example 8.1.2 (C*). Clearly C* is Linear Liegroup of GL(1,C) and Lie(C*) = C.
Clearly G := {(Z _ab> la,b € R such that a® + b> # 0} is Lie subgroup GL(2,R) and G is isomorphic to C* and

Lie(G) = {(Z _ab) la,b € R}. Clearly the right side is subset of the left side. We will show the proof of the inverse in

below.

Proof. Let us fix any X € Lie(Q).
exp(tX) = E+tX + O(t?) (t — 0)

We define
M(t) = (“(t) b“)) — eap(tX) — tX

So there is C' > 0 such that ||M(t)|| < C|t|? for any t € R. We assume |z11 — 22| # 0.
We pick ¢ # 0 such that

|z11 — 222

< ST

Because X € Let(G)
[t(x1,1 — 22,2)| = |a(t) — d()]

Because for any ¢ € [—1,1] |a(t) — d(t)] < 2C|t|* < |t||x11 — 222/,
t(z11 — w22)| <[tl|z1,1 — 222

So 1 < 1. It implies contradiction. O

8.1.2 R.C

Example 8.1.3 (R). Becausei: R >t — exp(t) € (0,00) is isomorphism of topological groups, R is a Lie group. Clearly
Lie(R) = {a + nrila € R,n € Z}.

Example 8.1.4 (C). By inverse function theorem about holomorphic function, i : R x (—m,7) 3 (a,b) — exp(a)exp(ib)R
is isomorphism of topological spaces. Clearly i|R X (—g, g) is isomorphism in Definition3.1.1. So C is a Lie group.
Clearly Lie(C) = C.

197



198 CHAPTER 8. EXAMPLES OF LIE GROUPS, HOMOGENEOUS SPACES, REPRESENTATIONS

813 T=S5'= 50(2)
Example 8.1.5 (Unitary, Cyclic, not Irreducible Representation of T). The followings are settings.

(S1) For m € Z,
Tm(2)w := 2"w (z € T,w € C) (8.1.1)

Then for any m #n € Z,

T = Tm X T (8.1.2)

s a cyclic, not irreducible, continuous representation of T.

8.1.4 O(n),SO(n)
Example 8.1.6 (O(n), SO(n)). The followings hold.
(i)
so(n) := Lie(SO(n)) = Lie(O(n)) = {X € M(n,R)| X" = - X} (8.1.3)
(i)
dim O(n) = %(n 1)
(#i5) SO(n) is normal subgroup of SO(n) and
O(n)/SO(n) = {1}
(iv) SO(n) is path connected.
(v) O(n),SO(n) are reductive Lie group.
(vi) s50(3) is a simple Lie algebra.
proof of (i). Let us fix any X € M(n,R) such that X7 = —X. Then for any ¢ € R,
exp(tX)exp(tX)T = exp(tX)exp(tXT) = exp(tX)exp(—tX) = E

So the right side is subset of Lie(O(n)). Nextly let us fix any X € Lie(O(n)). Because for any t € R exp(tX) € M(n,R). By
the argument similar to Example8.1.2, X € M(n,R). By Proposition3.2, E = exp(tX)exp(tX)T = exp(t(X+XT)+0O(¢?)).
By the argument similar to Example8.1.2, X + X1 = O. O

Proof if (iii).
O(n) > g — det(g) € {£1}

is a surjective continuous homomorphism and the kernel is clearly SO(n). Therefore, (iii) holds. O

Proof if (iv). From Example8.2.1 later,
St~ SO(n)/SO(n — 1)

For any n € N, S™ is connected. And SO(2) = S! is connected. Therefore, by Proposition6.2.1 and mathematical
induction, for any n € N SO(n) is connected. From Proposition3.4.6, SO(n) is path-connected. O

proof of (v). It is followed from (iv) and ‘g € O(n) (Vg € O(n)). O

proof of (vi). We set
Ai,j = Ei,j — Ej,i (’L < ])

Then
[A12,A13] = —As3,[A12,Az3] = A13,[A13,A23] = —A12

Let us fix any h which is a nonzero ideal of s0(3). Since b is nonzero, either ad(A;2),ad(Asz3),ad(A1,3) has nonzero
eigenvalue. First, let us assume ad(A;,2) has a nonzero eigenvalue o and an eigenvector

A= a1A1’2 + agALg + agAQ’g € h (814)

Then
ad(Al,g)A = 03A173 — a2A273
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and
alA = OéalALg + CYCLQAL?, + aa3A273

This implies
a1 =0,a2 = aag

So, as # 0 and
A= aa3A1)3 + a3A273
-1
Since —ad(A;13) = A1,2, by (8.1.4), h = s50(3). In other cases, we can prove h = s50(3) by the same way. O
as

8.1.5 U(n),SU(n)
Example 8.1.7 (U(n)). The followings hold.

(i)
s0(n) := Lie(SU(n)) = Lie(U(n)) = {X € M(n,C)|X* = —X}

(i)
dimU(n) = (n—1)n

(iii) SU(n) is a normal subgroup of U(n) and
U(n)/SU(n) ~T

(iv) U(n),SU(n) are path connected.
(v) U(n),SU(n) are reductive Lie group.
(vi) su(3) is a simple Lie algebra.

(vii)
suc(n) = sl(n),uc(n) = gl(n)

(viii) su(n) is a real form of sl(n) and u(n) is a real form of gl(n). SU(n) is a real form of SL(n,C) which is a complex
Lie group. U(n) is a real form of GL(n,C) which is a complex Lie group.

proof of (i). Tt is similar to the proof of (8.1.3). O
proof of (#). (ii) is clear from (i). O
proof of (iii).

U(n) > g+ det(g) €T

is a surjective continuous homomorphism and the kernel is clearly SU(n). Therefore, (iii) holds. O

proof of (iv). From Proposition3.4.6 and Proposition6.2.1 the fact that T is connected, it is enough to show SU(n) is path
connected.
Let us fix any g € SU(n). Then there is h € SU(n) and 6y, ..., 0,, € R such that

g = hdiag(exp(ify), ..., exp(if,))h ", Z 6, =0

i=1

We set

¢ :[0,1] > t = hdiag(exp(it;), ...,exp(itb,))h ' € U(n)
Then ¢ € C([0,1],SU(n)) and ¢(0) = e and ¢(1) = g. Therefore, SU(n) is path-connected. O
proof of (v). 1t is followed from (iv) and ‘g € U(n) (Vg € U(n)). O

proof of (vi). The proof is similar to the proof when the Lie algebra is so0(3). O
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proof of (vii). Racall
suc(n) ={X +iY] X,Y € su(n)}

And
511(71) =01Dg2,01 = {X S dzag(zR, ,ZR)|t’I’(X) = 0}7g2 = {X € M(H,C”X“ =0 (VZ)7X* = 7X}

Clearly g1+1ig1 = {X S d’LCLg((C, .., (C)|t’l"(X) = 0} For any ¢ < j, Eij_Ejiai(Eij+Eji)7 SHDR Therefore, Eij7 Eji € ga+igo.
That means
g2 +ige = {X S M(?’L,C)|X“ =0 (Vl)}

Consequently suc(n) = sl(n). From the same argument, we can show uc(n) = gl(n). O
Proposition 8.1.8.

sv@ =(( % D)+ 197 = 1)
Proof. Clearly

(55 2)lap+188 = 1y < sU@

Let us fix any g := <z Z) € SU(n). Since

e a)G =61

jal* + [b* =1, |c[* + ]d* =1

and
(a,b) L (¢,d)
Then there exists v € C such that B
(C, d) = 7(_ba a/)
Since det(g) =1, v = 1. O

Proof of (viii). That is from (vii) and

su(n) Nisu(n) = {0}, u(n) Niu(n) = {0}

O
Proposition 8.1.9. The followings are settings.
(S1) Let P[z,w] denote the set of all polynomials with two variables z,w.
(52) We set
(© D) = a(®0) () (0 8) ecreon.r e Pl
c d L c d w c d B ’
Then GL(2,C) acts on Plz,w)].
Proof. Let us fix any ¢1,92 € GL(2,C). Then for any f € P[z,w],
(9192 - £)(z,w) = f((2,w)g192) = f(((z,w)g1)g2) = (92 - [)((z,w)g1) = (91 - (92 - ))(2,0)
O

The following clearly holds.
Proposition 8.1.10 (m;). The following is the definition.
(i) 1 € N>q.
(ii)
Vi :={f € Plz,w]|f(z,w) = iakzl_kzl,ak eC((k=0,1,..,0)}
k=0
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(ii)
m(g)f =g f (g€ SU2),feV)

Then (m, Vi) is a (I + 1) dimensional continuous representation of SU(2).

—

Proposition 8.1.11 (SU(2)). The followings are settings and assumptions.

(S1) We set
ey 8)m () ()

The followings hold.
(1)

(i) For any l,k,
dm(H)Z' " Fw® = (1 — 2k)2' Rk

(ii) If V C V; is dm(H)-invariant, there is k such that V contains w!=%zF.

(iv) For any k > 1,
dmy (E) 2Pk = o= (=1 k1

For any k < (1—1),
dmy (F) 2Rk = (k1) k1

(v) For anyl € Z>1, m is irreducible.

Proof of (i). First,

d d 0 0
dm(H)f = ahzof((z,w)exp(tH)) = a\tzof((z exp(t), wexp(—t))) = Z&f - w%f
Next,
d d d 0
im(B)f = ol (s w)exp(tE) = o (2w) (3 1)) = ool (erat 4 ) = s f
and
d d d 0
dm(F)f = £|t:0f((z,w)exp(tE)) = %|t:0f((sz) <1 (1))) = @h:of((z +tw,w))) = w@f
Proof of (ii).
dm(H)z' PP = (z%zlikwk — wa%zlfkwk) = (1 — k)27 Fwk — k27kwk = (1 — 2k) 2! Fwk

Proof of (iii). Let us fix any ki # ko such that v := ap, 2! "F1wh + ap, 2! "F2wh? + D ktky ks apz Fwk

201

O

€ V such that

ag, # 0,ax, # 0. It is enough to show that there are {c;} such that z!=Fiwkr + D ket ko cpzFw® € V. From (i), there

are {c;} such that
(1 = 2ko)v — dmy(H)v = (I — 2ky)ag, 2 F1 ™ + Z e TFuk e v
kK ko

By dividing with (I — 2k2)ay, on the both sides, we can shot that there are {¢},} such that

Rk 4 E Pk e v
k#k1,k2

Proof of (iv). Tt is clear.

Proof of (v). Let us fix any invariant subspace V' # {0}. Then V' is dm; invariant. From (iii) and (iv), we get V = V.

O
O
O
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8.1.6 SL(n,R), SL(n,C)
Example 8.1.12 (SL(n,R), SL(n,C)). The followings hold.

(i) By Proposition3.2.9,
Lie(SL(n,R)) = {X € M(n,R)|tr(X) = 0}

and
Lie(SL(n,C)) ={X € M(n,C)|tr(X) =0}
So,
dim(SL(n,R)) =n? — 1
and

dim(SL(n,C)) = 2n* — 2

(i) SL(n,C) is a complex Lie group and Lie(SL(n,R)) is a real form of Lie(SL(n,C)).
(ii) SL(n,R),SL(n,C) are path connected.

(iv) SL(n,R),SL(n,C) are reductive Lie groups.

(v) sl(2,R) is a simple Lie algebra.

(vi) s1(2,C) is a simple Lie algebra.
Proof of (ii). It is clear.
Proof of (iii). By the same argument as the proof of SU(n), (iii) can be proven.
Proof of (iv). Tt is followed from (iii) and ‘g € SL(n,F) (Vg € SL(n,F)) (F =R or C).

1 0 01 0 0
x= (5 %) m=(0 o) 7= (3 o)

Then X, Y1,Y; is the basis of s[(2,R) and

Proof of (v). We set

[Xa Yl] = 2Y17 [Xa}/Q] = 72Y17 [Y17Y2] =X

Let us fix any b which is a nonzero ideal of sI(2,R) and aX + b1 Y7 + b2Y5 € b\ {0}. If by = by = 0, by multiplying it by
1 1
Z—Yl and —QYQ respectively, we get X, Y7,Ys € b, that implies h = s[(2,R).

a —2a

If by # 0, by multiplying it by X, after that by multiplying it by Y3, we get X,Y7,Y5 € h. So, by the same argument
as the above, we get h = s[(2,R).
If by # 0, by the same argument as the above, we get h = sl(2,R).

Proof of (vi). It can be shown by the same way as (v).

8.1.7 General Linear Group GL(n,R),GL(n,C)
Example 8.1.13 (GL(n,R), GL(n,C)). The followings hold.

()
gl(n,R) := Lie(GL(n,R)) = M(n,R)
and
gl(n,C) := Lie(GL(n,C)) = M(n,C)
and
dim(GL(n,R)) = n?
and

dim(GL(n,C)) = 2n?
(i) GL(n,C) is a complex Lie group and Lie(GL(n,R)) is a real form of Lie(GL(n,C)).

(ii) GL(n,R),GL(n,C) are path connected.
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(iv) GL(n,R),GL(n,C) are reductive Lie groups.
(v)
gl(n,R) = RE @ sl(n,R)
gl(n,R) is a not simple Lie algebra.
(vi)
gl(n,C) = CE @ sl(n,C)
gl(n,C) is a not simple Lie algebra.
Proof of (i). Tt is clear.
Proof of (ii). 1t is clear.
Proof of (iii). By the same argument as the proof of SU(n), (iii) can be proven.
Proof of (iv). 1t is followed from (iii) and 'g € GL(n,F) (Vg € GL(n,F)) (F =R or C).
Proof of (v). For any A € gl(n,R),

(4)

Ao tr tr(A)
n

B), "W g crp (4 1A
n n

E+(A—M

E) € sl(n,R)

Since RE is nonzero and is contained in the center of gl(n,R), gl(n,R) is not semisimple Lie algebra.

8.1.8 Heisenberg group H;
Example 8.1.14 (Hy). Here are the settings.

(51)
1 a b
Hy:={|0 1 c||abceR}
0 0 1
We call Hy Heisenberg group.
Then the followings hold.
()
0 a b
Lie(H;)={|0 0 c| |a,b,ceR}
0 0 0

Lie(H,) is nilpotent.
Proof of (i). Tt is followed from the argument similar to Example8.1.2.

8.1.9 Affine Group A(L,R):=ax+b
Example 8.1.15 (A(1,R)). Here are the settings.
(51)
A(LR) = {(8 ll’) la,b € R,a > 0}
We call A(1,R) one dimensional Affine group.
Then the followings hold.
(ii)
Lie(A(1,R)) = {(”5 g) |2,y € R}
Lie(A(1,R)) is solvable and not nilpotent.
Proof of (i). Tt is followed from the argument similar to Example8.1.2.
Proof of (ii). It is clear that Lie(A(1,R)) is not nilpotent. For any z,y, z,w € R, there is a € R,

G #) G o)=(5)

That implies Lie(A(1,R)) is solvable.

203
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8.2 Homogeneous Spaces
8.2.1 Unit Sphere S™" ~ SO(n+1)/S0(n)
From Theorem6.1.3, the following holds.

Example 8.2.1. The followings are settings and assumptions.

(S1) 8™ := {z € R""| ||z||* = 1}.
(S2) For each g- SO(n+1) and x € S™,

Then
(i) SO(n+ 1) continuously acts on S™.
(i)
h 0
(9 € SO0+ Dl v = ena) = 1= {(p 1) Ih € 500}

Hereafter, we see H as SO(n).
(i1i) S™ is homeomorphism to SO(n+1)/SO(n).

8.2.2 Poincare Upper Half Plane H ~ SL(2,R)/SO(2)

In this section, we introduce Poincare metric on upper half plane H using Lie group and Representation theory. Poincare
metric P is the metric that has the representation below with Euclidian coordinate (x,y)

o 0 o 0 1
P(w,y)(aaxv%v) P(z7y)(%xaa) _ 7 )
P<zvy>(5y7a?) (m,y)(@u@) 0 7

All geodesics of the Poincare Plane are semicircles whose center in the real axis. We show example of geodesics of the
Poincare Plane in Figure8.1.

Poincare metric has many applications to complex analysis[16] and recently it is used for machine learning[29]. Tt is
well known that any auto holomorphic map on Riemann sphere can be represented by a linear fractional transformation
from SL(2,C) ([16]). So, let us start linear fractional transformations from SL(2,C).

In Proposition8.2.3, it is stated that H is a homogeneous space SL(2,R)/SO(2) and Poincare metric is the ”unique”
SL(2,R) invariant riemaniann metric. And the representation of Poincare metric with Euclidian coordinate is given in
Proposition8.2.3.

Notation 8.2.2. In this section, we set
H:= {z +iylz,y € R,y > 0}

and call H upper half plane.
Proposition 8.2.3. The followings are settings and assumptions.

(i) G :=SL(2,R) and g := Lie(G).
(i) H :=S0(2) and b := Lie(H).

Then

(i) G transitively acts on H by

a b az+b
S zi= H
(c d) Zi= (z € H)

and the isotropy subgroup regarding i is H.

(ii)

sl(2,R) /s0(2) = {[(O _ba)”a, beR}

a

Hereafter, let us consider (a,b)t as [(0

b . .
—a)] unless we specify otherwise.
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I ! I I I
-1.00 =075 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 8.1: The Poincare Upper-Half Plane Model

~ (cos(0) —sin(0) _ ) .
(iii) For h(0) = (sin(@) cos(0) )’ the representation matriz of Ady,y(h(0)) is

( cos(20) ;sin(%))
2sin(20)  cos(20)

(iv)
2 1 g 1
1 cos(20) —= sin(20) 1 0) [ cos(20) = sin(20) _5(4 0
2/0 <QSin(29) (3208(29) ) (O 1) <251n(29) 2COS(29)>d0 8<0 1)
(v)
7’+(9/b)H=R<3 ‘f)
(vi)

(vii) We set
3, b) = exp((g _ba>) i (a,b € R)
Then

o(a,b) := %(exp@a) —1) + exp(2a)i (Va,b € R)

(viii) We set

Y(x +iy) = (% log(y), xl;g_(yl)

) (Vo + iy € H)

Then 1 is the inverse map of ¢.
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(iz)
0 T
Telr+iy): = llogly) = y-1
y—1 (y* 1)2( y _log(y))
0 1exp(—2a)
= 2a b exp(—2a) + 2a — 1)

exp(2a) — 1 2aexp(2a)" exp(—2a)—1

(Vz + iy = exp <g _ba> € H)

(z) For any a,b € R,
b
09 d b 1 2 (exp(—2a) +2a— 1)\,
%(Gn b) = £|t:0 exp( <g —a) ) exp(t (0 2(12 (GXp( 7?[) + 2a )>) i

and

99 d a b 0 L 1 —exp(—2a ,
%(a,b) = £|t:0 eXp(<0 a))exp(t (0 Qa( OP( )))) i

(xi) Let B denote the riemannian metric on H from (1 0) € P.(g/0). For any a,b € R,

0 4

(o) Boai(ge o)

¢(a,b) s g ¢(a,b)\ 51 57

¥y ey y

Byan) (g0 55)  Bon (G50 3p)

b2 , b
_ 4+ @(GXP(—QQ) +2a-1) —@(exp(—Qa) —1)(exp(—2a) 4+ 2a — 1)
—@(exp(—Qa) — 1)(exp(—2a) +2a — 1) @(1 — exp(—2a))?

(zii) Let (x,y) denote the Fuclidian coordinate on H. Then For any x + yi € H,

g 0 o 0 1
Bm+7:y(%m, %x) Bm+iy(aaxa %y) _ 7
Bw+iy(87y7%) Bw+iy<aiyaaiy) 0 ?

Proof of (i). Let us fix any x + iy € H. Let us solve the following equation.

exp((S _ba)) =x+1y

Then

(0.0) = (3 log(y), 22

Therefore, the action is transitive.

Next, let us fix any (Ccl Z) € SL(2,R) such that

Then

This means (i 2) € SO(2). O
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Proof of (ii). From the results in the previous section,

and

From that, (ii) holds.

Proof of (iii). Let us fix a,b,0 € R.
1 0 cosf) —sinf 1 0 cosf) sin6
Adgyy (h(0)) (O —1) o (sin@ cos ) <O —1> <— sinf cos 9)
_ cosf sind cosf sinf\ [cos20  sin20 cos260 2sin 260 2
o sinf —cos@) \ —sinf cosf) \sin20 —cos20 < 0 — cos 20 +s50(2)
and
0 1 cosf) —sind 0 1 cosf)  siné
Adg/y(h(0)) <0 O) - (sin@ cos ) (O O> (— sinf cos 9)
(0 cosd cosf sinf\  [—cosfsin20  cos®0
- 0 sinf —sinf cosf) —sin? 6 cos @sin 0

f% sin260  cos 260

s f e 20 win?
c cosfsin20 cos* 6 sin 0 +50(2) = . +50(2)
0 cosfsin 6 0 Z in20
2
Therefore, the representation matrix of Adg/q(h(0)) is
1.
cos20 — 5 sin 26
25sin 20 cos 20
Proof of (iv).
r 1
cos(20) —— sm(29) (1 0) cos(20) ~3 sin(26)
2sin(20) Cos(29) 0 1) \2 sin(260)  cos(26)
clos (20)  2sin(26) cos(26) _% sin(260) _ cos(20)  2sin(20) cos(26) _% sin(26)
D) sin(20)  cos(26) 2sin(26) cos(20) D) sin(26)  cos(26) 2sin(26) cos(26)
14 3sin“ 0 0 ) )
S 0 1 n § cos?(20) + Rcos20FE15 + Rsin 20 E15 + R cos 20 E51 + Rsin 20 Foy
4 4
1
1+3- 0
S 2 1 31|+ R cos 2015 + Rsin 2015 + R cos 20 E51 + Rsin 20 Fa
0 -+ =

Therefore,

T

12 cos(20) —1sin(29)> 10 <cos(29) —1sin(20)> 5[40
2 Jo <2sin(29) 0208(20) <0 1> 2in(26) 303(20) d98(0 1)

Proof of (v). Let us fix any (I(; q) € Pi(g/h)H.

)
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cos(20) —- 8111(29) (p q) cos(26) f% sin(26)
2sin(26) 005(29) 7 7/ \2sin(20)  cos(26)
(ios (20)  2sin(20) <p q) cos(26) —% sin(26)
—5 8 cos(26) "/ \2sin(20)  cos(20)
cos(20)p + 2sin(20)g  cos(20)q + 2sin(20)r cos(20) 1 sin(20)
5 n(26)p + cos 26q —5 sin(26)q + cos 20r | \ 9 sin(26) 305(20)
L —|— 2
Z r _,q
c |2 1 +) Rcos20E;; + Y Rsin20E;;
—*q *p +5 5" i#j i#j
So, q=0,p=4r. O
Proof of (vi).
2n
a b a* 0
(0 —a> - < 0 a2") (vn € N)
and
2n—1
a b a2m ba2(n—1)
G ) one
Therefore (vi) holds. O
Proof ov (vii). From (vi), (vii) clearly follows. O
) ) a b
Proof of (iz). For any x + iy = exp 0 —a)€ H,
1
y 2y
(A R R s S
—lo
y—1 =12y e
0 % exp(—2a)
= 2a b(exp(2a) — 1) 1 exp(2a) -1 %)
exp(2a) — 1 2a (exp(2a) — 1)2"  exp(2a)
0 % exp(—2a)
= 2a i( 1 2a )
exp(2a) =1 2a exp(2a) exp(2a)—1
1
0 3 exp(—2a)
= 2a b (1- 2a )
exp(2a) — 1 2aexp(2a) 1 — exp(—2a)
1
0 — exp(—2a)
= 2a b exp(—2a) + 2a — 1)
exp(2a) —1 2aexp(2a)’ exp(—2a)—1
O

Calculation

da

(a,b) in (x). Let us assume z,y € R satisfies

= %hzo eXP((g _ba>)exp(t (g _yx>) "l
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Then clearly x = 1. And

b
exp((a+t b >) _ (exp(a+t) @t (exp(a+t)—exp(—(a+t))))

0 —a—t 0 —exp(a +1t)
and
b ty
e[ P Vet (L Y )y = (exp(a) o-(exp(a) —exp(—(a))) | [exp(t) o (exp(t) — exp(—(t)))
p((o —a>) (e (O _1>) ( 0 2 —exp(a) ) ( 0 2 exp(—t) )
- (eXP(a +1) {exp(a)%(ewp(t) — exp(—t)) + %(exp(a) - exp(—(a)))ewp(—t)}>
0 —exp(a+1t)
Then
Ty (epla+ )~ exp(~(a+1)
= g[(a:t)z(exp(a +1) —exp(—(a+1))) + ) (exp(a +1) + exp(—(a +1)))]i=o0
= oA (expla) — exp(—a) + (exp(a) + exp(~a))}
and
d y b
Gt oo \xP(a) 5 (exp(t) — eap(=1)) + 5 - (exp(a) — exp(—(a)))exp(~t)}
= exp(a)y — - (exp(a) — exp(~a)
Therefore,
b b —1
y = exp(—a){y(exp(a) —exp(—a)) + 5-{—(exp(a) — exp(~a)) + (exp(a) + exp(—a))}}

= exp(-a){5-{ - (exp(a) — exp(—a)) + 2exp(a)})
b

= %{2(exp(72a) -1)+2} = ﬁ(exp(an) +2a—-1)

Calculation %(a, b) in (x). Let us assume z,y € R satisfies

0b
0 d
87(;:(&, b) = ahzo exp( (g _ba>)exp(t <g _yx>) g

b+t
exp! <8 b_—l—at>) _ <e>qz)(a) 5a (exp(a) — exp(a))>

—exp(a)

Then clearly x = 0.

and
b
oo(® P Vyexpe (O 1)) — (@0(@) - (expla) —esp(—(@)) (1t
p((o a)) p(lt<0 0)) ( . 2 " expla) )(0 1)
_ <exp<a> texp<a>y+2’;<exp<a>—exp<—<a>>>>
0 —exp(a)
So,

y = ep(-a)(y (exp(a) - exp(-a))

5 (1~ exp(~2a)
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Proof of (xi). We set

b 1
A= ﬁ(exp(—%z) +2a—-1),B:= %(1 —exp(—2a))

(0 8)( D) 5)=6 5 5= %)

b? b
_ . 4+ @(exp(—Za) +2a —1)? —@(exp(—fa) — 1)(exp(—2a) 4+ 2a — 1)
—@(exp(—2a) — 1)(exp(—2a) + 2a — 1) @(1 — exp(—2a))?
O
Proof of (xii). We set
2 ) b
Jo) = (O 7“> 7 (911 912> _ ) 4+ @(exp(—Za) +2a—1) —@(QXP(—IQG) — 1)(exp(—2a) + 2a — 1)
s
9 ga1 922 ~ o3 (©xp(~2a) — 1) (exp(~2a) +2a — 1) o3 (1~ eap(~2a))?
Then
<0 7") <911 912) (0 Q) _ ( 921 922 > <0 (1) _ < G20 r(qg12 + 8922) )
q s)\g21 g2/ \r s 4911 + 8921 4912 +S8g22 ) \T S 7(qg12 + 8922)  ¢°g11 + 2¢5g12 + 5°g22
Let us remind 1
0 3 exp(—2a)
S = 2a b exp(—2a) + 2a — 1)

exp(2a) — 1 2aexp(2a)" exp(—2a)—1

First, we will show qgi2 + sg22 = 0.

q912 = f% exp(—2a)(exp(—2a) — 1)(exp(—2a) + 2a — 1))

and
Sgas = 8%;” exp(—2a)(exp(—2a) — 1)(exp(—2a) + 2a — 1))

So,
r(qg12 + sg22) =0

1
Next, we will show 72gag = 4—2/2

Remind 1
a= 5509(31)
So,
9 4a® (1 —exp(—2a)) 1
T7g22 = 2 2 -2
exp(4a)(1 — exp(—2a) 4a Y
1
Last, we will show ¢%g11 + 2¢sg12 + s2g22 = —-
Y
2 (4 + i (exp(—2a) + 2a — 1)?) 1 + v’ (exp(—2a) + 2a — 1)?
= —(exp(— — = — —  (exp(— _
¢ u 4 exp(4a) 4q5 P y?  16a* exp(4a) P

and

2¢sg12 = 2;(55;2;)2(:3(;;2;;) 1)1) (—1)%(exp(—2a) — 1)(exp(—2a) +2a — 1)
20°

2 (exp(—2a) +2a — 1)
16a* exp(4a) (exp(=2a) + 20— 1)
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and
b? exp(—2a)+2a—1 1 b?
2 2
(1 —exp(—2a))2 = ———(exp(—2a) +2a — 1 —9a) — 1
o922 4a” exp(4a) exp(—2a) —1 4(12( exp(~2a)) 16a* exp(4a) (exp(—2a) + 2a = 1)(exp(~2a) — 1)
2 2 !
S0, ¢°g11 + 298912 + 57922 = 2 O

8.2.3 Advanced topics*

Currently, there are some researches on the problem to clarify the space of all invariant Einstein metrics on the given
reductive homogeneous space, like [31], [30] and others. Einstein metric is a kind of riemannian metric. Based on the
introduction of [31], I will summarize the results on the topic and open problems. First, it was shown in [32] that if
G/H is a reductive homogeneous space and furthermore is an an isotropy irreducible homogeneous space then G/H has
a unique G-invariant metric, which is also Einstein, up to scalar. Remark that in any isotropy irreducible homogeneous
space the isotropy representation is irreducible. It is known that any irreducible symmetric space is an isotropy irreducible
homogeneous space. And, in [33] it is proved that a non compact irreducible homogeneous space is symmetric. There is a
conjecture stating that the space is finite if the isotropy representation of G/H consists of pairwise inequivalent irreducible
components[34].






Chapter 9

Weyl Unitary Trick

Theorem 9.0.1 (Weyl Unitary Trick(Simply connected case)). The followings are settings and assumptions.
(S1) Gg¢ is a complex Lie group.
(S2) G is a Lie group which is a real form of Gc.
(A1) Gc is simply connected.

(S3) HR(Gc)y is a set of equivalent classes of finite dimensional continuous represenation of G¢ which is
holomorphic.

(S4) R(G)y is a set of equivalent classes of finite dimensional continuous represenation of G.
(S5) R(Lie(Gg))s is a set of equivalent classes of finite dimensional continuous represenation of Lie(Gc).

(S6) R(Lie(G))y is a set of equivalent classes of finite dimensional continuous represenation of Lie(G).

Then
(i) The followings are all bijective.

®1: R(Ge)y 2 [(m, V)] = [(x]G, V)] € R(G)y

Py : R(G)f 3 [(m, V)] = [(dm, V)] € R(Lie(Q))s

@3 : R(Lie(G))s 2 [(p, V)] = [(p® C, V)] € R(Lie(Ge)) s
®4: R(Lie(Ge))r 2 [(p, V)] = [(L(p), V)] € R(Ge) s

Here, L(p) is the lifting of p(See Thereom3.14.8).
(ii) Each bijection of (i) preserves irreducibility.

(11i) Each bijection of (i) preserves subrepresentations.
STEP1.1 Proof of that ®; is surjective in (i). We set U1 := &4 0 3 0 5. First, we will show
V1o @y =idpce),
Let us fix any (7,V) € R(Gc)s and (7', V) := ¥y 0 @((7,V)). We set p := d(n|G). For any X € Lie(G) and v € V,
7' (exp(X))v = exp(pc(X))v = exp(p(X))v = exp(d(n|G)(X))v = w(exp(X))v

That implies dn’|Lie(G) = drn|Lie(G). Since Lie(Gc) = Lie(G) ® C, dn’|Lie(G¢) = dr|Lie(Gc). From Corollary3.14.10,
7’ =7. So, ¥; 0 &1 = idp(q,), holds. O

STEP1.2 in Proof of (i): ®1 is injective. Next, we will show
Oy 00, =idpa),
Let us fix any (m,V) € R(G); and (1, V) := & 0 Uy ((m, V). We set p := dr. For any X € Lie(G) and v € V,
' (exp(X))v = (L(pc)|G)(exp(X))v = L(pc)(exp(X))v = exp(pc(X))v = exp(p(X))v = exp(dr(X))v = m(exp(X))v

Since G is connected, from Proposition3.4.6,

213
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STEP2.1 in Proof of (i): ®4 is surjective. We set Wy := @1 0 &4 0 P3. We will show
Uy 0 @y = idp(q),
Since ¥y 0 &9 = &1 0 ¥y, from STEP1.2, ¥y 0 &y = idRr(G),;- O
STEP2.2 in Proof of (i): ®4 is injective. We will show
Py 0 Uy =idR(Lic(q));
Let us fix any p € R(Lie(G))s and v € V. And we set p' := ®9 0 Wy(p). Then

p(X0 = pe(X)0 = oo Lpe) (Bap(X)) = T oo L(pc|G)(Erp(tX))0 = dL(pe|G)(X)w = o (X)o
That means p = p'. O
STEP3.1 in Proof of (i): ®3 is surjective. We set U3 := ®5 0 &1 o 4. We will show
U3 0 @3 = idp(Lic(a));
Since V3 0 &3 = &3 0 ¥y, from STEP2.2, U3 0 &3 = idr(q),- O
STEP3.2 in Proof of (i): ®3 is injective. We will show
P30 V3 = idR(Lie(Ge))s

Let us fix any pc € R(Lie(Ge))s and X € Lie(G) and v € V. And we set pi := @3 0 Us(pc). Then

pe(X)o = o Llpe) (Brp(X))o = =0 Llpe|G)(Bap(tX))o = dL{pel ) (X ) = (oLl Lie(C)) (X)v
That menas pc|Lie(G) = pi|Lie(G). That implies pc = pf. O
STEP/.1 in Proof of (i): ®4 is surjective. We set Wy := ®3 0 &y 0 ;. We will show
Uy 0Py =idpLic(Ge)),
Since Uy 0 &y = &30 VU3, from STEP3.2, Uy 0 &y = idr(Lic(ce));- O
STEP3.2 in Proof of (i): ®4 is injective. We will show
P40 Wy = idr(ae),

Since &4, 0¥y = ¥y 0 &4, from STEP1.1, &40 ¥, = idRr(Ge),- O
STEP1 in Proof of (ii): ®1 preserves irreducibility. Let (mw, V) € Cfcf. Assume 7’ := 7|G is not irreducible. Then there

is nonzero invariant subspace V' C V. Since V is closed and

t—

drn(X)v = hH(l) %(ﬂ(emp(tX))v —v) (VweV)
V is dw-invarinat. Therefore, V' is dm ® C-invarinat. Since V is closed and
L(dm ® C)(exp(X))v = exp(dm ® C(X))v

V is L(dm ® C)-invariant. Since L(dm ® C) =, 7 is not irreducible. That is a contradiction. Consequently, ®; preserves

irreducibility. O
STEP2 in Proof of (ii): @2, ®3, Py preserves irreducibility. It can be shown by the same argument as the one in STEP1.

O
Proof of (ii). (iii) is clear from the definitions of ®1, &5, P53, D4. O

Theorem 9.0.2 (Weyl Unitary Trick(General Case)). The followings are settings and assumptions.

(S1) Gg¢ is a complex Lie group.
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(S2) G is a Lie group which is a real form of G¢.

(A1) Gc/G is simply connected.

(S3) HR(Gc)s is a set of equivalent classes of finite dimensional continuous represenation of Gc which is
holomorphic.

(S4) R(G)y is a set of equivalent classes of finite dimensional continuous represenation of G.
Then the following is a bijective.
()
®: HR(Ge); 3 [(m,V)] = [(7]G, V)] € R(G);
(ii) ® and @1 preserve irreducibility.

Proof of (i). Let us fix any [(11,V)] € R(G)ys. From Proposition3.14.11, the universal covering group of G¢, denoted by
G, is also a complex Lie group. Let ¢ denote the covering homomorphism map from Gc to Ge. We set Z = ker(p).
We set g := Lie(G). We can see g C Lie(Gc). Let G denote the analytic subgroup of G¢ with the Lie algebra g. From
Proposition6.2.6, Z C G.

Then 7 0 ¢ € R(G);. Since Lie(G) = Lie(G), G is a real form of Gc. From Weyl unitary trick for simply connected
complex Lie group, there is p € R(Gc) such that p|G = 1 0 ¢.

We set R R

p(gZ) == p(g) (g € Gc)

Since p|G =T 0pand Z C G, p|Z = id 7. Then p is well-defined. And clearly p is continuous homomorphism.

Let a denote the homomorphism from Ge / 7 to Ge. We set

72(g) :== pla"(9)) (g9 € Ge)

Let us fix any § € Ge. R
2 09(g) = pla” (@([e]))) = p([c]2) = p(9)
Therefore, we get 7 0 ¢ = p. Let us fix any g € G. Then thre is § € G such that ©(g) = g. Then,

m2(9) = 12(¢(9)) = p(g) = 110 () = T1(9)

Therefore, we get 72|G = 1.

Next we will show 75 is holomorphic. Let us fix any g € G¢. Then there is § € Gc and an open neighborhood of g,
denoted by U , such that »(g) = g and g0|U is a biholomorphisim to an open neighborhood of g, denoted by U. Then, for
any = € U, 7(z) = p((¢|U)~1(x)). Since (¢|U)~" and p are holomorphic, 75 is holomorphic.

Let ¥ denote the map which maps 7; to 7. From the above discussion, ® o ¥ = idpg(g),. Next, we will show

Voo =idyrce),

Let us fix any (7, V) € HR(Gc)y. We set 7y := 72|G. T2 0 ¢ is the extension of 71 o ¢. Therefore, from the definition of
U(ry), 72 = ¥(m1). Consequently, ® is a bijective. O

Proof of (ii). We take over the notations in the proof of (i). It is clear that if 7 € R(G)y is irreducible then ¥(r) is
irreducible. Let us assume any 75 € HR(G¢) ¢ which is irreducible. We set 71 := T2|G. Then 75 o @ is clearly irreducible.
From Weyl unitary trick for simply connected Lie group, m o ¢ is irreducible. Since ¢ is surjective, 77 is irreducible. [






Chapter 10

Constructing Irreducible Representations
of Compact Lie group

10.1 Main Theorem

Notation 10.1.1. In this chapter, we use these notations.

G:=U(n).
Gc := GL(n,C).

Notation 10.1.2. The followings are settings.
AeZm.

In this chapter, we use these notations.

t7 0 ... 0 t7 O 0
xXa( * ot 8 )=ttt * b 8 €B..
(C)\ =C.
,C)\ =G XH (C)\

qr:Ge xp_Cy > [g,v] —gB_¢€ G(c/B,.

Proposition 10.1.3 (Borel Subgroup). We call the set of all lower triagonal matrices of G¢ the Borel subgroup of Gc.
Let denote B_ the Borel subgroup of Ge. B_ is a closed subgroup of Gc.

Proposition 10.1.4. G/B_ is a flag manifold.
Theorem 10.1.5 (Homogeneous holomorphic vector bundle). The followings are settings are assumptions.

(S1) G is a complex Lie group.

(5§2) H is a closed subgroup which is a complex Lie group.
(88) (mw,V') is a holomorphic representation of H.

(S4) G/H is a complex manifold.

Then
q:GxygV —>G/H

s a holomorphic vector bundle. We call it homogeneous holomorphic vector bundle.

Proposition 10.1.6. For any A € Z", qy : Gc Xp_Cyx — G¢/B_ is a homogeneous holomorphic line bundle.

217



218 CHAPTER 10. CONSTRUCTING IRREDUCIBLE REPRESENTATIONS OF COMPACT LIE GROUP

Definition 10.1.7. For each A € Z",
O(Ly) :={s € T'(Ge/B-, Ly)|s is holomorphic}
From Theorem6.6.4,
O(Lx) ~A{f € Hol(Gc, C)[xa(b)F(gb) = F(g) (Vg € Gc,Vb € B.)}
as purely algebraic mean.
Theorem 10.1.8 (Borel-Weil Theorem). For each A € Z™ such that \y > ... > A,
(i) dimO(Ly) < oo.
(i) O(Ly) is a finite dimensional irreducible continuous representation of G.
(11i) The highest weight of O(Ly) is A.

10.2 Flag manifold

Notation 10.2.1. In this chapter, we use these notations.
g := u(n) := Lie(G).
gc := Lie(Gg).
t:= Lie(T). Here, let us remind T := {diag(t1,...,t,)|t; € S* (Vi)}
te = {X € M(n,C)|Xs; = 0 (vi £ ¥j)}.
a:={XeMn,C)X,;; =0 (Vi #Vj), X;; e R (Vi)}
no:={X € M(n,C)|X,,; =0 (Vi <Vj)}.
ny ={X € M(n,C)|X;; =0 (Vi >Vj)}.

b:=1tc+n_.
a1 0 0
. 0 a 0
A= {diag(ay, ..,an) = 0 02 0 lay,...,an > 0}.
0 0 G
1 0 0
No={| ™ L s er (>
Tnl Tn2 1
1 r12 ... Tin
0 0 .ee Ton i .
Ny = Tz ER (i < .
el g [l e R G}
o 0 .. 1

Proposition 10.2.2 (Borel Subgroup). We call the set of all lower triagonal matrices of Ge the Borel subgroup of Gc.
Let denote B_ the Borel subgroup of Ge. B_ is a closed subgroup of G¢.

Proof. Let B_(n) denote the borel subgroup with order n and G¢(n) := GL(n,C). Clearly B_is closed and B_- B_ C G¢.
We will show (B_(n))~! C G¢(n) by mathematical induction with order n. Clearly (B_(1))~! C Ge(1).

Let us assume (B_(n))~! € Ge(n). Let us fix any g = (Z 2) € B(n+1). Here, a € C\ {0}, b € M(n,1,C),
¢ € GL(n,C). Then clearly
a=! 0
—a~telh ¢t

is the inverse matrix of g and is in B_(n). So, (B_(n+1))"! C G¢(n + 1). O
Proposition 10.2.3. The followings hold.
(1)
gc=n_+tc+ny

(ii)
bo=tc+n_=t+a+n_
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(i)
gc=g+b-
(iv)
g=0qtc
(v)
gc=qodb

Proof. (i) is clear. Since t¢ = t+ a, (ii) holds. We will show (iii). Since

gc=n_+tc+ny

and

g+b.=tc+n
it is enogh to show

ng C g+ b_

Since

g+b_Dg+a
and 1 1

X = 5(X—X*)+§(X+X*) €g+a (VX eny)

ny C g+ b_ holds. -

Proposition 10.2.4.
GNB_=T

Proof. Clearly, T C G N B_. Let us fix any g € G N B_. From Proposition10.2.2, g7 = ¢g~' € GN B_. So, g is a diagonal
matrix. Since gTg=F, g€ T. O

Proposition 10.2.5. N, is a complex Lie group.

Proof. Clearly Ny is a connected Lie group with the Lie algebra ny. ny has a complex structure
ng > X—=i1X e ngy

and the real form
{X eny]X;; €R (Vi,5)}

Therefore, from Proposition3.13.10, N, is a complex Lie group. O

Theorem 10.2.6. The followings are settings and assumptions.

(S1) We set
¢ =1{9:={aij}i1<ij<n € Geldet{a; j}1<ij<k # 0,1 < Vk < n}.

(52) We set
¢: Ny x B_>(n,b) — nbe Ge

(S3) We set p:Ge 3 g gB_€ G¢/B-.
The followings hold.
(1) ¢ is a biholomorphism from Ny x B to Gf.
(i) p|NL is a diffeomorphism from Ny to G¢/B_.
(i) Ge/B- is a complex manifold.
(iv) G¢/B- is diffeomorphic to the flag manifolod G/T.
(v) q: Gec xp_C — G¢/B_ is a holomorphic line bundle. Here, B_ acts on C with .
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Proof of (i). Let B_(n) denote the borel subgroup with order n, N4 (n) denote N4 with order n, ¢©™ denote ¢ with order
n and GG(n) := G with order n. We will show (i) by mathematical induction with order n. When n = 1, (i) clearly
holds. Let us assume (i) holds for order n. We set ¢™ := (7, ¥%) for the inverse map of ¢.

Let us fix g := (i 2) € Ge(n+1). Here, a € C\ {0},b € M(1,n,C),c € M(n,1,C),d € Gc(n). We set

) = ((1) bwzﬁf?i; 1)7 i) = (217(23[_115 zbgo(d))

d = Y7 (d)yy (d), 3 (d) " Yi(d) = d ™
90"“(1??“(9)’ ;H_l(g)) =9 SO, ¢n+1 © 1/’”“ = 7;dG@(n+1)~
Next, we will show ¥" ! is surjective. Let us fix any g1 := (é ;) € Ni(n+1), g2 := (g 0,) € B_(n+1). Here,
1

92
y € C\{0},z € M(1,n,C),z € M(n,1,C), g, 95 € Ge(n).
Then there is d € Gi-(n) such that ¢ (d) = g;. We set

Since

a=y+bd ce,b:=a"(d),c:=¢"(d)z,g = (Z Z)

Then clearly ¥"*1(g) = (g1, g2). Therefore, Y"1 is a surjective, in result, "1 is a bijective.
Let us fix any g € Ny x B_. There is h € G(n + 1) such that g = "1 (h). So, ¢"T1(g) = h = (¢¥"*1)"1(g). This
means that " t! is the inverse map of " t1. O

Proof of (ii). Clearly p| Ny is continuous. We set
C = {{ai,j} € B,l 0< |am~| <1 (Vl)7 \am»| <1 (VL])}

First, we will show
gCNGe # ¢ (Vg € Ge) (10.2.1)

Let us fix any g := <Zl Z"H) € G¢. Here, ay, ...apy1 € M(n,1,C), by,...,bp+1 € C. Then there is i such that
1 e bpp

A1yeeey Qi—1,Aj415 005 Q41

are linear independent. If i =n + 1, g € Gi.. So, hereafter, let us assume i < (n+1). We set

F(e) := ZEj’j +elj i+ Enyi
J#

Then

(a1 ... €a;+Apy1 - Ap Gpyd
gF(e)_<b1 5bi+bn+1 bn bn—i—l)

Since
li_r}r(% det(aq, ..., €a; + ani1, ..., an) = det(aq, ..., @pi1, ..., an) # 0

there is € € (0,1) such that gF(e) € G),. So, (10.2.1) has been shown.
From (10.2.1), p| N4 is bijective.
We will show p|N; is an open map. Let us fix any open subset U of G¢. From (i),

p(UNN4) =p(p((UNN1) x B)) (10.2.2)

From (i), o((U N N4) x By is open subset of G¢. Since G is an open subset, o((U N Ny ) x By is also an open subset.
Since p is an open map, p(U N N, ) is an open subset. Therefore, p| N, is a homeomorphism from Ny to G¢/B-.
We set

¢ : Ge/B-3 gB_w p1(¥(g)) € Ny

Here, g € G, p1 : Ny X B_3 (n,b) = n € N;. We will show ¥ is well-defined. Let us fix any g1 := n1b1, go 1= nobs € G¢
such that g1 B_ = g2 B_. Here ny,ny € Ny and by, by € B_. Then there is b € B_such that nib; = nabsb. From (i), n1 = na.
This means ¢(g1B_) = (g2B-). Clearly ¢ is C* class and v o p|N; = idy,. Consequently, p|Ny is a diffeomorphism
from Ny to G¢/B-. O
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Proof of (ii). From (ii) and Proposition10.2.5, (iii) holds. O

Proof of (iv). Clearly G smoothly acts on G¢/B-. And the isotropy group is GNB_. From Proposition10.2.4, the isotropy
groupis GNB_=T.
We will show the action is transitive. We set

o:=eB_, G-0:={g-0|ginG}

We will show
G -o=p(Gc)

Clearly G - o C p(Gc). We set

From Proposition10.2.3(iv) and the fact that G is connected Lie group,
G-o=Uxn_II% exp(q) - 0 = p(Uy—, I, exp(q))
From Proposition10.2.3(v) and the fact that G¢ is connected Lie group,
p(Ge) = p(Up—1 112, exp(ge)) = p(Up—1 112, exp(q))
Therefore, G- 0 = p(G¢). This means that the action is transitive. By Theorem6.1.3, G/T is diffeomorphic to G¢/B-. O

Proof of (v). Since G¢/B- is a complex manifold and B_ is a complex manifold and yx is a holomorphic representation
of B_, q is a holomorphic line bundle. O

10.3 Iwasawa decomposition

Theorem 10.3.1. The followings are settings and assumptions.

(S1) We set
®:GxAxN_> (k,a,n.)— kan_ € G¢

Then
(i) AN_ is a subgroup of Gg.
(ii) AN_NG = {e}.
(i1i) ® is a diffeomorphism. We call
H(g) := (log(a1(9)), .- log(an(9))) (9 € Gc)

the Twasawa projection. Here, g = ®(k(g), diag(ai(g),...,an(g)),n(g)).

Proof of (i). Remark
ana~' € N_ (Va € A,Vn e N.)

Therefore, for any a1,as € A and any ny,ny € N_,
ainiasng = alagaglnlagng € AN_

and
(0,1711)71 = al_l(alnl_lal_l) S AN_

Consequently, AN_is a subgroup of G¢. O

Proof of (ii). Let us fix any a = diag(as,...,a,) € A and n € N_ such that an € G. Since any norm of eigenvalue of an
is 1 and eigenvalues of an are ai,...,an, a = e. Since N_is a subgroup of G¢, n=! € N_. Sincen € G, n~ ! =a’ € G.
Therefore, n7 € N_. That implies n = {e}. O

Proof of (ii): STEPI1. Proof of ® is injective. First, we will show ® is injective. Let us fix any k1, ks € G and ay,a2 € A
and nq,ns € N_ such that kya;ny = ksasns. Then

k;lkl = agng(a1n1)71 €eGNAN_= {6}

Therefore, k1 = ko. Then
ayta; =ng(n) '€ ANN_= {e}

Therefore, a; = as and n; = ns. O
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Proof of (iii): STEP2. Proof of ® is surjective. Let us fix any g = (gl go .. gn) € G¢. We set

1
an(9) = ||gnll, un = ;g”

n

and .
a;(9) = llg; — Y (gj,uiul| j =n—1,n—2,.1)
i=j+1
and
1 - .
u;(g) = ;(gj = ) (gruiu) G=n—1n-2,.1)
J i=j+1
and
k= k(g) = (ul U2 un)
and
a = a(g) := diag(ai(g), .-, an(9))
Then
a;t 0 0
k= g T21 a2_1 0
Tnl  Tno a,’
a;t 0 0
-1
We set ¢ := | ¥21 %2 O | Thene= k~'g. That implies ¢! = a~ 'k~ 'gz. Therefore,
Tnl  Tpa a, '

Then g = kan. We set
U(g) := (k(9),alg),n(g))
Clearly, ¥ is C*®-class and ® o ¥ = idg. Consequently, ® is bijective and ®~! = . O

Proposition 10.3.2. G¢/G is diffeomorphic to N_x A. In specialty, Gc/G is simply connected.

Proof. We set
¢:NxA > (n,a) = naG € Ge/G

and
V:Ge/G29Gw (n"Hal)e Ax N

Here, a € A,n € N_, k € G such that g~' = kan. From Theorem10.3.1, 1 is C*®-class. And clearly ¢—! = . O

10.4 A proof of Borel-Weil Theorem

Proposition 10.4.1. The followings are settings and assumptions.

(S1) f € Hol(Ge,C)
flgan) = xx(a)~' f(g) (Vg € G,Va € A,Vn e N
(52) C = supyey(n) |f(K)].

Then
[F(9)| < Clxa(ezp(H(9)) ™| (Vg € Ge)

Proof. Let us fix any g € G¢. From Iwasawa decomposition, there are k € U(n) and a € A and n € N_such that g = kan.
Then

[F(9) = [/ (kan)| = [xa(an)| 7" - [f(B)] < Clxa(an)| ™" = Clxala)| ™! = Clxa(exp(H ()|

Proposition 10.4.2. The followings are settings and assumptions.
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(S1) We set
k
= (1,.,1,0,.,0) =) e (k=1,2,...,n)
i=1
(52) We set
Pk(n+) = exp(72(H(n+)7f(k)) (k - 1a27 7n)
Then

[F(g)| < Clxa(exp(H(g))~| (Vg € Ge)
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Chapter 11

Probability and Statistics

11.1 Basic Notations

Notation 11.1.1 (The set of all probability measures on (R)). Denote the set of all borel sets on R by B(R). Denote
the set of all probability measures on B(R) by Z(R).

Notation 11.1.2 (order relation in R™). Let z,y € R™. Denote x <y (x <y) if x; <y; (z; <wy;) (Vi).

Definition 11.1.3 (A distribution of random variables). Let (Q,.%#, P) be a probability space and let X = (X1, Xa, ..., X,,)
be random variables on Q. We define Px : B(R") 3 A — P(X~1(A)) € [0,1]. We denote the distribution of X by Px.

Definition 11.1.4 (A distribution function of a probability measure). Let p € Z(R™). We define F,, : R™ 3 =
p((—00, z1] X (=00, z2]... X (—00,z,]) € R and we call F,, the destribution function of p.

Notation 11.1.5 (Fourier transform). Let f € L'(R™). Denote fourier transformation of f by F(f) and denote fourier
inverse transformation of f by # ~1(f).

Definition 11.1.6 (Weakly convergence of probability measures). Let
(S1) (,.%, P) is a probability space.
(52) Let {ua}3e, € P(RY).
(S3) Let p € P(RY).

{pn 352, is weakly converges to p if lim, o F,, (z) = F,(z) for any point x at which F,, is continuous. Denote this by
i = p (1 — 00)

Definition 11.1.7 (Characteristic function of probability measure). Let

(S1) (Q,.Z, P) is a probability space.
(S2) Let p € P(R™).

then call ¢, : R" >t — fRn exp(itx)du(z) € C is the characteristic function of u. Bellow, assume the characteristic
function of p denotes ¢, unless otherwise noted.

Definition 11.1.8 (Characteristic function of random variables). Let

(S1) (Q,.Z, P) is a probability space.
(52) Let X = (X1, Xo,...,X,,) be a vector of random wvariables on (Q, F, P).

then call px :R 2t +— fQ exp(itX)dP € C is the characteristic function of X. Bellow, assume the characteristic function
of X denotes px unless otherwise noted.

Definition 11.1.9 (Tightness of probability measures). Let

(S1) (Q,.Z,P) is a probability space.
(52) Let {un}iz, € P(RY).

{n}S2y is tight if for any € > 0 there is a M > 0 such that

pn({z e RN ||z| < MY) >1—¢ (11.1.1)

227



228 CHAPTER 11. PROBABILITY AND STATISTICS

Definition 11.1.10 (Weakly compactness of probability measures). Let

(S1) (Q,.Z, P) is a probability space.
(52) Let {in}3e, C P(RY).

{bn}ny is weakly compact if for any subsequence {am)}ne1 of {fin}ney there is a subsequence of {fia(n)}tne1 which
weakly comverges to a probability measure.

Definition 11.1.11 (Outer measure). Let
(S1) X is a set.
I':2% — [0,00] is an outer measure on X if the followings hold.
(i) D(¢) =0
(i) If A C B then T'(A) <T'(B)

11.2 Finite measures on metric space

We introduce several definitions and propositions for only Section11.6.2.

11.3 several facts on metric space

The following three definitions are from [37].
Definition 11.3.1 (Elementary function family). Let
(S1) (X,d) is a metric space.
& C Map(X,[0,00)) is called a family of elementary functions if the followings holds.
(i) if f,g € & then f+g€&.

(i) if f,g€ & and f > g then f —g € &.
(i1i) if f,g € & then min{f,g} € &.
Definition 11.3.2 (Elementary integral). Let
(S1) (X,d) is a metric space.
(S2) & C Map(X,[0,00)) is a elementary function family.
l:8+—[0,00] is an elementary integral on & if the followings hold.
(i) if .9 € & then I(f +g) = I(f) + 1(g)
(i6) if f.g € & and f < g then I(}) < (g)
Definition 11.3.3 (Complete elementary integral). Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.
(S3) 1: &+~ [0,00] is an elementary integral.

l is a complete elementary integral if for any {fn}‘fz:l} such that limy,_ o fr = f (pointwise convergence) and fn, < fni1
(Vn € R) satisfies limy, o0 1(frn) = 1(f)

Definition 11.3.4 (Functional from elementary integral). Let
(S1) (X,d) is a metric space.
(S2) & C Map(X,[0,00)) is a elementary function family.

(88) 1: &+ [0,00] is an elementary integral.
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We define
L:{p: X —[0,00)} 3 ¢ inf{X3Z,1(p:)|pi € & (Vi), o < TZ i} € [0,00] (11.3.1)

Proposition 11.3.5. Let

(S1) (X,d) is a metric space.

(52) & C Map(X,[0,00)) is a elementary function family.
(S3) 1: & [0,00] is an elementary integral.

(A1) [0,00)& C &.

Foranya >0 and f € &
Waf) = al(f) (11.3.2)

Proof. Let us fix ¢1 € (0,00) NQ and ¢ € (0,0) N Q. ¢l(f) =1U(q2f) < U af) <Uaqif) = @l(f). So l(af) = al(f) O
Proposition 11.3.6 (Outer measure from elementary integral). Let

(S1) (X,d) is a metric space.

(S2) & C Map(X,[0,00)) is a elementary function family.
(83) 1: &+ [0,00] is an elementary integral.

(S4) L is the functional in Definition11.3.4.

(S5) We setT':2%X 3 A L(xa).

then I' is outer measure on X.

Proof. Tt is easy to show terms except (iii) in Definition11.1.11. So we will show only (iii) in Definition11.1.11. Let us fix
i;')il C 2%,
Let us fix e > 0.
For each i € N, there are {¢; ;}72; C & such that xa, < X52,¢;; and X32,1(; ;) < T'(4) + 57
S0 xuse, 4, < Y1 =190
D(UP2 A;) < B2y 54 l(wiy) < B9 0(4i) + e
Consequently, (iii) holds.

O
Proposition 11.3.7. Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.
(83) 1: & [0,00] is an elementary integral.
(S4) L is the functional in Definition11.3.4.
(S5) T is the outer measure in Proposition11.3.6.
(S6) Mr is the o-algebra in Proposition11.5.9.
(A1) CL(X) C €.
(A2) If A, B are borel sets and d(A, B) > 0 then u(A) + u(B) = u(AU B).
then B(X) C Mr.
Proof. Because Mr is o-algebra, it is enough to show that all closed sets are contained in 9.
Let us fix closed set A. Let us subset B and C such that A C B and C C A°.
Because A is closed set, C C {x|d(z, A) > 0}.
For each n € N we set C, := {z € Cld(z, A) > 1} and D, := {z € C|-5 > d(z, A) > 1}
The followings holds.
C =U2,D, (11.3.3)
Cy =UN_ D, (YN) (11.3.4)

We assume X902 ,T'(D,,) < co. Let us fix € > 0.
There is ng such that X952, T'(D,) <.
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Because d(A,Cyp,) > 0,

|
—

I'(A) +T(C)

VANVAN

IA I
H H

So if X2, T(D,) < 0o then T'(A) + T(C) = T(AUC).

We assume X952 ,I'(D,,) = 00. Then £ ,T'(Day,) = 00 or X5 1T (Day—1) = 00. We assume 222, I'(Dy,,) =
If ny # ng then d(Dy,,Dp,) > 0. So I'(C) > T'(US2L Dsyp) > E52,T(D2y) = o00. So if ¥, T'(Day,)

I'(B)+T(C) =T(AUC) = o.

Similary, if 352 ;T'(Day,—1) = co then I'(B) + T'(C) =T(AU C) = 0.

Proposition 11.3.8. Let

(S1) (X,d) is a metric space.

(52) & C Map(X,[0,00)) is a elementary function family.
(S3) 1: &+ [0,00] is an elementary integral.

(S4) {fn}sey C & and fr, > fny1 on X (Vn).

(A1) There is f € & such that lim, o0 ||frn — flleo =0
(A2) RE C &

then

lim I(fn) =1(f)

n— oo

Proof. |I(f) = 1(fa)l = UI(f = fu) < [|f = fulll(1) = 0 (n — o0)
Proposition 11.3.9. Let

(S1) (X,d) is a metric space.

(52) 1: & +— [0,00] is an elementary integral on & := {f|f is nonnegative borel measurable on X }.

(58) L is the functional in Definition11.3.4.
(S4) hihs € &.
(A1) d(supp(hy), supp(ha)) > 0.

then L(hl + h2) = L(hl) + L(hg)

Proof. Let us fix arbitary € > 0. Let us fix f and ¢ in Proposition2.2.11.
Let us fix {QOZ} C & such that hy + hy < E;)ilg@, and E,Loill(@z) < L(hl + hg) + €.

and
hy < f3721 9
and
ha < g¥Zpi
So
L(hy + ha) + € 2241 (pi)
L(h1) + L(hs)
Consequently

By definition of f and g,

hi+hy < (f +9)572, 0

L(hl) + L(hg) < L(h1 + hg)

Proposition 11.3.10. Let

Q.

>
> B2 (U(fei) +XZ4U(g04))
>

(11.3.5)

oo then

O

(11.3.6)

(11.3.7)
(11.3.8)

(11.3.9)

(11.3.10)

(11.3.11)
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(S1) (X,d) is a metric space.

(S2) 1: & [0,00] is an elementary integral on Cy(X).
(S§8) L is the functional in Definition11.3.4.

(S4) T is the outer measure in Proposition11.3.6.

(S5) Mr is the o-algebra in Proposition11.5.9.

then B(X) C My.
Proof. Let us fix arbitary borel sets A, B such that d(A, B) > 0.

By Proposition11.3.9, T'(AU B) = L(xaus) = L{xa + xB) = L(xa) + L(xs) =T(A) + T'(B).

By Propositionl1.3.7, 8(X) C ir.

11.4 several facts on compact metric spaces

Proposition 11.4.1. Let

(S1) (X,d) is a compact metric space.
(52) 1 is an elementary integral on C+(X). C(X) :={f € C(X)|f > 0}

then there is an unique measure p on (X, B(X)) such that for any f € C1(X)

1= | fu

Ezistence. Let us fix f € Cy(X).
By replacing f by ||f]|co — f, it is enough to show

/ faul(f) < 1(f)
X
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(11.4.1)

(11.4.2)

By an argument similar to one in the proof of Proposition11.6.5, there are Uit < m<oo1<i<p(m) © R such that

0=am1 < am2 < ... <ampm) > || flleo (Ym € N)

1 )
|@m,i = Gmit1] < om (Ym, Vi)

p{f = am,i}) = 0 (9m, ¥i)
We set
hm = EZD—(T)am,iX[awn,i7a7n,i+1) (m = N)

and

hann = ELP:(T)am,iX(am,Hr%,am,iﬂ*%) (meN, 1<i<p(m))

Let us fix € > 0.
By Propositionl1.5.10, f € C,(X).
By (11.4.5), there is m,n such that

|/ fdu—/ hmndp| < €
p's X

Because f € Cy(X), if i # j then d(f~((am.; + %,am,i_l,_l - ), (am,; + %L,am,jﬂ

So
1F) 2 Lt = [ i
X
Therefore,
[ fau=e<i)
X
Consequently,
fdp < 1(f)
X

— ) >0.

n

(11.4.3)

(11.4.4)
(11.4.5)
(11.4.6)

(11.4.7)

(11.4.8)

(11.4.9)

(11.4.10)

(11.4.11)
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Uniqueness. Let us fix arbitary pu; € (X)) and arbitary ps € &?(X) such that

/ fdus = / fduz (VF € Co(X))
X X

We set B := A € B(X)|u1(A) = u2(A). Clearly B is o-algebra.
Let us fix closed set A.
By Proposition2.2.1, there are {f,,}5°_; C C+(X) such that

||fm||oo <1 (Vm)

and
iMun—oo fm = Xa (pointwize convergence)

By Lebesugue’s convergence theorem, pq(A4) = ps(A).
So A e A.
Consequently # C #(X).

11.5 Some Facts Used Without Proofs

In this note, we use the following propositions without proofs.
Proposition 11.5.1. Let
(S1) (,.%, P) is a probability space.
(S2) X is a N-dimensional vector of random variables on (£, .%).
(588) Let ux be a probability distribution of X .
(S4) f e LHQ)UL2(Q)
then

/RNfduX:/QfonP

_0?
4n

Proposition 11.5.2. For any n > 0,

F (exp(—n()*) = —==exp( ).

Proposition 11.5.3. Let X be a positive definite symmetric matriz.

tTy%¢
2 )

Pz () = exp(—
Proposition 11.5.4. Let
(S1) Arbitrarily take M > 0 and fix it.

PROBABILITY AND STATISTICS

(11.4.12)

(11.4.13)

(11.4.14)

(11.5.1)

(11.5.2)

(11.5.3)

(52) Let fn,: D(0,M) > z+— (1+ 2)" € C, where D(0, M) := {2 € C| |2| < M}, (n=1,2,...).

then {fn 152, uniformly converges to exp on D(0,M).
Proposition 11.5.5. Let

(A1) Let F : R — R is monotone increasing.
then {x | F is not continuous at x} is at most countable.
Proposition 11.5.6. Let

(S1) (,.7, P) is a probability space.

(52) Let {pn}pz: C P(R).
(A1) Let p € P(R) such that p, = pu (n — 00).

then for any bounded continuous function f: R — R

v, | $@)din(@) = [ F@)in(o)

(11.5.4)
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Proposition 11.5.7. Let
(S1) (,.7, P) is a probability space.
(S2) w is a probability measure on R.
(A1) Elu) =0 and Vu] = 1.
then ¢, (s) =1 — % +0(s%) (s = 0)
The following propositions are used for only Sectionl1.2 and Subsection11.6.2.

Proposition 11.5.8. Let

(S1) (X,d) is a metric space.

then there is a complete metric space (X,d) and an isometry mapping i : (X,d) — (X, d) such that i(X) is dense in X.
We call (X,d) is a completion of (X,d).

Proposition 11.5.9. Let
(S1) X is a set.

(52) T is an outer measure on X.
(S3) Mr:={AC X| if BC A and C C A° then u(B) + u(C) = p(BUC)}.

then the followings holds.

(i) Mr is a o-algebra.

(i) T is a measure on M.
Proposition 11.5.10. Let

(S1) (X,d) is a compact metric space.
then C(X) C Cy(X).
Proposition 11.5.11. Let

(S1) (X,dl1) is a compact metric space.

(52) (Y,d2) is a compact metric space.
(A1) f e C(X,Y).

then f(X) is compact in'Y.

Proposition 11.5.12. C.(R") is dense in L'(R").

11.6 Weak convergence of probability distributions

11.6.1 The Case of Single Variable

Proposition 11.6.1 (Helly’s selection theorem). Let

(S1) (Q,.Z, P) is a probability space.
(S2) Let {pn}5>, C P(R) and denote F,,, by F,, (n=1,2,3,...).

Then there is a subsequence {Fym)}ney and F' : R — [0,00) such that F' is monotone increasing and right continuous,
and Fy(ny(x) — F(x) for any point x at which F is continuous.

Proof. There is {z,}22; C R such that {z,}32, = R. Let fix such {x,}52;. Because 0 < F,(z,,) < 1 (for any m,n
in N), there is a subsequence {a(n)};2; C N and {F(z,)};2, C [0,1] such that Fy ) (z,) = F(z,) (m — 00). We fix
such {a(n)}52, and F(zy,),. We define F(z) := infime{kjo<zp} F(2m). By the definition of F, F' is right continuous and
monotone increasing. Arbitrarily take x € R at which F' is continuous and fix it. Arbitrarily take € > 0 and fix it. Let

pick T (m1) and Ta(me) such that z4m1) < 2 < Ta@me) and (F(Tam2)) — F(Tami))) < §- There is a ng € N such that
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|Fn(Taimy) — F(Tamm)| < § and |Fy(Tam2)) — F(Tamae))| < § for any n > ng. Let fix such ng and m1 and m2. For
any n > ng

[Fn(Tamn) — F@)| < [Falzam) = F(@amn)| + [F(zam)) — F(2)]
€
< - 11.6.1
< < (11.6.1)
and
|Fn($a(m2)) - F(m)| < |Fn(xa(m1)) - F(xa(ml)” + ‘F(xa(ml)) - F(x)‘
€
< - 11.6.2
< 3 (11.6.2)
So for any n > ng
€
|Fn(xa(m1)) - Fn<xa(m2))| S 5 (1163)
Arbitrarily take n > ng and fix it. Because F,,(xm1) < Fo(z) < Fo(2m2),
€
max{‘Fﬂ(xa(ml)) - Fn((ﬂ)|, |Fn($a(m2)) - Fn(x)‘} < 5 (1164)
By (11.6.1) and (11.6.2) and (11.6.4),
|[Fn(z) — F(z)] <€ (11.6.5)
O

Proposition 11.6.2. Let
(S1) (,.%, P) is a probability space.
(52) Let {un}pZ, C P(R).
If {un}S2, is tight then {u, 152 is weakly compact.

Proof. By Proposition11.6.1, there is F' : R — [0,00) such that F' is monotone increasing and right continuous, and for
any point x at which F' is continuous
Fotmy(z) = F(x) (n — 00) (11.6.6)

Here we denote F),, by F,. Because of tightness of {j,}52,, limit, oo (F(x) — F(—x)) = 1. So there is a probability
measure p such that F' is a distribution function of u. By (11.6.6), p, = 1 (n — 00). O
Proposition 11.6.3. Let

(S1) (2,7, P) is a probability space.

(S2) Let {pn}ory C P(R). and p € P(R)

(A1) pn = p (n — 00).

(A2) Let f be an arbitary bouded continuous function on R.

then

n—oo

lim fdun(ac):/fdu(x) (11.6.7)

Proof. Let us fix arbitary f € Cy(R) and € > 0.
Because p(R) = 1 and R = Ugega, for each n € N {a € R|u(a) > 1} is finite. So {a € R|u(a) > 0} is at most coutable.
So there is r; > 0 and r9 > 0 such that

L= p((=r1,m2)) < 3=+ 1) (11.6.8)

and p(—r1) =0 and p(—rz) = 0.
Because f is uniformly continuous on X,
So there are i) <, <o 1<i<gp(m) C R such that

—T1 =1 < Am2 < e S Gy p(m) = T2 (VM € N) (11.6.9)
and
1

o (Y. ¥i) (11.6.10)

|am,z’ - am,i+1| <
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and
p({am,i}) =0 (Ym, Vi) (11.6.11)

For each m € N, set f,, := Efz(T)f(ai)X[a“aHl).
Because lim,;, ;00 frn = f (pointwize convergence), by Lebesugue’s convergence theorem there is m € N such that

T2 T2

€
[ g [ < S (11.6.12)
—T1 —7Tr1 3
Because o
bt = B2 fan) (i, aisn) (11.6.13)
o
and v
Fnttn = SEG f(ai)pn ([0, ai41)) (V) (11.6.14)
—r
So there is ng such that
T2 T2 €
| Jmbn — Jmpt| < 3 (Vn > ng) (11.6.15)
—r1 -7
By (11.6.8) and (11.6.12) and (11.6.15),
[ = [ ul < e (9= n0) (11.6.16)

11.6.2 The Case of Multi Variables
Definition 11.6.4 (Weak convergence(in general metric space)). Let
(S1) (X,d) is a metric space.

(52) {pa}os € 2(X).
(S3) pe P(X).

We say {un}S2, weakly converges to p if for any borel set A such that u(9(A4)) = 0 limy, e pn(A) = p(A) Denote
U => 1 by weak convergence.

The following proposition gives the equivalent definition of weak convergence.
Proposition 11.6.5. Let
(S1) (X,d) is a metric space.

(52) {pn}p, C 2(X).
(83) ne 2(X).

then the followings are equivalent.

(i) pn = p-
(i1) Set Cp(X) :={f € C(X)|||flloc < c0}. For any f € Cy(X)

lim fd,un:/fd,u (11.6.17)
n—oo

(i1i) Set C(X) :={f € C(X)| [ is uniformly continuous on X}. For any f € Cp(X) N Cy(X)

li_)m fdun, = /fd,u (11.6.18)

(iv) For any closed set A
ILm pn(A) < u(A) (11.6.19)

(v) For any closed set U
lim p, (U) > p(U) (11.6.20)

n— oo
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(i) => (ii): Let fix arbitary f € C,(X). Because Uger{f = a} = X and p(X) =1, forany n € N {a € R|p({f = a}) > L}

is a finite set. So {a € Rlu({f =a}) > 0} = U2 {a € R|u({f = a}) > 1} is at most countable.
So there are . i; <, <o 1<i<p(m) C R such that

_||f||oo > Qm,1 < am,2 <. < Am,p(m) > HfHOO (Vm S N)

1
|am,i - am,i+1| < QW (Vmﬁ’z)

w{f = am;i}) =0 (Ym, Vi)
For m € N set

9m ‘= Zf:(T)am,i+1X{amyi§f§am,i+1}
and
Py 2= Z;'p:(T)am7iX{am,i§f§am,i+1}

Because for any m and i O{am,: < f < am, i1} C{f = ami} U{f = am,i+1}, for any m and ¢

w(H{am,i < f <amit1}) =0

Let fix arbitary € > 0.
By Lebesugue’s convergence theorem, there is m € N such that fgmdp — f hpmdp < e.

By (i),
/fdu—e < /hmdu
= lim hmdpin
n— o0
< lim [ fdp,
n— oo
and
/fdu+e > /gmdu
= lim Gm A
n— oo
> lim [ fdun,
n— o0

Consequently, [ fdu =lim, oo [ fdpn.

(i) = (i4): It’s trivial.
(i) = (iv): Let fix arbitary closed set A. We set
fu(x) =11 —min(1,d(z, A))|" (n € N,z € x)

frn € Co(X) N Cyu(X) (Yn) and lim, o0 frn = xa (pointwiseconvergence) and

[ it = o)

By Lebesugue’s convergence theorem,

n—00

(iv) <= (v): It’s trivial.

(11.6.21)

(11.6.22)
(11.6.23)
(11.6.24)

(11.6.25)

(11.6.26)

(11.6.27)

(11.6.28)

(11.6.29)

(11.6.30)

(11.6.31)
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(i) and (v) = (i): Let A € #(X) and p(0A) = 0. By (iv),

() = B pa(4)
< u(A)
= W@\ A) + p(A)
< () + u(A)
= u(A) (11.6.32)
In the same way as above we obtain
ILm n(4) > p(A) (11.6.33)
Consequently
li_)m tn(A) = u(A) (11.6.34)

The following is the definition of a metric of Z(R).
Proposition 11.6.6. Let

(S1) (X,d) is a compact metric space.
(52) {fn}52 is a dense subset of (X,d). By Proposition2.2.12, such subsets always exist.

(S3) T(p1, p2) = Bo2 | ffndﬂl - ffndM2| (p1, p2 € Z(R)).
then the followings hold.
(i) T is a metric on P (R).
(ii) for any {un}>, C P(R) and p € P(R), p, = p (n — 00) is equivalent to T(fin, 1) = 0 (n — o).

(i): Let fix u; € Z(X) and ps € P(X) such that 7(u1, pu2) = 0. It is enough to show p; = pg for showing (i). By (S2),
for any f € C1(X) [ fdur = [ fduo. By uniqueness in Proposition11.4.1, p1 = po. O

(ii): Let us assume 7(pn, ) — 0 (n — 00). Let us fix arbitary € > 0. There is m € N such that |[f — fiu[|occ < 5. There
is ng € N such that for any n > ng

€
|/Xfmdﬂn_/xfmdli| < g (11.6.35)

[ s = [ gaul <1 [ fdn = [ o]

1 [ = [ i+ [ = [ i
< €

For any n > ng

(11.6.36)

Consequently, p, = p (n — c0).
The inverse is clear. O

Proposition 11.6.7. (£(X), 1) is a compact metric space.

Proof. By Proposition2.2.5, it is enough to show (£?(X), ) is sequencially compact.

Let us fix arbitary p,52, C Z(X).

For any m € N, {[ finn }22; is bounded.

For each m € N, there is {¢(m,n)}o2 such that I(fy,) = limp oo [ frnltp(m,n) exists and [[(fm) — [ fmdiip@mn)| <
L (Vn >m).

We set ¢(m) := ¢(m,m) (m € N).

By the definition of ¢, for any m € N I(f,) = imp o0 [ frndity(n)-

Let us fix arbitary f € Cy(X) and € > 0. There is & € N such that [|f — fx|| < §.

There is ng € N such that for any m > ng and any n > ng | [ fedpym) — [ fedppm) < §
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So for any m > ng and any n > ng | [ fdpym) — [ fdppmm)| < €

So U(f) := limpy, o0 [ fdpiy(m) exists.
Clearly [ is an elementary integral on Cy(X).
So by Proposition11.4.1, there is p € &(X) such that

100) = [ fdn (vf € C1(X0) (11.6.37)

Clearly fiyny == i (n — 00).

Proposition 11.6.8. Let

(S1) (X,d) is a separable metric space.
(A1) {n}es © P(X) is tight.

There is a subsequence :“so(n)?:l:u and p € P(X) such that p,(n) = p (n — 00).

Proof. Let (X, cz) be a compact metric space in Proposition2.2.9 and i : X — X in Proposition2.2.9. By Proposition11.4.1,

for each n € N there is a measure fi,, such that for any g € C;(X) and n € N

/ goidu, = /~ gdjin, (11.6.38)
p's X

There is an increasing sequence of compact sets {K,}52 ; such that

1
o (K) > 1=~ (11.6.39)
(Vm € N,Vn € N)
Let K := U2, K,,. By (11.6.39), for any m € N
fn (K) = fum (i(K)) = 1 (11.6.40)
Forn € Nand 2 € X, gmn(z) := (1 — minl,d(z, K,))" [5 9mmdiu > fun(Kp) > 1— L. By reaching n — oo,
foan (Km) = fi(i(Kpm)) = 1 — L. By reaching m — oo,
a(i(K)) = 1 (11.6.41)

By Proposition, there is a subsequence {fi,(n)}nz; and i € P(X) such that fi, = i (n — c0).
Because for any n € N i(K,) is compact, i(K,) € Z(X). So i(K) € B(X).
We will show

B(X)C B = {AC X|i(ANK)B(X)} (11.6.42)

Because i is injective, if {A,}52, C A then U2, A, € A. And if AR then i(A°NK) =i(K)Ni(ANK)°€ B So Bisa

n=1

o-algebra. For any closed set A, A € . So (11.6.42) holds.
For A € #(X), we define

W(A) = i(i(AU K)) (11.6.43)

By (11.6.41),
w(K) =1 (11.6.44)

Let me fix arbitary f € Cp(X) N Cy(X). Because f € C,(X) and i(X)isdenseinX , there is f € Cy(X) N Cy(X) such
that f|i(X) = foi L
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By the definition of {x,}52, and u,

lim fdp, = lim foiduy,

= lim [ fdi,
X

n—oo

/X Fdi

fdji

i(K)

/ foildj
i(K)

/K fdp

/ fdp (11.6.45)
X

11.7 Characteristic functions of probability distribution

11.7.1 The Case of Single Variable

By Fubini’s theorem, the following holds.
Proposition 11.7.1. Let
(S1) (Q,.Z, P) is a probability space.
(S2) Let u € P(R).
(S3) Let f € L*(R).
then

/ F(t)pu(t)dt = / Ff)(@)du(z) (1L.7.1)
R R

Proposition 11.7.2 (Uniqueness of Characteristic Function). Let

(S1) (Q,.Z, P) is a probability space.
(52) Let u € P(R) and 1/ € P(R).

If o, = o then p=p'.

Proof. Let us arbitary f € C°(R"™). By Proposition2.5.8, .Z(f) € L'(R"). By Proposition2.5.7, [, f(x)du(z) =
Jg f(x)dy' (). By Proposition2.5.3, p = . O

This proposition states that convergence of distributions in law is derived from each point convergence of the charac-
teristic function.

Proposition 11.7.3 (Levy’s Continuity Theorem(Single Variable Case)). Let

(51) {pn}pz: € P(R)
(S2) @, is the characteristic function of pn, (n=1,2,...)
(A1) {pn}Se; C P(R) then the followings are equivalent.

(i) There is a ¢ s.t @ is a measurable function on R and ¢ is continuous at 0 and ¢(0) =1 and p, — ¢

n—oo
(converge pointwise). Below, we fix such .

(ii) Then there is a 1 € P(R) such that ¢ is the characteristic function of p and p, = p (n — 00).

(i) = (ii). The followings are strategy of the proof.
~Memo
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(STEP1) Showing {u,}52, is tight.

n=1

(STEP2) Getting p of the subject.

(STEP1)
For each m € N, there is a measurable function f,, such that f,, continuous at 0 and f,,,(0) = 1 and supp(f) C [%7 _Wl]
is compact and fp, <1in R and F~'f,, <1Tin R. {x_1 1;}_; sutisfies the above conditions. Fix such {fy }no_;.
We get

[ tn@en@s = [ 77 f@)dun(z) (11.72)
R R

-

5 Afm(x)@n(x)dx =1- %/R]—'_lfm(x)d,un(x) (11.7.3)

Call the left side of the above (11.7.3) I, ,, and call the right side of the above (11.7.3) Jp, ». Fix any € > 0.

(STEP1-1)

—Memo

We will show that I, , < ¢ for sufficient large m, n. We will show this statement using the dominated convergence theorem
and continuity of ¢ at 0

(STEP1-2)

—Memo

We will show that J,, , > pn({z € R| |x| > m}) for sufficient large m,n. We will show this statement using the dominated
convergence theorem and continuity of ¢ at 0

The following holds.
1 T
—1 | x
Fl (@) = —F 7 () (11.7.4)
So
1 1 T
J’m,n = 1- 5 F fnL(*)dﬂn(x)
R

m
1__ T
= [ 15 )

1

_ 1= =F 1 (D (z 11.7.5
/{xem FERE e UMD (11.7.5)

In (11.7.5), we use statement F~1f,, <1in R (Vm € N).

1- %fﬁlfm(%) > 1= %ma$y€supp(\f"L|) fm(y)‘%
1
> 3 (11.7.6)
So )
> 5,%({9; € R |z| > m}) (11.7.7)
By (STEP1-1) and (11.7.7) for sufficient large m and n we get
2¢ > pup({z € R| |z] > m}) (11.7.8)

So We have shown {p,}22, is tight.
(STEP2)

By (STEP1), there is a subsequence {1y (n)}ne; which converges to a p in law. It is enough to show for any subse-
quence of {u,}52; the subsequence has some subsequnece of the subsequence which converges to p in law. Let fix any
subsequence {ft,n)}ne1. There is a subsequence { i (a(n))}ne1 Which converges to p'. By increasing n to oo in (11.7.3)

and Propositionl1.6.3, ¢,, = ¢ and ¢,» = ¢. By uniqueness of characteristic function, pu = p'.
O
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(i) = (i). pu: Rt [,exp(ite)dy. It is easy to show ¢, is continuous at 0.
By Proposition11.6.3,

/emp(itm)du(w) = nlgr;o/ exp(itx)du, (Vt) (11.7.9)
R R

11.7.2 The Case of Multi variables

Proposition 11.7.4 (Levy’s continuity theorem(multi variate case)). Let

(1) {un}oz, C P(RY)
(S2) @, is the characteristic function of pn, (n =1,2,...)
(A1) {pn}izy C P(RY)

(A1) There is a ¢ s.t ¢ is a measurable function on RN and ¢ is continuous at 0 and p(0) = 1 and @, —— ¢

n—oo
(converge pointwise). Below, we fix such .

Then there is a pn € P(RN) such that ¢ is the characteristic function of u and p, = p (n — 00).

Proof. By an argument which is similar to the proof of Proposition11.7.3, we can show that {u,}22 is tight.
By Proposition11.6.8 and uniqueness of fourier transformation in R and Proposition11.6.5, there is u € 2 (R)N such

that p, = p (n — 00) and ¢, = ¢.
O

11.8 Central limit theorem

11.8.1 The Case of Single Variable

Theorem 11.8.1 (Central limit theorem). Let

(S1) (Q,.Z, P) is a probability space.

(52) {X;}2, is a sequence of random variables on (2, %, P).
(A1) 3 such that X; ~ p (Vi). Bellow, we fix such p.

(A2) {X;}N| are independent for any N € N.

(A3) Elu] =v and V|u] = 0? and o > 0.

then P /m(x_,) weakly converges to N(0,0).

Proof. We can assume v = 0 and ¢ = 1. Bellow, we assume that.

Let Y; , = \)/(;7 (i=1,2,..,n)and Y, := Y 1 | Vi, (n =1,2,...). By (Al), Y, = ¥y, (Vi,Vn). Let ¢, = ¢y, and

Un =y, (n=1,2,..). And let ¢, : R > s — [, exp(isz)du(z). Then ¢, = ()™ and ¥y, (t) = wu(ﬁ) and (Vt € R).
We will show the following equation. By Proposition11.5.7,

t? 1
=1—-— — 11.8.1
Pvint) = 1= +0(2)(n = o) (11.8.1)
By the above equation and Proposition11.5.4,
==L 4ol 5 eap(-L) (n - o) (11.8.2)
Pnlt) = 2n n Py o

By Proposition11.7.3, there is a pg € Z(R) such that P ;5 converges to o in law and ¢, = exp(—%). Because

©ON(0,1) = exp(f%) and uniqueness of characteristic function, P s ¢ converges to N(0,1) O
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11.8.2 The Case of Multi Variables
Theorem 11.8.2 (Central Limit Theorem(Multi Variables Case)). Let
(S1) (,.7, P) is a probability space.
(52) {X;}2, is a sequence of N-dimensional vectors of random variables on (Q, ., P).
(A1) 3u such that X; ~ p (Vi). Bellow, we fix such p.
(A2) {X;}_, are independent for any n € N.
(A3) Elu] = v and cov[u] = 02 and o is N-by-N positive definite symmetric matriz.

then P s x_,) weakly converges to N(0,X).

Proof. Let us fix arbitary t € RY and s € R. Let us set Y,, := st” (X,, —v).
The following holds.

@ (% —v)(5t) = E(exp(v/nist" (X = v))) = ¢ my_,)(s) (11.8.3)
By Theorem11.8.1 and Proposition11.7.3 and Proposition11.5.3,

. 2782
lim ¢ my_,)(s) =erp(———F— (11.8.4)

n—oo 2

By setting s =1,

. t'x%t
lim ¢ mx_y)(st) = exp(— ) (11.8.5)

n—o00 2

By Proposition11.7.4 and Proposition11.5.3, P g% _,) weakly converges to N (0, ).

11.9 Law of large numbers

Proposition 11.9.1 (Weak law of large numbers). Let

(S1) (Q,.Z, P) is a probability space.

(A1) {X;}52, is a sequence of independent random variables on (Q, .F, P).
(A2) There is a p € P(R) such that X; ~ p(Vi).

(A3) Elu] =v and V|u] = o2 exist.

then the followings hold.

(i) {X:}$2, stochastic converges to p, i.e., for any € >0

lim u(|X —pl>e€) =0 (11.9.1)

n—oQ

Hereafter we denote stochastic convergence by NL> or plim.
— 0

(i) For any e >0,
o2

p(X —pl>e) < —

11.9.2
e (11.9.2)

A proof using Chebyshev’s inequality. For any n € N,
2,,(| % 2S5 2
5 eu(|X —pl* =€)
WX =l >0 = §

1
72/ *dp
€ JIX—p2zer}

IN

IA
|

|
V)

(11.9.3)

This implies the above equation. O
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A proof using Central limit theorem. By resetting X; — — M, we can assume g = 0 and o = 1. Let us fix arbitary

€ >0 and 6 > 0. There is a > 0 such that
N(0,1)((—o00,—a) U (a,0)) < § (11.9.4)

By Central limit theorem, there is ng € N such that

a

<5 11.9.5

and for any n > ng -
(VA %] > a) = N(0, 1)((~00, —a) U (a,00))| < & (11.9.6)

So for any n > ng
u(X[ze < p(X|> %) = p(v/n|X| > a)

< 2 (11.9.7)
So li_>m u(|X| > €) < 25. Consequently, li_)m w(|X| >¢€) =0. O

11.10 Multivariate normal distribution

Remark 11.10.1. Let

(S1) (,.7,P) is a probability space.

(52) X := (Xy,...,X,) is a vector of random variables.
(83) A is a (m,n) matriz.

(A1) (X1, Xp) ~ N(0, Ey).

then cov(AX) = AAT.

The following Proposition11.16.4 is used to prove the Proposition11.16.7 discussed later.
Proposition 11.10.2. Let

(A1) X := (X1, X2, ..., Xp)T ~ N(v, BBT), where B is a (p,q) matriz.
(S1) Let s € [1,p— 1NN and XM 1= (X1, ..., X;) and X@ := (Xgi1, .., Xp).
(A2) cov(XM X2 = 0.

then X and X@ are independent.

Proof. The following proof consists of two steps.
STEP1. General case

In this step, we will show that it is enough to show the Proposition when r := rank(B) = p < q. For each i € NN[1, p],
let b; be the i-th row vector of B. Let V; be the vector space generated from by, bs,...,bs and let V5 be the vector space
generated from bgy1,bs42,...,0p,. We can take {b,(;)};L; is a basis of Vi and {b;(;)};2, is a basis of V5. Since Vi L V5,
{bo(iy }ity N {bry iz = ¢ and {boiy}ity U {b-(iy};2, are linear independent. So it is enough to show {b,(;};L; and
{b-(s)};2, are independent when rank(B) is the number of rows of B.

STEP2. Case when rank(B) =p <gq

Let W be the orthogonal complement of the vector space generated from by, by, ..., b,. We can take c1, ..., ¢(q—p) which
is an orthonormal basis of W and let
C1
C2 B

C .= c

,and let D := { } By (A1), there are random variables {e}?_; on (£2,.%#) and random variables { Y }{_7

Ca—p) |
on (Q2,.7) such that € := {e}{_, are i.i.d and ¢; ~ N(0,1) (Vi)
and Z := [); = De+ v and cov(Z) = DD7T.

The distribution of Z has the density function f, : RY 5 2 — ¢ - exp(z”DDz) € R, where c is a constant. By (A2)
and the definition of C,
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Y 0 0
DDT =10 pP) 0 , where X1 and Yo are symmetric positive definite matrixies. So the distribution of X has
0 0 Eq-p)

the density function f, : RP 5 z d-eacp(x(l)TElx(l)) -eacp(x(z)TZlm(Q)) € R, where d is a constant and () = (zy, ..., z)
and 2(?) = (x441,...,2,). By the format of f,, X" and X? are independent. O

11.11 Popular Probability Distributions

11.11.1 General Topics on Random Variables
By the definition of independence, the following clearly holds.
Proposition 11.11.1. Let
(S1) (8;, F;) (i=1,2,...,N) is a sequence of probability spaces.
(52) (Q,.Z,P) is the probability spaces which is direct product of (§;,7, P;) (i=1,2,..,N)
(S3) X; is a random variable on S; (i =1,2,...,N).
(S3) We setY; :=X,om; (i=1,2,...,N).
then Y1, ...,YN is a sequence of independent random variables.

The following clearly holds.

Proposition 11.11.2. Let P is probability measure on (2 := N U {0},2%). Then idg is random variable on Q and
idg ~ P.

By Fubini’s theorem(see [40]), the following two propositions clearly holds.
Proposition 11.11.3 (Marginal distribution). Let
(S1) (4, %, B;) is a probability spaces (i = 1,2).
(A1) Py x Py has a density function fp, p,.

Then for almost everywhere x € R, fp, p,(z,-) is measurable and

fP1(x) = /RfPth(xvy)dPQ(y)

exists and fp, is measurable and
[ tr@ar@) =1
R
Proposition 11.11.4 (Conditional probability density function). Let
(S1) (4, %, B;) is a probability spaces (i = 1,2).
(A1) P1 X Py has a density function fxy.

(S2) x € R such that fx y(x,-) is measurable and fx(z) > 0.

(58) Set
IPopi)(y) == w (y €R)

We call fp,p,(z) the conditional probability density function of Py given the occurrence of the value x of
Py.

Then
[ Trir P =1
R
The following definitions are based on [41].

Definition 11.11.5 (Probability model, True distribution, Prior probability). The followings are settings and assump-
tions.

(A1) Q is a probability borel measure on RN and Q has the density function q. We call ¢ a true distribution.
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(S1) W is a Borel set of RY.

(A2) ® is a probability borel measure on W that has the density function ¢. We call ¢ a prior probability.
(A3) Q x @ has the densition function p.

(52) We set p(-1|-2) by for w € W such that ¢p(w) >0

p(xw) := pgjew) (z) (z € RY)
We call p(-1]-2) the a probability model. Or, we denote p(-1|-2) by p(xz|w).
Definition 11.11.6 (Exponential family). The followings are settings and assumptions.
(S1) (Q,q,W,®,¢,p) is a pair of true distribution, prior probability, probability model.

We say p is in exponential family if there are v, g, f such that f is a borel measurable map from W to R’ and g are borel

measurable maps from RN to R7 and v is a borel measurable function on W and for any z € RN and any w € W such
that ¢p(w) >0

p(zlw) = v(z)exp(f(w) - g(x))
Definition 11.11.7 (Conjugate prior distribution). The followings are settings and assumptions.

(S1) (Q,q, W, ®,0,p,v,g, f) is in exponential family.
(S2) veR’.

Then, we set

= u\v) = exp(vf(U)) u zZ\V) = erp\v - w w
o) = ) = Py e Wz = [ eapto fwpae )

We call o(-1|-2) the conjugate prior distribution of the exponential family (Q,q, W, ®, ¢,p,v, g, f).

The following is clear.

Proposition 11.11.8 (Posterior Probability Distribution). The followings are settings and assumptions.
(S1) (Q,q, W, ®,p,p) is a probability model.
(A2) q is continuous.
(S2) X™ = {X;}™ | is a sequence of RN -valued random variables such that X; ~ Q.

(A3) p is continuous and for any x1,...,x, € ¢~ 1((0,00)) there is w € W such that p(x;,w) > 0 (Vi € N).
(A4) ¢ is continuous and ¢ >0 in W.
(S3) B > 0.

Then,
Zo(B) = / (W)™ p(X;|w)PdD(w) > 0
w
We set
r(w, X™) = r(w|X") = ¢p(w)I}, p(X;|w)”

1
7.0 (weW)

We call (-] X™) is the posterior distribution of p. And we call B an inverse temperature and Z,,(f) the partition function,
respectively.

Proposition 11.11.9. The followings are settings and assumptions.
(51) (Q,q, W, D,0,p,v,g, f) is an exponential family.
(A2) q is continuous.

(S2) X™ = {X;}"_, is a sequence of RN -valued random variables such that X; ~ Q.

(A3) p is continuous and for any 1, ...,z, € ¢~ ((0,00)) there is w € W such that p(z;,w) > 0 (Vi € N).
(A4) ¢ is continuous and ¢ >0 in W.

(S3) B8 >0 is an inverse temperature.

(S4) veR’.

(85) 0 :=v+ 321, Bg(Xi).
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Then

(i) The partiation function is represented as below.

(i) The posterior probability distribution is represented as below.

r(wlX™) = p(wv)
Proof of (i).

Zn(B) = /W (W)L p(Xi|w) d® (w) = /W p(w|v)ITL p(X;|w)” dd(w)

/ (w[0) I (0(X;) exp(f (w) - g(X,)))) P d(w) = —— / exp(o - ()T, (0(X;) exp(£(w) - g(X,)))) d(w)
w Z(U) w

1 . = (0) 1m
= S [, T e+ B3 0060) - Sade) = 00X’
O
Proof of (ii).
ny .__ n S B 1 _ )II? . B Z(”U)
_exp(v- f(w)) n _ ()8 z(v) _exp(0-f(w)
O
11.11.2 Probability Generating Function
Definition 11.11.10 (Probability Generating Function). Let
(S1) (Q=NU0,2% P) is a probability space.
then we set -
Gp(z) := ZP(Z)ZZ (z€C) (11.11.1)
i=0

Proposition 11.11.11. The followings hold.

(i) Radius of convergence of Gp(z) is not less than 1.
(Z’L) Ipr = Gp/ then P = Pl.

(iii) If Y is a random variable on any probability space such that Y ~ P then Gp(z) = E(2Y) for any
z€ D(0,1) .

(iii) If Y1,Ys is a random wvariable on any probability space such that Y1,Ys are independent then Gpry iy, =
Gpy, Gpy,.

proof of (i). Because 0 < P <1, (i) holds.
proof of (i). By (i) and definition of Gp and G’p, (ii) holds.
proof of (iii). Let us fix any z € D(0,1). For any N € N,

N
BE(zY) = Z/ szQ+/ 2YdQ
i—0 Y {Y =i} {Y>N}

N
= Y _ P(i)? +/ 2YdQ (11.11.2)
i=0 {

Y>N}
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So v
|E(zY) =) P(i)z'| < | 2YdQ| < Q{Y > N}) (11.11.3)
—o Y>N
Consequently (iii) holds. O
proof of (iv). Tt is enough to show (iv) by (iii). O

11.11.3 Bernoulli distribution

Definition 11.11.12 (Bernoulli distribution). We call a probability distribution P on {0,1} the Bernoulli distribution if
for some p € [0,1] P({1}) =p and P({0})=1—p

Proposition 11.11.13 (Expectation and Variance of Bernoulli distribution). Let us assumel a probability distribution P
on {0,1} is the Bernoulli distribution with P({1}) =

(i) E(P) =

(it) V(P)=p(1—p),
(i). Tt is trivial. O
(Z) V(P) = f{071} z*dP — E(P)2 = f{og} xdP _p2 =D _p2 :p(l _p) O

11.11.4 Binomial distribution
Definition 11.11.14 (Binomial distribution). For some p € [0,1] and n € N we call a probability distribution B(n,p) on
{0,1,...,n} the Binomial distribution if B(n,p)({i}) = ,Cip*(1 — p)n —14) (i =0,1,...,n).
Clearly the following holds.

Proposition 11.11.15. Let

(S1) (,.%,P) is a probability space.

(52) {X;}1, be independent random variables.

(A1) The distribution of X; is the Bernoulli distribution B with B({1}) = p (¥i).
then the distribution of X7 1 X, is B(n,p).

By Proposition Proposition11.11.2 and Proposition11.11.1, Random variables like the one above exist.

E(B(2,p)) =1-2C1p(1 = p) +2-2Cop* = 2p+0-p* = 2p. Epap(2?) = 2p+ 2°p* — 2p*. E(B(3,p)) = 1-3Cip(1 -
p)2+2-3Cop*(1—p)+3p* =3p+0-p*+0-p* = 3p. Epsyp)(2?) =3p+3°p? —3p*> +00p®. We can extend these fact to
the following lemma and the following proposition.

Lemma 11.11.16.

(i) Sk kiCe(=1)F =0 (VI > 2).
(it) Lj_ 1 k*1Ce(=1)F =0 (VI > 3).
(i). L(z) == (1 - 2)' = ¥} _1Cp(=1)*(~1)"a*
L'(z) =11 —2)"~" = B} kiCy(~1)*(~1)ka*
So, if I > 2, then

0 = L'(1)
= Xl kCr(—1)k(=1)* (11.11.4)
O
(ii). L(z) := (1 — ) = 3L _,,Cp(—=1)*(=1)ka*.
L'"x) =11 -a2)"t =% _ k(k—1),Cp(=1)k(=1)kzk—2.
So, if I > 3, then
0 = L"(1)
= Xj_ik(k = 1iCk(=1)* (=)
= XL kLD (=1)F =Bk Cp(—1D)F(—1)F (11.11.5)

By (1), Eszlklc’k(fl)k(,l)k =0. So Zizlkzlck(fl)k(fl)k =0. O
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Proposition 11.11.17 (Expectation and Variance of Binomial distribution).

(1) E(B(n,p)) = np
(i) V(B(n,p)) = np(1 - p)
proofl of (i). Let us take {X;};i = 1,2.,,,,n} in Proposition11.11.15. E(B(n,p)) = E(3}_,X;) = X7 E(X;) =np O

proof1 of (ii). Let us take {X;}¢i = 1,2.,,,,n} in Proposition11.11.15. V(B(n,p)) = ¥i_,V(X;) = np(1 — p) O
proof2 of (i).
n
E(B(n,p) = Y knCrp*(1—p)"*
k=1
l n—k o
= Z knckpk Z n—kOi(_l)sz
k=1 i=0
n

= Z Z ke Crp" i Ci(—1)'p’

1=1k=1,2...,l, i=0,1,...,n—k, k+i=l

= > 7 > knCrn—r Ci(—1)°
=1k

=1,2...,l, i=0,1,...,n—k, k+i=l

n l
= > 'Y EkaCr ok Crog(-1)F
=1 k=1

n l
= D (' knCrnikCrr(—1)
=1

k=1

S 1,10 : "Pl k

= U k)
l

= U k"

!
= Z(fl)lplncl ;kk'(llik)l(l)k

!
= > (=DPNCY kCK(-1)F (11.11.6)
I=1 k=1
By Lemmall.11.16, for any [ > 2, ZL:I kiCr(—1)* = 0. So E(B(n,p)) = np. O
proof2 of (ii). By the proof2 of (ii),
n l
Epmp(@®) = Y (=D'P'aC Y KiCk(—1)F (11.11.7)
I=1 k=1

By Lemmall.11.16, for any | > 3, S>% _ k%,C(=1)F = 0.

So EB(n,p) (12) = lezl(il)lplnol Zi;:l k2lck(7]')k = np(lfp)+n2p2. By (1)7 V(B(n,p)) = EB(n,p) (IZ)iE(B(nap))Z =
np(l —p). O

11.11.5 Geometric distribution
Definition 11.11.18 (Geometric distribution). Let p € (0,1).
Pk):=0Q-p)*p(k=1,2,.)) (11.11.8)

We call P is Geometric distribution with p
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Clearly P is a probability measure on {1,2,...,n,...}.
Proposition 11.11.19. Let P is Geometric distribution with p. Then

_ bz
Grlz) = 1-(1-p)z
Proof.
Gp(z) = > (1—p''pt
k=1
pz Y (1—p)*1peht
k=1
1

- pzl—(l—p)z

Proposition 11.11.20. Let P is Geometric distribution with p. Then

and

proofl of (11.11.11).

(1-(1-p)z)?
So
oy (= (1 —p)1)+pl(1—p)
N Bk
p*+p—p?)

proof2 of (11.11.11).

By calculating the derivative,

So
B(P)=pY k1~ (- p) = p i =
k=1

proof of (11.11.12). By calculating the derivative of (11.11.17),

(13xP::§:Mkf1nh4
k=2

So

Ep(z(x—1)) = pY k(k—1)(1-p)*"
k=2

Il
!
—

[
|
=
~—
—
w
|
[
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(11.11.9)

(11.11.10)

O

(11.11.11)

(11.11.12)

(11.11.13)

O

(11.11.14)

(11.11.15)

(11.11.16)

O

(11.11.17)

(11.11.18)
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- == (11.11.19)

O

11.11.6 Negative binomial distribution

Definition 11.11.21 (Negative binomial distribution). We call a probability distribution P on {1,2,...} the Negative
binomial distribution if for some p € [0,1] P({k}) = prir—2Cr_1(1 —p)*~1p"~L. We denote this distribution by N B(r,p).

Proposition 11.11.22.

p'z
GNB(rp)(2) = T _po (11.11.20)
Proof. Because
1 S

= ¢ 11.11.21
) (11121)

the following holds by r — 1 times derivative.

—1)! i )
((Iz))T = Y ili—1)..(i-r+2)7 (11.11.22)
i=r—1

O

Proposition 11.11.23. Let Xy, ..., X, are independent random variables and for any i Px, is the geometric distribution.
Then the distribution of .., X; — (r — 1) is N(r,p).

11.12 Descriptive statistics

11.12.1 Skewness
Definition 11.12.1 (Skewness). Let
(S1) ne ZR).
(A1) v:= E[u] and 0% := V|u] exist.
@)

o3

Proposition 11.12.2. Let

Let us call E| | be the skewness of p.

(S1) f is a probability density function on R.
(A1) f(x) = f(—=x) a.e x > 0.
(A2) [ |z|"f(x)de < oo (i=1,2).
(A3) [pxf(z)dz =D0.
Then the skewness of the distribution from f is zero.

Proof. We denote S by the skewness of the distribution from f.

/ng’f(x)dx
- /Ooong(a?)dx+/0 2* f(z)dx

— 00

S

0o 0
= /o ng(a:)d:c+/(—y)gf(—y)(—l)dy

oo

o0 3 B o0
/O 2 f(x)dz /0 ¥ F(y)dy
= 0 (11.12.1)
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Proposition 11.12.3. Let

(S1) f is a probability density function on R.

(A1) [ |z|"f(x)de < oo (i =1,2,3).
(S2) d > 0.

251

(A2) For any e >0, there is A,B,a,b € R such that 1 < A< B and0<a <bandb< A and (b—a) < (B—A)
and ﬁf: rf(—z)dx < ﬁff vf(z)dz and (A% — 1) ff vf(—x)dr — (b*> — 1) f; xf(—z)dz > d and
| o @' f (@)da — ff 2 f(z)dz| < e and | [[° ' f(—z)dz — f; 2 f(z)dz| <e (i=1,3).

(S3) We denote the skewness of the distribution from f by S.

Then S > d.
Proof.

/000 23 f(—x)da

IN

IN

IN

IN

IN

IN

IA

IN

IN

So S >d.

11.12.2 Kurtosis
Definition 11.12.4 (Kurtosis). Let

(S1) pe ZR).
(A1) v := E[u] and 02 := V[u] exist.

b
/ 23 f(—x)dx + €

/ab 2’ f(—z)dx — /ab zf(—z)dz + /b of (—x)dz + €

a

/ab(xz’ e f(—z)dz + /ab of(—x)dz + €

B —1) /ab of(—2)dz + /OOO of(—2)dz + 2

(A% 1) /AB af(—z)dx —d+ /0Oo xf (—x)dx + 2¢

A2 /AB of(2)da — d — /AB of(—z)dz + /Ooo of (2)de + 2€

A2/ABxf(x)dx—d—/Ooxf(—x)dx—k/ooxf(x)dx—i-i%e

0 0

B
/ 23 f(x)dx — d + 3e
A

/oox3f(x)dx—d+4e
0

)4
Let us call E[%] — 3 be the kurtosis of u and denote it by Kurt(p).
o

Proposition 11.12.5. The kurtosis of N(p,0) is 0.

1
Proof. Let us denote by Cy := ———.
/ Y oV2r
En(uo[(x — )]

c, / (@ — wteap(— L ET )

c, / T 2w ) feap(— L)Y de

(11.12.2)

(11.12.3)
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O

Proposition 11.12.6. For 7 > 0 let us denote kurtosis of h, := —217)([,7,7.] by k(h;). Then lin% k(h;) = oo and
T—
lim k(h;) = —3.

T—00

Proof. Because Elxf] =0,

Elz*h;]
k(hr) +3 = Blh])? (11.12.4)
The followings hold.
2
E[z*h,] = 575 (11.12.5)
and 9
E[x?h,] = §T3 (11.12.6)
So there is constant C' > 0 5
1
k(h7)+3~0(73)2 =C-(tr—=>00r 71— ) (11.12.7)
T T
O
Proposition 11.12.7. We set for e >0 and § > 0
1 .
W Zf |l‘| > 1,
fes(x) =<1 1 1 . - (11.12.8)
5 ayg) dllse
0 otherwise

Then f.s is a probability density function. Let us denote the kurtosis of fes by k(fs). Then the followings hold.
(i) Then for any € > 0 lim k(f.5) = oco.
6—0
(i) For any 6 >0 lir% E(fes) = 0.
e—

Proof. Because

< 1 1
/1 G dr = 15 (11.12.9)
fe,s is a probability density function.
Because Elzfes] =0,
E[lAfe,é]

The followings holds.

E[m2f€,5] = 2(/E a:2f675(x)dw + /100 .’L‘Qfe’g(a?)dx)

e 1 1 e
= A5G- 59" [ e
e 1 1 1
= A5G -5 (2+§))) (11.12.11)

1

< 1
_4+5)—|—/1 7x(1+6)dx>
1

E[x4f€75] = 2(/0E a:4f675(x)dx—|—/oo x4f€75(aj)d3:)
65
3
5
% )+ 3) (11.12.12)
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So, if we fix § then there is constant C > 0

k(fes)+3 ~ C(:;)Q = C% (e — 0) (11.12.13)
and if we fix e then there is constant C' > 0
k(fes) + 3~ C% (5 — 0) (11.12.14)
Then (i) and (ii) hold. O
11.13 Bayes’s theorem
Theorem 11.13.1.
P(H;|A) = P(H;) P(A|H,) (11.13.1)

X7 P(H;)P(A[H;)
Proof. By the definition of conditional probability,
P(H;)P(A|H;)

P(H;|A) = 11.13.2
(Hi|A) PA) (11.13.2)
and
P(A) = =P, P(AU H;) = £°_, P(H;) P(A|H;) (11.13.3)
So, the above equation holds. O
11.14 Crude Monte Carlo method
Proposition 11.14.1. Let
(S1) (S :=1{1,2,...,M},22 H) is a probability space.
(52) (,.%,P) is a probability space.
(53) {Xn}22, is a sequence of independet random variables on Q such that X,,(Q) C S for any n € N.
(A1) X,, ~ H for anyn € N. X,, ~ H) means that P({X,, =i}) = H(3)
(S4) g is a function on S.
(55) {Yn}52, is a sequence of independet random variables on Q such that Y, () C S for any n € N.
(A2) Y, ~ C for any n € N. Here, C is the counting measure of S.
then N N
! X; > Y)H{Y;
plim Zmi9(X) Yees g(s)H({s}) = #S plim =9 H{Y}) (11.14.1)

N—o0 N N—oc0 N

STEP1. Showing (the left side)=(the middle side) . Clearly {g(X,)}52, is a sequence of independet random variables on
Q. By (A1),

[ 9P = S.cs g(s)H (s} (11.142)
Q
and
[ 9(X)2P = S.es P H((s)) (11.14.3)
Q
So by weak law of large numbers (11.14.1) holds. O

STEP2. Showing (the right side)=(the middle side) . We set

G:S3s—=g(s)H({s})#S eR (11.14.4)
By applying the method of STEP1 to G and C,
plim ZRIOIONES 5 oy sis)
= Yses g(s)H({s}) (11.14.5)
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11.15 Chi-Squared Test for Categorical Data

Proposition 11.15.1. Let
(S1) (,.7, P) is a probability space.
(52) {X;}2, is a sequence of N-dimensional vectors of random variables on (Q, %, P).
(A1) {X;}52, distribution converges to N(0,Ey).

then {|X;|?}52, distribution converges to x?(N).

Proof. Let us fix arbitary a > 0.
Let A be the N-dimensional Lebesugue’s measure. By (A1) and A(0B(X, v/a)) =0,

p({IXil* <a}) = w({Xi€ B(X,va)})
— N(0,En)(B(X,va)) (i — o) (11.15.1)
By the definition of chi-squared distribution with degree of free N,
N0, Ex)(B(X, @) = *(N)([0, ) (11.15.2)
So {|X;|*}¢2, distribution converges to x2(NV). O

Theorem 11.15.2. Let
(S1) (Q,.Z,P) is a probability space.
(52) {X;}32, is a sequence of K-dimensional vectors of random variables on (Q, F, P).
(83) {m}< | € (0,1) such that XK m, = 1.
(A1) P{ X, =1}) =1 (Vi,VEk).
(A2) For any k,l such that k #1, {X;, =1} U{X;, =1} = ¢ (Vi).
(S4) Ong =27 X, r (n€ N,k eN).
(S5) B :=nm, (n € Nk eN).

then © E, )2
= wf Tk k) 11.15.3
Q) = B, (11.15.3
distribution converges to x2(K —1).
Proof. We set -
Yor = vVn(Xy —m) (n € N,k €NN) (11.15.4)
Then
Yo i = =S5 Vo (Vn) (11.15.5)
and
On,k — En,k = \/ﬁYn,k (n eNk e N) (11156)
Yy = Yy Yore—1)" (11.15.7)
If we set A :={a;;}ij=1,. K-1 by
aij = 9" BT (Z. j.)’ (11.15.8)
TK if (7’ 7é .7);
So
Q(n) =YL AY, (n e N) (11.15.9)

and A is a nonnogetive definite symmetric matrix.
We set (K — 1)-by-(K — 1) matrix ¥ := {Ui,j}i,j:L...,Kfl by 04,5 = COU(Xl,i7X1,j)- Then

0i; = {Wfrle ) ii g ;Z; (11.15.10)

and
i, = cov(Xn,i, Xn,5) (Vn, Vi, Vj) (11.15.11)
By Proposition11.15.3, ¥ is positive definite symmetric matrix.

By the central limit theomre(see [?]), Y, o distribution converges to N(0,X).
By Proposition11.15.1, {Q(n)}22 , distribution converges to x?(K — 1).
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Proposition 11.15.3. Let A and B be matrizies in the proof oh Theorem11.15.2. Then A~' = X%

Proof. For any i € {1,2,..., K — 1}

(AY)ii = @404 + Zki 10k
1 1

1
- (* + E)’/Tl(]. — 71'1') + Ek;éia(*ﬂ'ﬂrj)

e
(1 —m;) — Bpzimy,

= (1 —71',‘) +
TK

= 1

For any ¢ € {1,2,..., K — 1} and any j € {1,2,..., K — 1} such that i # j,

(AX)ij = @ii0ij + 0045 + Dkzi j0ikOk.i
11 1 1
= (;i o Emim) 4 (L= ) o Bk (=)
= (=mj = —Em) + (=5 = —5m) — S
TK TK TK TK
. I
TK TK

=0

11.16 Linear Regression

11.16.1 Preliminaries for Linear Regression
Throughout this section, we assume the following settings.
Setting 11.16.1 (Linear regression). Let

(S1) (,.7, P) is a probability space.

(52) Let X :={X; j}fi<i<ni<j<k} be a (N, K) matriz.
(A1) XTX is a reqular matriz of order (K + 1).

(83) Let € := {e;}1<i<ny be N random variables.

(A2) {e}p<icny < N(0,5N,02Ey), where o > 0.

7

(84) Let {Bi}{1<i<ky be a real K-dimension vector.

(85) Lety := {yi}{1<i<ny be N random variables which are defined by the following equation.

y=XpB+e

Remark 11.16.2. By (A1),
rank(X) =K

Definition 11.16.3 (Least squares estimate). Let
b= (XTX) N (XTy)

We call 3 the least squares estimate of (11.16.1).

And let

§:=Xp
We call § the predicted values of (11.16.1).
Lastly let

e=y—y

We call é the residual of (11.16.1).

255

(11.15.12)

(11.15.13)

O

(11.16.1)

(11.16.2)

(11.16.3)

(11.16.4)

(11.16.5)
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Remark 11.16.4. 3 is the point which minimize RX 3 z — |y — Xz|? € [0,00). And

Bi=8+(XTX)'XxTe (11.16.6)

and for each i B; ~ N(Bi,02%&) and & > 0, where &; is (i,i) component of (XTX)fl.

Definition 11.16.5 (Multivariate normal distribution). Let X; be a random variable on (2, F) (i = 1,2, ..., N). {Xi}ﬁvzl ~
N(v,%) if there is a natural number | and (N,l) matriz A and there are random variables {e}._, on (0, F) such that
€:={e}l_, arei.i.d and ¢, ~ N(0,1) (Vi) and X = Ae +~ and ¥ = AAT.

11.16.2 Interval estimation of regression coefficients
Proposition 11.16.6.
L 2V - K) (11.16.7)
Proof. The following holds.

é=(Exy — X(XTX)71XT)e (11.16.8)
Let A := (Ex — X(XTX)™1XT) then A is symmetric and idempotent. So each eigenvalue of A is 0 or 1. And tr(A) = N —
tr(X(XTX)1XT) = N-tr(XTX)"'XTX) = N— K so rank(A) = N — K. So by Proposition??, E—I; ~x*(N-K). O
Proposition 11.16.7. B and é are independent.
Proof. By (11.16.6) and (11.16.8), cov(é, 3) = 0. So by Proposition11.16.7 3 and é are independent. O

By Remark and Proposition11.16.6 and Proposition11.16.6 and Proposition11.16.7, the folloing Proposition holds.

Proposition 11.16.8. For each i € NN[1, K],

(Bi = Bi) V(N — K)
v

~t(N - K) (11.16.9)

In the above equation, tn_x s the t-distribution whose degrees of freedom is N—K and &; is (i,1) component of (XTX)fl.

The following is a remark.

Proposition 11.16.9.

leP& 4 )
E(N — K) =V(B;) (Vi) (11.16.10)
512 .
Proof. By Proposition11.16.6, E(J\|76|_7€;{) = 02¢;. By Remark11.16.2, V(3;) = 02¢; O
By the above remak, \);%\/EK is denoted by se(f;).
11.16.3 Decomposition of TSS
Proposition 11.16.10.
(5,6) =0 (11.16.11)
Proof. By (11.16.6),
XTg=XTXp=XT(XB+e) =XTy (11.16.12)
So
(5,) = BTXTe
= BTXT(y—9)
= 0
O

Proposition 11.16.11. Let
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(A1) There is a K-by-K matriz B such that the first column of XB is 1y

then
=y

Y|

Proof. By (11.16.6),
XTy=X"XB=X"(XB+e) =X"y

So the following holds.
BTXTe=0

The fitst component of the BT XTé is § — 7. So § = 7.
Proposition 11.16.12. Let

(S1) TSS := |y —yl,|?

(S2) RSS = |§ — yl,|?

(S3) ESS = |y — g

(A1) (A1) in Propositionl1.16.11

then
TSS =RSS + ESS

Proof. Because

1
TSS = yT(E - —1
SS =y ( N N,N)Y
and 1
RSS = yT(XT(XTX)71X — N1N7N)y
and

ESS =yT(E - XT(XTX)'X)y
TSS = RSS + ESS.

11.16.4 Cochran’s theorem
Proposition 11.16.13. Let

(S1) m € N and A;:N-by-N symmetric matriz (i =1,2,...,m)
(A1) Exy =7 A,
(A2) N =X rank(A;)
then
AiAj =6 Ai (Vi, V)

where 6; ; is a Kronecker delta.

Proof. Let V; := A;RY and n; := rank(4;) and {v; j}1<j<n, be a basis of V; (i = 1,2,...,m).

{Ui,j}lgigm,lgjgm is a basis of RN. and

RY = év
=1
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(11.16.13)

(11.16.14)

(11.16.15)
O

(11.16.16)

(11.16.17)

(11.16.18)

(11.16.19)
O

(11.16.20)

By (Al) and (A2),

(11.16.21)

Let fix arbitary i € {1,2,..., N} and fix arbitary € RN, A;z = (X", A)) Az = (4;)%x + (8,44, Az, By (11.16.21),

Az = A%z and AjA;x = 0.
By Proposition11.16.13 and Proposition?? and Proposition, the following theorem holds.

Proposition 11.16.14 (Cochran’s theorem).
We take over (S1) and (A1) in Proposition11.16.13. And let

(52) (,.%,P) is a probability space.
(A1) € ~ N(0,Ey)
(83) Qi := €T Aje (i =1,2,....,m)

then Q; ~ x?(rankA;) (Vi) and Q; and Q; are independent for all (i,7) € {(i,7)|i # j}

O
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11.16.5 Testing

Throughout this subsection, we assume

8= (80,0,0,...,0)" (11.16.22)
and
1 Z1,1 X1,2 Z1,L
x= |1 T2 T2 2 (11.16.23)
1 IN,1 IN,2 ..« IN,L
Then
XpB=PBoln (11.16.24)
So
7 = XXTX)'xTy
= XXTX)'XT(XB+e)
Bolna+ X(XTX)"' X e (11.16.25)
And
) 1
Ylya = BONINJ + 1n e (11.16.26)
Consequently,
1
RSS = H(X(XTXx) ' xT - N1N,1)e (11.16.27)

1
Because X (XTX)7'XT is symmetric, X (XTX)~'X7T and ﬁlN’l are commutative.
1
And because X (X7 X)~1X7T is idempotent and symmetric, (X (X7 X)"1X7T — NlN’l) is idempotent and symmetric.

1 1
rank:(X(XTX)_lXT — NlNJ) = t?"(X(XTX)_IXT — NlN’l) =L
So by Proposition11.16.14, RSS and ESS are independent and RSS ~ x?(L) and ESS ~ x?(N — L — 1).
So,

RSS
# ~F(L,N —L—1) (11.16.28)
N—-L-1
11.16.6 Simple linear regression
Throughout this subsection, we set
n n n n
i=1 i=1 i=1 i=1
(1) Casel: there is intercept
Throughout this subsection, we assume
1 T
xo |1 (11.16.30)

1 z,
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Then
5 a
- (5)
—_ (XTX)—lXTy
1 T
B 11 IN[1 a |yur
o (CCl To xn) ) )Xy
1 z,
no T, \
_ x T
- (Tx T) oy
— 1 Tz,m _Tm Ty
T, T2 \-T. ~n Tyy
(11.16.31)
So
. nT,, — T.T,
7= T g2
Ly, —T;
1
| Ty T,
o 1
Ty — —T2
n
_ 2@ DY) (11.16.32)
> i1 (@i — Z)?
Consequently,
n — —
5 = Ziza (20— ) (s : ) (11.16.33)
>ici(zi— )
(2) Case2: there is no intercept
Throughout this subsection, we assume
X = (z1,29,...,x0)T (11.16.34)
Then
B= Tay (11.16.35)
T.. .16.
11.16.7 Estimation about population mean
Throughout this section, we assume X = 1y is one and we define u by 8 = ul;. The followings hold.
XTx - N (11.16.36)
1
Y = X(XTx)'xT = vy (11.16.37)
éi=y—7ly (11.16.38)
P 2ov -1 (11.16.39)
3 .16.
—Y)vN(N -1
W=PVNIN=1 iy _y) (11.16.40)
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11.16.8 Estimation about difference between two population means

Throughout this section, we assume

o 1ar 0
(5 0

and

Then the followings hold.

So, by reproductive property of normal distribution,

1 1
Ml—m—(ﬁ—E)NN(O’(M‘FN)UQ)

And the following holds.
1e]? = |y1 — palas* + |yo — p2ln|?

By Proposition11.16.7, (1 — p2 — (71 — ¥2)) and |y — p1la|? + |y2 — p2ln|? are independent.

Consequently, the following holds.

(b1 —po — (U1 — ) VM + N -2
1

1
_ 1as12 —_ 1n]2)(— —
\/(|y1 prlar|? + [y2 — poly] )(M+N)

11.16.9 One way analysis of variance

Throughout this section we set

R T
Y= (yl,la o Ylng s Y2,15 o Y2mgy e YK T "'7yK,7lK)

B = (Mla,u27 -~-a,uK>T
i, = 2it1Vig (i=1,2,..K)
n;

l,, O O O
l,, O O

lo, O O 1,
Then

~t(M+ N —2)

(11.16.41)

(11.16.42)

(11.16.43)

(11.16.44)

(11.16.45)

(11.16.46)

(11.16.47)

(11.16.48)

(11.16.49)

(11.16.50)

(11.16.51)

(11.16.52)

(11.16.53)

(11.16.54)

(11.16.55)
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ilm,m 0] 0] 0
1
Y = X(XTXx)'xT .= © nalnama O 0 (11.16.56)
@) 0 O e
In this subsection, hereafter, we assume there is a real number p such that
B=pulg (11.16.57)
Then the followings holds.
1
TSS = €' (Ey — N1N,N)e (11.16.58)
1
ESS =€l (Y - e (11.16.59)
1
rank(Y — NIN’N) =K-1 (11.16.60)
RSS =€l (Ex —Y)e (11.16.61)
rank(Ey —=Y)=N-K (11.16.62)

So, by Cohchran’s theorem, ESS and RSS are independent, and ESS ~ x?(K — 1) and RSS ~ x*(N — K).
Consequently, the following theoem holds.

Theorem 11.16.15. Under the setting(11.16.55) and the assumption(11.16.57)

(ESS/(K —1))/(RSS/(N — K)) ~ F(K —1,N — K) (11.16.63)
And the followings hold.
1
— 0 0
01 1 0
(XTx)™1 = ny (11.16.64)
0 0 —
nK
B= (1.2 o i) " (11.16.65)

So, by Proposition11.16.8, the following theoem holds.
Theorem 11.16.16. Under the setting(11.16.55)

(N — K)?’Ll

Fog ~ N~ K) (11.16.66)

(Yi, — 144)
11.17 Principal Component Analysis
11.18 Kernel Method

11.18.1 Motivation
Kernel Method is a method for effectively analyzing high dimensional data which does not fit statistical linear model.
Terminology 11.18.1 (Feature Space, Feature Map). The followings are settings.

(S1) 2 be a set.
(52) H be a real inner product space.
(53) ®:Q — H.
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We call Q a feature space and ® a feature map, respectively.

I imagine © to be a high dimensional data set like a subset of R1°%0 And I assume that for a given statistical problem
like regression or principal component analysis or others, {2 does not fit statistical linear model like linear regression or
linear principal component analysis or others. So, I hope ®(2) does fit the linear model. Since 2 is high dimensional, in
many case H is also high dimensional. In general, that impose us highly costed calculation of the inner product. However,
if we find k£ : Q x Q — R such that

(B(X), B(Y)) = k(X,Y) (VX.Y € Q)

the inner product is easy to calculate. Here, k is called a kernel function and H is called a reproducing kernel Hilbert
space. Kernel method is the method to solove a given problem using (H, k). In addition, such statistical problems are
often reduced to an optimization problem in H. By the theory of the kernel method, it is shown that a solution of the
optimization problem can be expressed as a linear combination of {®(X;)} ;.

m

}:m¢ﬂw

11.18.2 Positive Definite Kernel Function
Definition 11.18.2 (Real Valued Positive Definite Kernel Function). The followings are settings.

(S1) Q be a set.
(S52) k be a real valued function on §Q.

We say k is a positive definite kernel function if for any x1,...,xm € Q {k(zi,2;)}ij=1,2,..,.m i a positive semi-definite
symmetric matrix.

Definition 11.18.3 (Complex Valued Positive Definite Kernel Function). The followings are settings.

(S1) 2 be a set.
(52) k be a complex valued function on §Q.

We say k is a complex valued positive definite kernel function if for any x1,...,xm € Q {k(x;, z;)}ij=1,2,...m s a positive
semi-definite Hermitian matriz.

Notation 11.18.4. The followings are settings.
(S1) Q be a set.

(S2) k be a real or complexr valued function on €.
(S3) x € Q.
We set
ka(y) := k(y,x) (y € Q)

11.18.3 Reproducing Kernel Hilbert Space(RKHS)
Definition 11.18.5 (Reproducing Kernel Hilbert Space). The followings are settings.

(S1) Q is a set.
(58) H is a Hilbert space.

We say H is a real reproducing kernel Hilbert space over §) if
H C Map(Q,R)
and for each x € Q) there exists k, € H such that
(u, ky) = u(z) (Vu € H)

We call a function
k:Q%3 (2,y) — ka(y) €R

reproducing kernel.
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Proposition 11.18.6. The followings are settings.
(S1) H s a real reproducing kernel Hilbert space over €.
Then the reproducing kernel is uniquely determined and is a positive definite kernel function.

Proof. Let us fix any reproducing kernel functions k, k. Since

ko (y) = (Ko, ky) = (ky, ko) = ky (@) = (ky, ko) = (Ko, ky) = ka(y) (Va,y € Q)

the reproducing kernel is uniquely determined. From the above equation, it is shown k(z,y) = k(y,x) Va,y € Q.
Next, let us fix any a1, ...,a.,n, € R and x1, ..., 2, € . Then

Zk Ty, T5)a;a; = Zk (xj)aa; = Z(kwl,k% Jaia; = Zalkm 72(1]

W
So, {k(x;,x;)}i; is a positive semi-definite symmetric matric. O
Proposition 11.18.7. The followings are settings.

(S1) H is a complex reproducing kernel Hilbert space over a topological space Q with kernel k.
(A1) Q3 z — k(z,z) € C is continuous.
(A2) For anyy € Q, Q5 z +— Re[k(x,y)] € C is continuous.

Then H C C(X,C).
Proof. Let us fix any f € H, For any z,y € X,
1f (@) = FWI = I(f kC 2) = kGl < (- 1B, 2) — k(. y)]]
and
k(s z) = k)l = k(z, @) + k(y, y) — 2Re(k(x,y))
Therefore f is continuous. m

Definition 11.18.8 (Universal). The followings are settings.

(S1)  is a compact topological space.
(S2) k is a positive definite kernel over ().

We say k is universal if Hy, is dense in C(Q) regarding || - ||co-
Proposition 11.18.9. The followings are settings.
(S1) H C M(Q,C) is a complex Hilbert space.
Then H is a RKHS if and only if for any x € Q)
H> fw f(x)eC
18 cONtINuUous.

Proof of ‘only if* part. Let K denote the reproducing kernel on H. Then for any « € Q and f € H, |f(z)| = |(f, kz)]|- So,
H> fw— f(zx)eC
is continuous. O
Proof of ‘if* part. From Riez representation theorem, for each x € ), there exists k, € H such that
f@)=(f ks) (Vf € H)

That means H is a RKHS. O



264 CHAPTER 11. PROBABILITY AND STATISTICS

11.18.4 Relations between Positive Definite Function and RKHS

The following theorem shows that a positive definite kernel function identify a reproducing Hilbert space.
Theorem 11.18.10 (Moore-Aronszajn). The followings are settings.

(S1) k is a real positive definite kernel function over Q.
Then there is a reproducing kernel Hilbert space H over  such that

(i) k is a reproducing kernel of H.
(ii) For any z € Q, k(-,x) € H.
(iii) {k(-,2)}zeq are dense in H.
Proof. We set Hy := ({kx, }{Ly). For f:= 371", aiky, and g := "7, biky,

(f,9) =Y _ aibjk(x;, z;)
i

First, we will show the inner product is well-defined. Let us fix any {a;}™, {ai}™, {0}, {b;}, such that f :=
ity aike, =300 ajke, and g =370 bika, = 30 Uiks,. Then

Zaibjk(xi,xj) = Zb7 Zaik(xi,mj) = ij Zaik(xj,xi) = ijf(xj) = ij Za;k(Ij,l‘i) = Za;bljkj(l‘i,.ﬂj)
0,J J i J i J J i 0,J
By the same argument as the above, we get

Z aibjk(xi, CEj) = Z a;b;k(xl, .’ﬂj)
] 4,J

Therefore, the inner product is well-defined. Since k is positive semi-definite, the inner product is positive semi-definite.
Next, we will show the inner product is positive definite. Let us any fix f:= ", a;k,, € Hy such that || f|| = 0. For
any x € €,

f@) =Y aike, ()] = [ aike, (@) = | Y aik(@i,x)| = |(f,ka)|
by Cauchy-Schwartz inequality
< lIFk]| =0
So, f = 0. Remark
[f (@) = (f, k) (11.18.1)
and

[f (@) < [ f11Ee |l (11.18.2)

That means the inner product is positive definite. 5
Let H denote the completion of Hy. Let us fix any [{ f,, }nen] € H. By (11.18.2), for each 2 € Q, {f,(x)}nen is a Cauchy
sequence. So, f(z):= lim f,(x) exists. From the definition of the completion, clearly, f € M(Q,R) is well-defined. So
n—oo

we get a map
o Ij[ > [{fn}neN] = f € M(Q’R)

Clearly @ is a R linear map. From the definition of the completion, clearly, ® is injective. We set
H:= ®(H),(®(u), ®(v)) := (u,v) (u,v € H)
Then H is also a Hilbert space. Since H is the completion of Hy, ({[ks]}scq) is dense in H. And clearly,
D ((ka]) = ks (V2 € Q)

So, {ks}eca C H and ({k;}recq) is dense in H. Finally, let us fix any ®([{f,}nen]) € H and z € Q. We set u := [{fn }nen]-
From (11.18.1),

|fn(@)| = (fnskz) (Vn €N)

By reaching n — oo,
|®(u)(z)] = (®(u), kz)
So, H is a reproducing kernel Hilbert space with k. O
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The following proposition give a way to construct a RKHS from a dense subset of a Hilbert space of all self squared
functions.

Proposition 11.18.11. The followings are settings.

(S1) (T, ) is a measurable space.
(S2) s a set.
(S8) {H(-,x)}zeq is a dense subset of L*(T, ).
(S4) We define
J: L*(T,p) > F = Map(x,C)
by
J(F)(z) := (F7H('737))L2(T,M)/TF(t)mdu(t) (F e L*(T,p),z € Q)

We set H := J(L*(T, p)).
(S5) We define
(J(f), I (9) = (f.9) (f,9 € L*(T, p))

Then

(i) J is a continuous injective linear map.
(i) The inner product defined in (S5) is well defined and give a Hilbert space.
(i1i) H is a RKHS over Q and the kernel function is below.

k(z,y) = /TH(tw)H(t,y)du(t) (z,y € Q)

Moore-Aronzjan Theorem also gives us a good feature map.
Proposition 11.18.12. The followings are settings.
(S1) Q is a feature space.

(S2) k is a real positive definite kernel function over Q.
(S3) H is a reproducing kernel space with k.
(S4) We define a feature map by
¢: 0>z k(,z)e H
Then
(©(z), ®(y)) = k(z,y) (Va,y € Q)

Proof. The proposition is clear from the definition of reproducing kernel space. O

The following theorem clarify a form of a solution of optimization problems in a reproducing Hilbert space.
Theorem 11.18.13 (Representer Theorem). The followings are settings.

(S1) Q is a feature space.

(S2) A is a set.

(55) {(Xo, Y)Y, € Q% A,

(S4) ¥ :[0,00) = R a strictly monotone increasing function.
(S§5) H is a reproducing kernel Hilbert space.

(S6) L: HN — R.

(S7) hi,...;hm € H.

Then the optimization problem

min
fEH,cER™

F(fe) = (LX) + D caha(Xi) L) + T £1])
a=1

has solutions in ({kx,},).
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Proof. We set Hy := ({kx,}¥). Let us fix any f € H and ¢ € R™. Then there are fo € Hy and f; € Hy . From this,
[1foll® < [I£1I%. So,
f(Xi) = (f.kx,) = (fo, kx,) = fo(X5)
and
(|l foll?) < w(If11%)
This implies F(fo,c) < F(fo,c). O
11.18.5 Kernel Principal Components Analysis
Proposition 11.18.14. The followings are settings and assumptions.
(S1) 2 is a feature space.
(S2) H is a reproducing kernel Hilbert space over Q with the reproducing kernel k.
(S3) ®:Q — H is a feature map such that
O(x) =k, (Vz €Q)
(84) {X:itL, c Q.
~ 1
(5) B(Xi) := B(X) — 57 T3, B(X)).
(56) We call the optimization problem
1 1 o
max — ,P(X,)) — = ,
e 7 2 B0 = Y8
problemA1.
(S7) We set
) ) ) N N L XN
K= (9(X;), ®(X;)) = k(Xi, X;) Z (X, Xp)— Z (Xa, X))+ > k(Xa, X) (1,5 =1,2,..,N)
b=1 a=1 a,b=1

We call K := {Ki’j}f\szl the centering gram matriz. Let A\ > Ao > ... > Ay denote all eigenvalues of K.

For each i, let u; denote an unit eigenvector regarding to \;.
(58) We call the optimization problem 3
max_ aTK%a
a€RN aT Ka=1

problemB1.

Then the followings holds.

(i) A solution of the problemAl exists in ({®(X;)|i =1,2,...,N}).

i) For any solution of the problemB1, denoted by a, 31" a;® is a solution of problemA1.
i=1

1
(iii) f* .= Zl Lo ®(X;), af = \/TU1' Then f! is a solution of problemAl.
1

(iv) (®(X,), f1) = VAl for any i.

(v) We define the optimization problem

N 1 N
FERITISLFL () z:: (f, @ Nz::

and we call it problemA2. By the same way, we define problemAS3,...,problemAN. And fP :=

1
al = = uP. Then fP is a solution of problemAp (p=1,2,..,N).
P

(i) (®(X;), fP) = VAiuy, for any i and p.

2

N
i=1 ¢
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Mathematical Programming

12.1 Linear Programming

Definition 12.1.1 (Standard Form of Linear Programming). The followings are settings ans assumptions.
(S1) A e M(m,n;R).
(A1) rank(A) =m <n.
(52) b e R™.
(S3) c € R™.

We call the following problem a standard form of a linear programming.

arg min 'z

z>0,Az=b
Definition 12.1.2 (Basic Feasible Solution). The followings are settings ans assumptions.
(S1) A= (ay,...,an) € M(m,n;R).
(A1) rank(A) =m <n.
(S2) b e R™.
(S3) c € R™.
(S4) o € Sy.
(S5) B = (ai,, iy, ..., a;, ), where iy <ig < ... < iy and rank(B) =m.
(S6) Ax =b and x; =0 (Vi & {i1,...,i2}).

We call x a basic feasible solution of the standard form.

Theorem 12.1.3 (Foundamental Theorem for Linear Programming). The followings are settings ans assumptions.
(S1) A e M(m,n;R).
(A1) rank(A) =m < n.
(52) b e R™.
(S3) c € R™.

(i) If the standard form has an optimal solution, the standard form has a basic optimal solution.

(ii) If the standard form has an optimal solution, there are iy < ig < ... < iy, such that
CN (= CN — (B_lN)TCB >0

where,
B := (aiy; -, ai,,), N == (aj,, ..., aj, )

We call the inequality the optimality criterion.

267
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Proof of (i). Let us assume that the standard form has an optimal solution. We set
f(z):=c'z (x € R")
and
S :={(z, (i1, ...,m))|x is an optimal solution,i; < ... < iy, G, ..., G;,, are linear independent.}

From (A1), S # ¢. For each s := (z, (i1, ..., %m)) € S,

n(s) = #{.7|.7 ¢ {ilv "'7im}7wj 7& 0}

We fix s := (x, (i1, ...,%m)) € S such that
n(s) = min{n(s")|s' € S}

For aiming contradiction,
n(s) >0

Without generality, we can assume that (i1, ...,%,) = (1,2,...,m) and 2,11 # 0. And we can assume
Tt = inf{z’ > 0|(zp, 2", Tmi1, ..., Tn) is an optimal solution} (12.1.1)

We set
B:=(a1,-yam), N = (Qmt1, -y Gn)

and
rp = (,’L’17...7.'L'm)7-'17N = ($m+17~-~,$n)

Since b = Ax = Bxp + Nzy,
zg =B 'b— B 'Nzy

We set
(dmsts s dy) := BTIN

If dypg1 = 0, for any 7, € [0,00), (B, 2}, 415 Tm+2, -, Tn) is a feasible solution. Since x is an optimal solution, ¢pq1 =0
and for any x7, ., € [0,00), (B, %}, 41, Tm+2, -, Tn) is an optimal solution. Therefore, (x3,0, Zm42, ..., Z,) is an optimal
solution. That contradicts with the minimality of n(s). So, dy4+1 # 0.

Next, we will show that there is ¢ such that dy,11,; # 0 and z; = 0. Let us assume for any ¢ such that d,,+1,; # 0,
x; # 0. Then, there is € € (0, z,,+1) such that for any @’ € [zy41 —€, Tmt1 +¢€], (25,2, Tms1, .., Tn) is a feasible solution.
Here, 2’y :== B~'0 — BTN (2}, 1, Tmt2s s Tn). I g1 # 0,

min{f((xB,xm+1 — € Tm+1, "'7:En))7f((xB7:Em+1 + €, Tm+1, 7:ETL))} < f(l’)

That is a contradiction. So, ¢, 41 = 0. Therefore, there is 7, .| € (L ,m+1 +€ such that (2’5, 2', g1, ..., 2,) is a feasible
solution and there is 4 such that dy,41,; # 0 and z; = 0.

We will show as, ..., @y, @my1 are linear independent. For aiming contradiction, let us assume ag, ..., Gy, Gyp41 are
linear dependent. Then there are aq, ..., a,, such that

aq
Am+1 = (ag,...,am)
A
By multiplying B~!,
aq
dm+1 = (627 '-'7€m)
Am
The right side has zero 1’th row, while the left side has nonzero 1’th row. That is a contradiction. O

Proof of (ii). From (i), there is a basic optimal solution x := (zp5,0). We can assume i; = 1,43 = 2,...,4,, = m. Then
Bxp = b. That implies

zp=B""b
Let us fix any solution 2’ := (2'g,2'y) > 0. Then cLa’y + cka'y > cLap. That implies

ckaly + chaly > 5B
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Since Bz’ + N2y = b, 2’y = B~'b — B! Nz/y. Therefore,
cEB7' — cEB7INZ) + haly > cEB7
That implies (cy — (B~'N)Tcp)T2’y > 0. That means
ex —(B7'N)eg >0
O
Definition 12.1.4 (Dual Problem). We take over the notations in Definition12.1.1 We call the following problem the
dual problem of the original problem with standard form.

arg max by
y>0,ATy<c

We call the original problem the primary problem.
Theorem 12.1.5 (Weakly Duality Theorem). The followings are settings ans assumptions.
(S1) A€ M(m,n;R).
(A1) rank(A) =m < n.
(S2) b e R™.
(S3) c € R™.
Then the followings hold.

(i) Let us fiz x which is any feasible solution of the primal problem and fix y which is any feasible solution

of the dual problem. Then
bTy <clz

(i) Let us assume there are x and y such that x is a feasible solution of the primary problem and y is a

feasible solution of the dual problem and
bly=clx

Then x is an optimal solution of the primal and y is an optimal solution of the dual.

Proof of (i). Since yTA < T,
Vly=yTb=yTAx < Tz

Proof of (ii). 1t is clear from (i). O
Theorem 12.1.6 (Duality Theorem). The followings are settings ans assumptions.

(S1) A e M(m,n;R).

(A1) rank(A) =m <n.

(S2) b e R™.

(S3) c € R™.

(A2) The primary problem has a basic optimal solution x = (xp,0).

(S4) y:= (BT)"tep. We call it a simplex multiplier.

Then y is an optimal solution of the dual and

Proof.

From optimality criterion,
T, < CB _
Ay < <(B—1N)TcB ¢
Therefore, y is a feasible solution of the dual. And,
Vy=y'v=cEB ' =c5B'Bap =Tz

From weakly duality theorem, y is an optimal solution of the dual. O
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Proposition 12.1.7. The followings are settings ans assumptions.
(S1) A€ M(m,n;R).
(A1) rank(A) =m <n.
(S2) b e R™.
(S3) c € R™.
(S4) We call the following problem the original problem.

: T
9 420

(5§5) We call the following problem the original problem with standard form.

: T
U gy B (")

Then

(i) The dual problem of the original problem with standard form is equivalent to the following problem.

arg max (b7

Y
ATy<c,y>0 )

(ii) We call the following problem the dual problem with standard form.

arg min (—=bTy)
—ATy—z=—c,y,2>0

Then the dual problem of it is equivalent to the original problem.

Proof of (i). We set
ci=(c Op),A:=(A —E)

Then the dual problem is the following.

ar max (b7
g ATydeZO( 2

And
ATy<e <= ATy<c,—y<0

Therefore, the dual problem is equivalent to the following problem.

ar ma. pT
g ATygaﬁ,zo( Y)

Proof of (ii). We set
b:=(=b 0,),A:=(-AT -E)

Then the dual of the dual problem with standard form is the following.

arg max (—clx)
AT x<—b,z>0

And
ATy < - — ATbe,—xSO

Therefore, the dual problem is equivalent to the following problem.

. T
ar min ctx
gATxgb,yzo( )
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12.2 MILP and Branch-and-Bound Method

Definition 12.2.1 (MILP:Mixed integer linear programming). Let

(51) A€ M(m,n,Q), G € M(m,p,Q), b€ Q™, ce R", h € RP.
(82) S :={(z,y) € (Z4)" x (R4)P|g(z,y) := Az + Gy < b}

We call the following problem a MILP.

maz f(z,y) = c'z + h'y
subject to (x,y) € S

We succeed notations in Definition12.2.1. And we set
S0 = {(2,y) € (Ry)" x (Ry)P|Az + Gy < b}

Let us assume the MILP has a opmimal solution (z*,y*) and the optimal optimal value z*. So S # ¢. Let us fix
(z,y) € S°.

Algorithm Branch-and-Bound Method
Input: S°# ¢
Step 1: Take a (z°,5°) € S° and (z,v,2) + (w0, 0, f(2°,4°)) and S «+ S
Step 2: Take j € {1,2,...,n}. Soo := {(z,y) € Slz; < [29]} and Soy := {(z,y) € S|lz; > (m?}} and
MILPOO : maxf(SOO) and MILP()1 : maxf(S(n).
Delete Sy from S and add Spg and Sy to S.
Step 3: for S, € S do
Solve LP,, : max f(Sy).
if LP, is not feasible then
Delete S, from S.
else
We set (z%,y*) which is a optimal solution and z* which is its optimal value.
Delete S, from S.
if % € Z" then
if 2% > z then
(2,9, 2) (a9, f(z%,y%)).

end if
elsez® > 2z
Take j € {1,2,...,n}. Sao == {(z,y) € Salz; < 2]} and Sa1 := {(z,y) € Salz; > [25]}.
Add S, and S, to S.
end if
end if

end for
Output: (z, Y, z).

12.3 Meyer’s Fundamental Theorem

12.3.1 Main result

The propositions shown in this subsection will not be presented with proofs in this subsection, but will be presented with
proofs in the subsections that follow.

Definition 12.3.1 (Polyhedron). Let A € M(m,n,R),b € R™. We call
P:={z e R"|Az < b}

a Polyhedron in R™ or a H-polyhedron. We call the right side H-representation. If A € M(m,n,Q),b € Q™ then P is a
rational polyhedron.
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Definition 12.3.2 (Recession cone). Let P be a nonempty polyhedron. We call
rec(P):={r e R"|x + Ar € P,Vx € P,YA € Ry}
the recession cone of P.
Notation 12.3.3. Let
(S1) Ae M(m,n,Q), G € M(m,p,Q), b€ Q™, ce R", h € RP.

We set
P(A,G,b) == {(z,y) € (R+)" x (R4)?|g(z,y) == Az + Gy < b}

Definition 12.3.4 (Convex, Convex combination). Let A C R™. We say A is convez if Y ;| \ia; € A for aq,...,a, € A
and A, ...; Ay C [0,1] such that Y ;| N; = 1. We call the sum

n
g i
i=1

convexr combination of ai, ..., ay.
Proposition 12.3.5. Let
(S1) Ae M(m,n,Q), Ge€ M(m,p,Q), be Q™, ceR", h € RP.
(52) §:=A{(z,y) € (Z1)" x (Ry)Plg(z,y) := Az + Gy < b}
Then
()
sup{c'z + h'y|(x,y) € S} = sup{c'z + h'y|(z,y) € conv(S)}

Furthermore, there is (z,y) € S such that c'z + h'y = sup{c'z + hly|(z,y) € S} <= there is (z,y) €
conv(S) such that ¢tz + hl'y = sup{c'z + hly|(x,y) € S}

(i) ex(conv(S)) C S
Theorem 12.3.6 (Meyer(1974)[44] Fundamental Theorem). Here are the settings and assumptions.

(§1) A€ M(m,n,Q), G € M(m,p,Q), be Q™.
(52) S :={(z,y) € P(A,G,b)|x € (Z+)"}.

Then there are A’ € M(m,n,Q), G' € M(m,p,Q), v’ € Q™ such that
conv(S) = P(A",G",V)
By Proposition12.3.5 and Theorem12.3.6, MILP

max f(x,y) := c'x + h'y
subject to (z,y) € S

is equal to a pure LP

max f(z,y) := c'x + hly
subject to (z,y) € P(A",G', V)

(1) e~ )

S ={(z,y) e R" x RP|(x,y) € P(A,é,i)),x ez}

We set

Then clearly

and MILP

max f(x,y) := c'z + hly
subject to (z,y) € S
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has a continuous ralaxation
max f(x,y) := c'x + h'y
subject to (z,y) € P(A,G,b)
whose optimal value is equal to the one of the original MILP. And we can effectively find an optimal solution of this

continuas ralaxation which is contained in S.
From the above discussion, the following can be shown.

Proposition 12.3.7. Here are the settings and assumptions.

(S1) Ae M(m,n,Q), Ge M(m,p,Q), be Q™, ce R", h € RP.

(52) § = {(2,y) € P(A,G.b)|x € (Z;)"}.
Then there is M € N and are A € M(M,n,Q), G € M(M,p,Q), be QM such that

S =P(A,G,b)NZ} x RY.
and o
conv(S) = P(A,G,b)

12.3.2 Fourier elimination and Farkas Lemma

Definition 12.3.8 (Conic combination). Let vy,...,v, € R™. For every Ai,...,Am > 0, we call Z:il Aiv; a conic
combination of v1, ..., V.

Theorem 12.3.9 (Fourier Elimination). Let

(S1) A€ M(m,n,R), b e R™,
(Sg) It := {7;|(l7;’n > 0}, I~ = {i'aim‘ < 0}, 0 .= {i|ai’n = O}

i . b7 .
(53) af, = 2k (ie Tt UT ke {1,2,.,n—1}), b = S (eIt Ul

|ai.n |l

(84) A:=(A,b) € M(m,n+1,R).
(S5) We set An_y € M(#IT « #I~ +#1°, n,R) and b/ € R +#I+#1°) py,

(kq-th row of A,_y) = (k-th row of A) + (g-th row of A) (Vk e IT,¥geI7)

|ak.n |agnl

and
((FIF 5 #I~ + §)-th row of A') = (j-th row of A) (j = 1,2, ..., #I°)

(S6) xt = (z1,...,7;) (x € R")
Then
(i) Ax <b,x € R™ is feasible if and only if

n—1
Z(aﬁm +ay )T <Y+ b, (VkeIT,Vgel),
=1
n—1

Z apiri < b, (Vp € I°)

i=1
(i) If A€ M(m,n,Q) and b € Q™, then aj ;,a}, ;,b),b, € Q (Vk € IT,Vi € {1,2,...,n—1},Vg € I7).
(iii) {x e R*"|Az < b} # ¢ <= {z e R"A(z!, 1) <0} # ¢ <= {x e R"A,_1((z" 1), —1)t <0} # ¢.

(iv) For eachi € {0,1,...,n—1}, there is m; € N and A; € M(m;,i+1,R such that every row of A; is a conic
combination of rows of A and

{z eR"Az < b} # ¢ < {z e R A;((=")",-1)" <0}

(v) If A€ M(m,n+1,Q) then A; € M(m;,i+1,Q) i€ {0,1,....,n — 1}.
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(vi) {x € R*|Az < b} # ¢ <= Ay <O0.
Proof of the ‘only if* part in (i). Let us assume x € R™ such that Az <b. Then

n—1

> aj wi +an < by (ke IT)
i=1

and
n—1

Z ay i — T < b, (VgeI™)

i=1

So, by adding the left and right sides of these two inequalities, respectively, the following holds.

n—1

> (dh +dl ey < by Y, (ke IT Vg eI,
=1

n—1

Z apizi < b, (Vp € IO)

=1

Proof of the ‘if* part in (i). Let us assume

n—1

> (ah; +al ) < b+ b, (Vke IT,¥geI),
=1

n—1

Z apiz; < b, (Vp € 1%

i=1

Then
n—1 n—1
> ap i — b < =D _ah,—b,) (ke It ¥gel)
i=1 i=1
We set
n—1
Ty 1= min{f(z ap; — bk eIt}
i=1
Then
n—1
Ty > max{(z ag; —b)lge I}
i=1
So, Ax < b.

Proof of (ii)-(iv). These are followed by (i).
Theorem 12.3.10 (Farkas Lemma I). Let
(S1) Ae M(m,n,R), be R™.

Then
{z eR"Az <b} = ¢ <= {v e R"|A'v =0,blv < 0,0 >0} #¢

Proof of ‘only if* part. By Fourier elimination method (iv), there are mg € N and U € M (mq, n,R) such that U > 0 and
UA = (Om; n—1, bY) and b° # 0. Then there is u € R™° such that u‘b’ < 0. We set

vi= (u'U)

Then v > 0 and Av =0 and v*b < 0. O
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Proof of ‘if* part. Let us assume Jv € R™ such that v*A = 0 and v < 0 and v > 0. For any 2 € R™, v’ Az = 0. So,
Ax Lb. O
Theorem 12.3.11 (Farkas Lemma II). Let

(S1) A€ M(m,n,R), b e R™.

Then
{r e R"|Azx =b,x > 0} # ¢ < {uec R"A'u <0} C {u e R"|u'b <0}

Proof of ‘= ‘. Let us fix x € {x € R"|Ax = b,z > 0}. Let us fix any u € {u € R"™|A'u < 0}. So, b'u < 0. O

Proof of ‘<= ‘. Let us assume
{r eR" Az =b,x >0} =¢

Then
{zr eR"Az <b,—Az < -b,z >0} ={z e R*"|Bxr <c} =¢
Here,
A b
Bi=|-A4A],c:=[ —b
*In On,l

and I, is the n-th unit matrix. By Farkas Lemma I, there are v € R and v" € R7* and w € R} such that

t

v v
Bt v | =0,|v] ¢c<0
w w

This implies
A(—=(v=1")) = —w,—(v —v)'b>0

We set u := —(v —v’). Then
u € {ueR™Au <0} )\ {uecR"lu'b<0}

12.3.3 Polyhedron and Minkowski Weyl Theorem

Definition 12.3.12 (Polytope). We say A C R™ is a polytope if there are finite vectors vy, ...,v, € R™ such that
A = conv(vy, ..., vm). We call vy, ..., v, vertices of A. If v1, ..., € Q™, we call A is a rational polytope.

Definition 12.3.13 (Cone). We say C C R™ is a cone if 0 € C' and for every x € C and A € Ry Az € C.
By the definition of cone, the following holds.
Proposition 12.3.14. Any cone containing nonzero vector is not bounded.

Definition 12.3.15 (Convex Cone). We say C C R™ is a convez cone if C is cone and every conic combination of finite
vectors of C' is contained in C'.

Because every intersection of convex cones is also convex cone, the following holds.

Proposition 12.3.16 (Convex Cone generated by a set). Let us assume A is any subset of R™. Then there is the minimum
convex cone containing A. We denote this convex cone by cone(A).

Definition 12.3.17 (Polyhedral cone). Let
(S1) Ae M(m,n,Q).

We call
P :={zx e R"|Azx <0}

a Polyhedral cone.
Theorem 12.3.18 (Minkowski Weyl Theorem for cones). Let

(S1) C C R™.
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Then C' is a Polyhedral cone if and only if C is finite generated cone.

STEPI1. Proof of ‘“if* part. Let us assume C' is finite generated cone. Then there is 71,...,7, € R such that C =
cone(ry,....mi). We set R = (r1,...,Tg).
By applying Fourier elimination method k times to the the following inequality

—u<0,Ru<z,—Ru< —x
and Fourier elimination method (vi), there is A € M (m,n,R) such that the above inequality is equivalent to
Ax <0

So, C = {z € R"|Az < 0}.
O

STEP2. Proof of ‘only if* part. Let us assume C' is a Polyhedral cone. So, there is A € M(m,n,R) such that C = {x €
R™Az < 0}. We set C* := {y € R"|3v € R such that A'v =y}. Then

C* = cone(a',...,a™)
Here, a® € R™ is the i-th row vector of A (i = 1,2,...,m). By STEP1, there is R € M(n, k,R) such that
C* ={y eR"[R'y <0}
We denote the i-th column vector of R by r® (i = 1,2, ..., k). We will show
C = cone(ry, ..., Tx)

Let us fix any x € cone(ry, ...,71). Then there are vy, ..., € R, such that z = Rv. Because a; = Ale; (i = 1,2,...,m),
a; € C* (i =1,2,...,m). So, AR < 0. This implies Az = ARv < 0. This means € C. We have shown cone(ry, ...,7;) C C.
Let us fix any Z € cone(r1, ...,m;)¢. So, {v € R¥|Rv = z,v > 0} = ¢. By Farkas Lemma II, there is y € R" such that
R'y <0and y'z > 0. So, y € C*. Then there are v € R such that y = A'v. So, v Az > 0. Because v € R, this implies
AZ £ 0. This means T € C°. Consequently C C cone(ry, ..., rg). O

Definition 12.3.19 (Minkowski sum). Let A, B C R™. We call
A+B

the Minkowski sum of A and B.

Proposition 12.3.20. Let

(i) Minkowski sum of any two convez set is convex.

(i) For any two subset A, B C R",

conv(A + B) = conv(A) + conv(B)

Proof of (i). Let A;B C R™ be convex. For any ai,..,a, € A and by,..,b, € B and Ay,.., A\, C [0,1] such that
Z:i]_ >\’L' = la

m

i=1 i=1

i=1
So, A+ B is convex. O
Proof of (ii). By (i), conv(A)+conv(B) is convex. And A+ B C conv(A)+conv(B). So, conv(A+B) C conv(A)+conv(B).

Let us fix any ay,..,ar € A and bg,...,0; € B and Ay, ..., \g, ft1, ..., g € [0, 1] such that Zle A = 1 and 22:1 i = 1.
Then

k

k l l k l
Z \ia; + Z’ujbj = Z/Jj(z Nia; + bj) = ZMj(Z /\i(@i + b])) = Z)\i,uj(ai + b]) S CO’IZU(A + B)
i=1 j=1 =1  i=1 j=1

i=1 ij
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Theorem 12.3.21 (Minkowski-Weyl Theorem). A subset P C R™ is a Polyhedron if and only if there is a polytope Q a
finite generated cone C such that

P=Q+C
We call the right side V-representation and call P a V-polyhedron.
Proof of ‘only if* part. Let us fix A € M(m,n,R) and b € R™ such that P = {z € R"|Az < b}. We set
Cp :={(z,y) e R" x R|Az —yb < 0,y <0}

Then clearly

P ={x e R"|(x,1) € Cp}
By Minkowski Weyl Theorem for cones, there are r',72, ..., KR"*! such that
)

— 1,2
Cp = cone(r-,r,...,r

Because C'p is a cone, we can assume rfLH =0or 1 (Vi). So, there are uy,...,ur € R™ and vy, ...,v; € R™ such that

Cp = cone((ul1> (“1’6) : (’8) (%l))

So,
P = conv(u, ...,u") + cone(v?, ..., v")

O

Proof of ‘if* part. We assume we can get

P = conv(u', ...,u") + cone(v?, ..., v")
Then
ut uk vl vt n
P—cone(<1>,...,<1 o) o )NR"™ x {1}
ul uF ol o

Because cone( 1)l ) Lo ) Lo ) is a Polyhedral cone, P is a Polyhedron. O

Proof of the last part. O

Proposition 12.3.22. Let

(i) Bounden Polyhedron is polytone.
(i) If A€ M(m,n,Q) and b € Q™, then there are vy,...,vp € Q™ and ry,...,7 € Z™ such that
P :={x € R"| Az < b} = conv(v1, ..., vg) + cone(r1, ..., 1)
If P is bounded, P is a rational polytope.
(ii) P C R™ is a rational polyhedron if and only if P is a minkowski sum of a rational polytope and a convex
cone generated by finite rational vectors.
Proof of (i). By Proposition12.3.14, (i) holds. O
Proof of (ii). By the proof of Theorem12.3.18, (ii) holds. O

Proof of (iii). By the proof of Theorem12.3.18, (iii) holds. O
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12.3.4 Perfect formulation and Meyer’s Foundamental theorem

Proposition 12.3.23. Here are the settings and assumptions.
(S1) Ae M(m,n,Q), G € M(m,p,Q), b€ Q™, ce R", h € RP.
(52) S = {(2.y) € (Z4)" x (Ry Plg(a,y) = Az + Gy < b}
Then
(i)
sup{c'z + h'y|(z,y) € S} = sup{c'z + h'y|(x,y) € conv(S)}

Furthermore, there is (z,y) € S such that c'z + h'y = sup{c'z + hly|(z,y) € S} <= there is (z,y) €
conv(S) such that ¢tz + h'y = sup{ctz + hly|(x,y) € S}

(ii) ex(conv(S)) C S
Proof of the first part of (i). Because S C conv(S),
suplc'a + Wyl(z,) € 8} < suplc'a + Wy|(z,y) € conv(S))

We can assume z* = sup{c'z + h'y|(z,y) € S} < co. Let us set H := {(z,y) € R"*P|c'z + h'y < 2*}. Because H is
convex and S C H, conv(S) C H. So,

sup{c'z + h'y|(z,y) € S} > sup{c'z + h'y|(z,y) € conv(S)}
O

Proof of the last part of (i). The part of = 1is clear. We set d := (¢, h). Let us assume there is Z = (Z, ) such that
d'z = sup{c'z + hly|(z,y) € conv(S)}. Then there are A\1,...,\y > 0 and z1, ...,z € S such that z = 2?21 Xiz;. Clearly
d'z; < d'z (Vi). Because d'z = Y1 d'\;z;, there is i such that d'z; > d'z. So, d'z; = sup{c'z+h'y|(z,y) € conv(S)}. O
Proof of (ii). Let us fix any v € ex(conv(S)). Because ex(conv(S)) C conv(S), there are A1, ..., A\, € (0,1] and vy, ..., v, €
S such that v = Y,_, o', We can assume m > 1. We set v/ := Y " ‘. Then v/ € conv(S). Because

=21\
v=MAv; + (1 = A)v" and v € ex(conv(5)), v =01 € S. O

Proposition 12.3.24. Let r', ..., € R*. Then

K

conv(z Zyr%) = cone(ry, ..., %)
i=1

Proof. We will show this by Mathematical induction. If K = 1, then this proposition holds. Let us fix any £ € N and
assume this proposition holds for every K < k.
We set C = com)(Zf:ll Z.r"). Clearly C C cone(r,...,r**1). Let us fix € cone(r',...,r*T1). Then there are
, 2
Uiyeooy k41 € Ry such that ¢ = Zfill wirt. We can assume ppy1 > 0. We set A = (2Mk+1w.
Hk+1

2517 = (1 = A\)0 + A[2up41]7**! € C. By Mathematical induction assumption, Zle 2u;r° € C. So,

Because 0 € C,

k1 1 k _
Z/M‘Z = 5(2ﬂk+17"k+1 + Z 2urt) e C
i=1 i=1
So, cone(r!,...,r*1) c C. O

Theorem 12.3.25 (Meyer(1974)[44] Fundamental Theorem). Here are the settings and assumptions.

(S1) Ae M(m,n,Q), G € M(m,p,Q), b€ Q™, ce R", h € RP.
(52) S :={(z,y) € P(A,G,b)|x € Z"}.

Then there are A’ € M(m,n,Q), G' € M(m,p,Q), b’ € Q™, c € R", h € RP such that

conv(S) = P(A',G',b)
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STEP1. Decomposition of S. We can assume S # ¢. Then by Proposition12.3.22, there are v',...,v' C Q"*? and
rl,...,r? C Z™*P such that

P := P(A,G,b) = conv(v', ...,v") + cone(r, ..., %)
We set

S

S q q
Ti={> Av'+ Y ur?|0 < Xy < 1(Vi,5), Y Ai =1} = conv(v',...,v") + Y [0, 1]r
j=1

i=1 j=1 i=1
Then T is bounded. There is M € Nand D € M(M,n + p,Q) such that

)\ S S
T={zcR"PINcR?,Ipu e RY s.t.D()<z7 AM<L—) Nn<-1,u<l1
{ | +9 S + M ; ; H }

By Fourier elimination method, there are C € M(M,n,R) and d € Q" such that T = {& € R"|Cz < d}. So, by
Proposition12.3.22, T  is a rational polytope.
Let

q
Tp = {(z,y) € Z" x RP|(2,y) € T}, Ry == {)_ pjr’|p; € Zy (V4)}
j=1
We will show
S =T+ R;

Because Ty + Ry C T and i-th component of 77 + R; is integer for every i € {1,2,...,s}, T+ Ry C S.
Let us fix any (z,y) € Z" x RP such that (z,y) € S. Then there are Ay, ..., Ag, ft1, ..., ftqg € [0,1] such that > 7_ A, =1

and .
= Z )\ivi + Zﬂj?‘j
i=1 j=1
We set
=S 3 = S
Then (2',y') € Tt and r € R;. So, (x,y) € Ty +R1. Consequently, S =Ty +R1. O

STEP2. Proof that conv(S) is a rational polyhedron. By Proposition12.3.20 and STEP1,

conv(S) = conv(Tr) + conv(Ry)
Because conv(Ry) = conv(rt,..
show

r?), by Proposition12.3.24, conv(Ry) is a rational polyhedral cone. So, it is enough to

conv(Tr) is a rational polytope

Since T is bounded, X := {« € Z"|Jy € R? such that (z,y) € T} is bounded and so is a finite set.
For each = € X, we set T, := {(z,y)|Jy € RP such that (z,y) € T;}. For any = € X,

T: ={(z,y) e R" xRP|z = Z and (x,y) € T}
Because T is a rational polytope, T3 is a rational polytope. We denote th set of all vertices of T3 by Vz for any z € X.
We set V' := U,exV,. V is a finite set. We will show
conv(Ty) = conv(V)
Because T7 = Ugzex Ty = Ugexconu(Vy) C conv(V), conv(Tr) C conv(V). Because V = Uzex Ve C Uzexconv(Vy) =
UgexTw = conv(Ty), conv(V) C conv(Ty). So, conv(Tr) = conv(V). Consequently, conv(T7) is a rational polytope. [
By the proof of Theorem12.3.23, the following holds.

Theorem 12.3.26. Here are the settings and assumptions.

(S1) Ae M(m,n,Q), G € M(m,p,Q), b€ Q™, ce R", h € RP.

(52) S :={(z,y) € P(A,G,b)|x € Z"}.
Then there are

ai,...,ar € P(A,G,b)NZ" x QP =S
and
T1,...,1 € ZVTP

such that
conv(S) = conv(ay, ..., a) + cone(ry, ..., ry)
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12.3.5 Sharp MILP Formulation

Definition 12.3.27 (MILP Formulation). Here are the settings and assumptions.
(S1) Ae M(m,n,Q), G € M(m,p,Q), Be€ M(m,t,Q), b€ Q™.
(52) S Cc Q.
(S3) T(A,G,B,b) := {(z,y,2) € Q" x QP x Z'|Az + Gy + Bz < b}.

We say (A,G, B,b) is a MILP formulation for S if and only if S is equal to the image of
pn: T(A,G,B,b) 3 (z,y,2) — 2z €Q"
Clearly the following holds.

Proposition 12.3.28. Here are the settings and assumptions.

(S1) A€ M(m,n,Q), G € M(m,p,Q), be Q™, c€ R", h € RP.
(52) S :={(z,y) € P(A,G,b)|z € (Z)"}.

(58) We set
A G B b
A E’ﬂ L O”;P R . _En 7. On
A= 0, G = F B = 0, b= 0,
On,n On,p _En On

Then (A, G, B,b) is a MILP formultation for S.
Definition 12.3.29 (Sharp MILP Formulation). Here are the settings and assumptions.

(51) A€ M(m,n,Q), G € M(m,p,Q), B € M(m,t,Q), be Q™.
(52) S Cc Q.
(Aq) (A,G,B,b) is a MILP formulation for S.

We say (A, G, B,b) is sharp MILP formulation for S if and only if conv(S) is equal to the image of
Dn T(A,G,B,b) 3 (z,y,2) —»zeQ”

Here, T(A,G,B,b) is a LP relazation of T(A, G, B,b).

Theorem 12.3.30. Here are the settings and assumptions.

(S1) S c Q™.
(A1) There are A € M(m,n,Q), G € M(m,p,Q), B € M(m,t,Q), b € Q™ such that (A,G, B,b) is a MILP
formulation for S.

Then there there are M € N and A € M(M,n,Q), Ge M(M,p,Q), Be M(M,t,Q), be QM such that (fl, é,B,I;) s a
sharp MILP formulation for S.

Proof. We set
Tr:={(z,y,2) € Q" x QF x Z'|Ax + Gy + Bz < b}

and py : Ty 2 (x,y,2) — x € Q™. Because (A, G, B,b) is a MILP formulation for S,
pi(Tr) =8
By Theorem12.3.4, there are M € N and A € M(M,n,Q), Ge M(M,p,Q), Be M(M,t,Q), b e QM such that
Ty = {(z,y,2) € Q" x Q x Z'|Az + Gy + Bz < b}
conv(Ty) = {(x,y,2) € Q" x QP x Q'|Azx 4+ Gy + Bz < b}
Because conv(S) = conv(p1(Tr)) = p1(conv(TT)),
conv(S) = p1(conv(TT))

So, (A,G, B, B) is a sharp MILP formulation for S. O
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12.3.6 Review

Meyer theorem states that the convex hull of the feasible region of MILP is a rational polyhedron. So, the feasibility and
the optimal value of MILP are equivalent to the feasibility and the optimal value of some LP, respectively. By methods
such as simplex method, we can find this LP solution in extreme points of feasible reasion. By Proposition12.3.23, this
extreme point is a solution of original MILP problem.

I think there are the following three ideas that are important in the proof of Meyer theorem.

1. Fourier elimination method

2. Expressing the feasible region of MILP or LP in terms of the Minkowski sum of bounded and unbounded
parts

3. Going back and forth between integer and continuous parts of a polyhedron
Fourier elimination method plays an important role throughout this section. Fourier elimination method is a method

of solving linear inequalities
Az <b (12.3.1)

focusing on the sign of the coefficients of a certain variable and using only non-negative multipliers to eliminate the variable.
(12.3.1) corresponds to another two linear inequalities. If there is a solution of (12.3.1), then there is U € M (mq,n,R)
such that U > 0 and UA = 0 and

0<Ub (12.3.2)

By focusing on row vectors of U, if there is no solutions of (12.3.1), then there is v € R’} such that
Aty =0,u'b < 0,u >0 (12.3.3)
Correspondance between (12.3.1) and (12.3.3) is stated by Farkas Lemma.
For idea2 on LP feasible reasion P, we state this idea as Minkowski Weyl Theorem.

1

P = conv(v',...,v%) + cone(r!, ..., r?) (12.3.4)

By increasing the dimension of the solution space of the simultaneous inequalities by one as follows, Minkowski Weyl
Theorem is boil down to the case in P is a polyhedral cone.

P=PNR" x {1}, P :={(z,y) € R" x R|(A, —b) (;) <0} (12.3.5)

By Fourier elimination method and Farkas Lemma, any polyhedral cone is equivalent to finite generated convex cone.
Meyer theorem is the following.

Theorem 12.3.31. Here are the settings and assumptions.

(51) A€ M(m,n,Q), G € M(m,p,Q), beQ™, ceR", h € R
(S2) S :={(z,y) € P(A,G,b)|z € Z"}.

Then conv(S) is a rational polyhedron.

In the proof of Meyer theorem, we focus on Polyhedron P := P(A, G, b) which is containing S. By Minkowski Weyl

Theorem, we get

1

P = conv(v',...,v%) + cone(r!, ..., 9)

We focus a bounded part of P

T = conv(v',...,v%) +

J

q
[07 1]Tj
=1
We denote a integer part of T' by 77 and denote a integer part of cone(r?,...,r%) by Rr. Then we get
S=Tr+ R;

So,
conv(S) = conv(Tr) + conv(Ry)

Because conv(T7y) is a rational polytope and conv(R;) is a rational polyhedral cone, conv(S) is a rational polyhedron.
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12.4 MILP formulation

12.4.1 Minimal formulation
Definition 12.4.1 (Implied equations, redundant inequalities, and facet). Here are the settings and assumptions.
(S1) Ae M(m,n,Q), be Q™, P:={z € Q"|Ax < b}. a; is the i-th row vector of A..
Then
(i) We say F C P is a face of P if and only if F = {z|alz =b; (Vi € L)} for some L C {1,2,...,m}.
(ii) We say F C P is a proper face of P if and only if F is a face and F # ¢ and F # P.
(i) We say F' C P is a facet of P if and only if F' is a proper face and mazimum with respect to inclusion.
(iv) We say a;x < b; (i € L) is implied equations of P if and only if a;x < b; (Vi € L) for any x € P.

(v) We say a;x < b; (i € L) is facet defining inequalities of P if and only if F := {z|a;x < b; (Vi € L)} is a
facet of P.

(vi) We say a;x < b; (i € L) is redundant inequalities of P if and only if there is a subset I C {1,2,...,m}
such that P = {z|a;x < b; (Vi € I\ L)}.

(vii) We say L C {1,2,...,m} is a minimal formulation of P if and only if P = {z|a;xz < b; (Vi € L)} and
there is mo iL such that a; < b is a redundant inequality of P.

12.4.2 Locally ideal formulation
Proposition 12.4.2 (Standard equity form for LP). Here are the settings and assumptions.
(S1) Ae M(m,n,Q), b Q™.
(52) S :={x € Q"|Ax < b}.
(S3) We set for x € S,
O(z) = (y".y %)

Here,
yi = max{z;,0} (i =1,2,...,n)

y; = max{—xz;,0} (i=1,2,..,n)
zj = (aj,z) —b; (j =1,2,...,m)
(4) S:={(y",y"2) € Q}|Aly" —y~) + =2 < b}.
Then & is a bijective from S to S. We call S the standard equity form of S. We call each zj a slack variable.
Definition 12.4.3 (Basic feasible solution for LP.). Here are the settings and assumptions.
(S1) A€ M(m,n,Q), b€ Q™.
Then

(i) Forxz € Q™, we say T is a basic solution of Ax = b if and only if {a;|a; is the i-th column of A and ; > 0}
are linear independent.

(i1) For x € Q, we say T is a basic feasible solution of
Axr=b,x >0
if and only if x is a basic solution of Ax = b.
Proposition 12.4.4. Here are the settings and assumptions.
(S1) Ae M(m,n,Q), b Q™.
(52) x is a solution of Ax < b,z > 0.
(S3) z = (21, .., 2m) are nonzero slack variables for Az + z =b,x,z > 0.
(S4) I:={ie{1,2,...m}alz=0b;}. Here a; is the i-th row vector of A.
(S5) J:={j€{1,2,....,n}z; #0}.
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Then (z,z) is a basic feasible solution iff {{a; ;}icr}jes are linear independent.

Proof. We set I' := {i € {1,2,...,m}lalz < b;}. (x,2) is a basic feasible solution iff {a’};c; U {e;}icrr are linear
independent. Here a’ is the j-th column of A. This is equivalent to {a’ =, ;, a; je;}jesU{ei}ier are linear independent.
So, (x,z) is a basic feasible solution iff {{a; ;}icr};ecs are linear independent. O

Definition 12.4.5 (Locally ideal). Here are the settings and assumptions.

(S1) Ae M(m,n,Q), G € M(m,p,Q), B M(m,t,Q), b€ Q™.

(52) S Cc Q.

(S3) T(A,G,B,b) :={(z,y,2) € Q" x QP x Z'|Az + Gy + Bz < b}.

(84) S == {w e QM|Cw = ¢,w > 0} is a standard equity form of S and ® is the bijection from S to S in
Proposition12.4.2.

We say (A, G, B,b) is a locally ideal MILP formulation for S if and only if S has at most one basic feasible solution and
for any basic feasible solution of S w, ®~(w) € QP x Zt.

We will show an example of MILP formulation which is not locally ideal but sharp.
Example 12.4.6. Here are the settings and assumptions.
(S1) S=Ul_ 1 P;. P:={zcQ"||z;] <1,z; =0 (j#4)} (i =1,2,...,n).
Then
(i) The following is a MILP formulation for S.

yi—1<a; <1—y; (i=1,2,.,n,7 #1i), (12.4.1)
yi >0, (i=1,2,...n), (12.4.2)
n
> yi=1 (12.4.3)
i=1
yez

(ii) conv(S) = {z € Q" 327, |zi| < 1}
(iii) Equalities and Inequalities in (i) and the following is a sharp MILP formulation for S.

irixi <1 (re{-1,1}") (12.4.4)

(iv) If n =3, the formulation in (iii) is not locally ideal.
(v) The following is a sharp and locally ideal MILP formulation for S.

—yi<x <y (i=1,2,..,n), (12.4.5)
¥ >0, (i=1,2,..,n), (12.4.6)
dyi=1 (12.4.7)
i=1
yez"
Proof of (i). It is clear. O

Proof of (ii). The part of C is clear. Let us fix any x in the right side. We take s > 1 such that Y ;" s|x;| = 1. Then
S,
- — 3 r (2
So, x € conv(S). O

Proof of (iii). We set T := {(z,y) € Q™ x Q"|(x,y) satisfies equalities and inequalities of (i)}. Clearly p;(T) C conv(S).
Clearly T is convex. Because P; x {e;} C T (¥i), S C p1(T). So, conv(S) C T. O
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1
Proof of (). Clearly 1 = 23 = y1 = y2 = —,x3 = y3 = 0 is a feasible solution. We will show this is a basic feasible

solution. By Proposition12.4.4, it is enough to show the column vectors of

1 T2 Y1 Y2
r1<l—y; 1 0 0 1
$2§1—y2 0 1 1 0
y1+y2=1 0 0 1 1
JC1—|—CC2:1 1 1 0 0

are linear independent. Because this matrix is nonsingular, the column vectors of this matrix are linear independent. [

Proof of (v). By the same argument as the proof of (iii), we can show this formulation is sharp. For locally ideal property,
it is enough to show for any basic feasible solution (z%,27,y,z) there is #{ily; # 0} = 1. Because » . ,y; = 1,
#{ily; # 0} > 1. For aiming contradiction, let us assume #{ily; # 0} > 1. So, there are i; # iy such that y;,,y;, > 0.
We can assume i; =, 1o = 2. We will show in each case of the followings.

casel |z1] < y1 or |za| < Y.

case2 |z1| = y1 and |z3| = yo.
In casel, we can assume |z1| < y1. If |22] < y2, then By Proposition12.4.4, the clumns vectors of the following matrix are

linear independent.

Y1 Y2
* 0 0
* 0 O
Siu=1 1 1
This is contradiction. So, |z;,| = yi,- By Proposition12.4.4, the clumns vectors of the following matrix are linear
independent.
Y1 Y2 T3
* 0 0 O
* 0 0 O

Goy2 + 1222 <0 0 g2 12
duvi=1 1 1 0
Here, gar2 # 0. So, the clumns vectors of the following matrix are linear independent.

Y1 Y2 g
* 0O 0 O
* 0 0 O

Qys +1r222 <0 0 0 1o

Ziyizl

—
jem)
o

This is contradiction.
In case2, By Proposition12.4.4, the clumns vectors of the following matrix are linear independent.

Y1 Y2 T T
* 0 0 0 O

* O 0 0 0
gy +riz1r <0 ¢¢ 0 7m0

QY2 +1r2220<0 0 g 0 71y
Sy=1 1 1 0 0

Here, gq171g27m2 # 0. So, the clumns vectors of the following matrix are linear independent.

Yyr Y2 T1 Ty
* 0 O

*
q1y1 +riz1 <0
q2y2 + 122 <0

Ziyizl

- o oo
_o oo
=
o
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This is contradiction.
Consequently, #{i|y; # 0} < 1. O

Memo 12.4.7. We measured execution times in three formulations in Fxamplel2.4.6. Here are the settings.

Version of SCIP: SCIP9.0.0.0

Target Machine: Ubuntu Desktop 22.04
Host Machine: Windows10

CPU:Inter Core i7-6700TQ2.8GHz
DRAM: 32GB

Here are the problem.
maximize Z cr;, Tt €8
i=1
For n = 1000, the execution times are below.

Simple formulation(i) : 119sec
Locally ideal formulation(v) : 0.028sec

For sharp formulation(iii) and n = 17, the execution time is 229sec. See [45] for sample code.
Proposition 12.4.8. Here are the settings and assumptions.

(S1) Ae M(m,n,Q), b€ Q™.

(52) S :={x e Q" x Q2|Ax < b}.

(S3) T(A,G,B,b) :={(z,y,2) € Q" x QP x Z'|Az + Gy + Bz < b}.

(84) 8 = {w € QM|Cw = ¢,w > 0} is a standard equity form of S and ® is the bijection from S to S in
Proposition12.4.2.

Then

(i) For any x € ex(S), ®(x) is a basic feasible solution.

(i) For any x € S\ {0} such that ®(x) is a basic feasible solution, ®(z) € ex(S).
(iii) Let us assume S C [0,00)"* "2, Then for any x € S such that ®(x) is a basic feasible solution, x € ex(S).

Proof of (i). Let z is a slack variable for Az <b. I, := {i|z; # 0}. Jo := {j|z; = 0}. If Jy = ¢, then Az < b. So, there is
2,22 € Q" t € (0,1) such that Ax'Ax? < b and z = to' + (1 — t)x2. This is contradiction. So, Jy # ¢. If . =0, ®(z) is
clearly basic feasible solution. So, we can assume = # 0. It is enough to show {{a; ;}ic1,|j € Jo} are linear independent.
For aiming contradiction, let us assume {{a; ; }icr,|j € Jo} are linear dependent. We set k := #1I,, and

A= {aijtier, jeqr2, .} A= {aijtigr, jeqr2, .} b= {bitier, b = {bi}tig1,
Then there is a ¢ € Q™ \ {0} such that
¢; =0 (Vi ¢ I,),x + sc is a solution of A’z =V (Vs € R)

Because A"z < b”, there is s > 0 such that A”(z + sc) < b” and A”(z — s¢) < b”. This means that = & ex(S). This is
contradiction. O

Proof of (ii). Let us fix any 2 € S\ {0} such that ®(x) is a basic feasible solution. We can assume |z1], .., |zx| > 0, 2541 =
.. =x, =0 and

1,1T1 + ... + a1 kT = by

aj 121+ ...+ a T = b
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and
ail ... Qik
rank | ... .. .. =k

ap alk

So, the equation

a11%1 + ... + a1 T = by

121+ ...+ T = b

has the unique solution.
For aiming contradiction, let us assume that ®(z) ¢ ex(S). Then there are z! := (2" 2b7,2) and 2? :=
(>, 2%, 2%) and t € (0,1) such that 2 = tz' + (1 — t)z%. So, 27" = 2}~ =0 (Vi > k,j = 1,2) and 2} =

5+7sign(m)x{’+ (Vi <k,j5=1,2) and m37 = 04 sign(zn @) (Vi < k,j =1,2). This implies (mi’smn(ml), ...,x,lc’Sign(xl)) and

2,sign(z2) 2,sign(z2)
(z3 ey T )

s satisfies the equation

a11%1 + ... + a1 pT = by

121 + ...+ aEpxE = b

This is contradiction.
Proof of (). (iii) is followed by the same argument of the proof of (ii).
Definition 12.4.9 (Affine combination, Affine independent).

(i) For xy,...,x, € Q",

Y >\i1"h>\17~~~7>\m S Q, v N=1
> >

i=1
1s called an affine combination of x1,...,ZTy,.

(ii) We say x1,...,xn € Q" are affinely independent if for any Ai,...,\p € Q such that >."; \; = 0 and

Definition 12.4.10 (Dimension). For S C R",
dim(S) := max{#A|A is a finite subset of S and A is affinely independent} — 1
Definition 12.4.11 (Pointed set). We say convexr subset S C R™ is pointed if and only if ex(S) # ¢.

Proposition 12.4.12. Here are the settings and assumptions.
(S1) Ae M(m,n,Q), b e Q".
(S2) P:={x € Q}|Az < b}.
(A1) P # ¢.

Then P is pointed.

Proof. For y € P, We set
N(y) = #{ily: # 0}, M(y) = #{jlaTy = b5}
Here, a; is the j-th row vector of A. We set
K := max{N(y)|ly € P}

If K = n, clearly 0 € ex(P). So, we can assume K < n. We set
L :=max{M(y)ly € P,N(y) = K}

Because K < n, L > 0. There is x € P such that N(z) = K,M(x) = L. We set k := n — K. We can assume
T1y .y T > 0,241 = ... = 2, = 0 and
Az’ =V
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Here, A" :={a; j}i=1,..L.j=12,.n, @ = (T1, ..., xx), ' := (b, ...,br)". For aiming contradiction, let us assume rank(A’) <
n. there is 7 € QF such that
Al(@ +tr) =V (Vt €R)

So, there is y € P such that N(y) > N(z) or M(z) < M(y). This is contradiction. So, rank(A’) = n. From this,
x € ex(P). O

Definition 12.4.13 (Edge). Let P be a nonempty polyhedron in R™. We call a face of P whose dimension is 1 an edge
of P.

Proposition 12.4.14. Here are the settings and assumptions.
(51) ay,...,arQ™.
(A1) For any i, a; € conv(ay, ..., @i—1, i1, -, Qf)-
Then
ex(conv(ay, ...,ar)) = {a1,...,ar}

Proof. By Proposition12.3.23, it is enogh to show supset part. Let us assume there is ¢ such that a; & ex(conv(as, ..., ax)).
We can assume i = k. So there are Ay, ..., Ak, 1, ..., Nk, t € (0,1) such that Zle XAi = 1 and Zle n; = 1 and ap =
thzl Aia; + (1 —t) Zle n;a; and Zle Aia; # ap and Zle nia; # ag. So, tAg + (1 — t)nr < 1. This implies
k—1
tA; 1—1%)n;
a =3 + (-t a
1 —tAe — (1= t)m

i=1
So, ai € conv(ay,...,ar—1). This is contradiction. O
Proposition 12.4.15. Here are the settings and assumptions.
(S1) P C R™ is a Poryhedron.

(S2) a1, ...;ap,r1,...,r1Q" such that P = conv(ay,...,ax) + cone(ry, ...,17).

(A1) For any i, a; € conv(ay, ..., @i—1,0i4+1, ..., Q).

Then

ex(P) C {a1,...,ar}
Proof. By Proposition12.3.23, it is enough to show ex(P) C conv(ai,...,ax). Let us fix any z € P\ conv(ay, ..., ar). There
are y € conv(ay,...,ar) and z € cone(ry,...,r;) \ {0} such that x = y + z. Because 2z,0 € cone(r1,...,71), ¥,y + 2z € P.

1
So, z = i(y + y + 2z). This means = ¢ ex(P). Consequently, ex(P) C conv(ay, ..., ar). O

Proposition 12.4.16. Here are the settings and assumptions.

(S1) P C R™ is a Poryhedron.
(A1) P is pointed.

Then there are ay,...,a,71,...r; € Q™
P = conv(ay, ..., a) + cone(ry, ...,17), ex(P) = {a1, ..., ar },0 & cone(ry, ..., 1)
Proof. By Minkowski-Weyl Theorem, Then there are a, ..., ag,71,...r € Q"
P = conv(ay, ..., ax) + cone(ry, ..., ;)

For aiming contradiction, let us assume 0 ¢ ex(cone(ry,...,7)). The there are z; # 2o € cone(ry,...,r;) such that

1
0= 5(21 + 22). For any 1,

((a; + 2z1) + (a; + 22))

1

a; = 5

This implies a; € ex(P). By Proposition12.4.15, ex(P) = ¢. This is contradiction. So, 0 € ex(cone(ri, ...,71)).
By dropping some elements if necessary, we can assume that for each ¢

a; & conv(ay, ..., @i—1, 41, ..., ag) + cone(ry, ..., ry)
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For aiming contradiction, let us assume a; ¢ ex(P). We can assume ¢ = k. Then there are y;,ys € conv(as,...,a) and
21, 23 € cone(ry, ..., r), t € (0,1) such that

ar =t(y1 +21) + (1 —t)(y2 + 22),y1 + 21 # ak, Y2 + 22 # ai,

There are A1, ..., Ak, M1, -, Mk, t € (0, 1) such that Zle A =1and Ele n; =1and y; = Ele Aia; and yo = Zle nia;. If
Y1 = Y2 = ag, 0 = tz1+ (1 —1t)z2. This contradicts with 0 & ex(P). So, y1 # ax or y2 # ag. This implies t\+ (1 —1t)n, < 1.
So,

k
1
- th + (1= tni)a; +tz1 + (1 —t
ai 1_W_(l_t)nkg( + (1= tn)as + 121 + (1 1))
This means ay, € conv(as, ..., ax—1) + cone(ry, ...,r;). This is contradiction. O

Proposition 12.4.17. Here are the settings and assumptions.

(S1) S Cc Q.
(A1) (A, B,D,b) is a locally ideal MILP formulation for S.
(52) We set

P:={(z,u,y) € Q" x Q x Q'|Az + Bu + Dy < b}, Pr := {(x,u,y) € Ply € Z'}
p: P> (z,u,y)—»xzeQ”
(A2) P is pointed.
then (A, B, D,b) is a sharp formulation for S.
Proof. By Proposition12.4.16, there are a,...,ag,r1,...r € Q"

= conv(ay, ..., ar) + cone(ry,...,r;),ex(P) = {a1, ...,ar },0 & cone(ry, ..., m),
a; = (24,09 (i=1,2,...,k),r; = (37,@,5) € Z" x Z° x 7' (j = 1,2,...,1)

By the assumption of locally idealness and Proposition12.4.8, §* € Z! (Vi).
Let us fix any (z,u,y) € P. There are A1, ..., \g, 01, ..., Mk € [0,1) € Q such that Zle A; = 1 and Zle n; =1 and

k l

(@, y) = Y Ni(@ a9 + >y (@, )

i=1 j=1
We set

(.T u7y Z)\ zw Az

Because y! € Z! and (A, B, D, b) is a MILP formulation for S, 2 € S. Without loss of generality, we can assume A\; > 0.
There is a € Z N (1, 00) such that < 23:1 n; € Z'. We set

A
k . . . l . . .
(@0, 9%) = N(@, 08 97) +a Y n (@i, 5)
i=1 j=1
Then
k
(22, u?,y?) = M (@Y at, Y an a0 +Z)\ (&%, 4, 9") € conv(a, ..., ax)
i=2
1 1
So, 2% € conv(p(P)). So, x = (1 — =)zt + —22 € conv(p(P)). Consequently, (A, B, D,b) is a sharp formulation. O
a a

Proposition 12.4.18. Here are the settings and assumptions.

(S1) A€ M(m,n,Q), b€ Q™.
(S2) S :={x € Q) x Z\?|Ax < b}.
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i (A A
(53) A= ( ol

Om,ng . b
vector of A. B := <—En2>’ b:= <0n2>

(A1) Q= {z € Q' x Q'?|Ax < b} has at least one basic feasible solution.

). Here Ay = (at,...,a™) and Ay := (a™ 7T, ....a") and each a’ is the i-th column

Then (A, B, 5) is a locally ideal formulation for S iff (A,B,l;) is a sharp formulation for S.

Proof. Proposition12.4.12 and Propositon12.4.17, it is enough to show ‘if* part. Let us assume (/LB,I;) is a sharp
formulation for S. Then

conv(S) = p({(z,2",y) € Q" x Q™ x Q"|(2,2") € Q,2" = y}) = Q
By Theorem12.3.26, there are a1, ...,ax € S and rq,...,7; C Z™ such that
Q = conv(ay,...,ar) + cone(ry, ..., ;)

We can assume ag, ..., a; are distinct. Let us fix any x which is a basic feasible solution of (). By Proposition12.4.8,
z € ex(Q). We will show x € S. There are A1, ..., Ag, 11, ..., € [0, 1] such that Zle A = Zé:l 7; = 1 and

k l
Xr = Zkiai + ZﬁjT‘j
i=1 j=1

For aiming contradiction, let us assume there is j such that n; > 0. We can assume j = 1. Then We set
k 1 1 k 3 l
zl = Z Aia; + 57]17“1 + Znﬂ‘j,x2 = Z Aia; + 57]17"1 + anrj
i=1 j=2 i=1 j=2

1
Then x! # 22 and x = 5(331 + 22). This contradicts with = € ez(Q). So,

k
xr = E )\iai
=1

For aiming contradiction, let us assume there is i; # iz such that A;;, A;, > 0. We can assume i1 = 1,i5 = 2. We set

k k

y' =t A)ar + Y N,y = (A + A)as + Y Nias
i=3 1=3

A1 1

2 2 . . .
. Th tradict th z € . So,z€S. O
)\1+>\2y + )\1+)\2y is contradicts with = € ex(Q). So, =

Because a; # ag, y' # y?. And 2 =

12.5 Cutting Plane

It is known that Gomory’s mixed integer inequalities are useful, which is proposed in [47](1976). Although the method
that simply uses those inequalities has a problem of convergence speed, many MILP solvers are attracted the revised
method based on Gomory’s mixed integer inequalities, which is proposed in [48].

Definition 12.5.1 (Valid Inequality). Let P C R",c € R",§ € R. We say the inequality cTx < § is valid if cT'x < 6 for
any x € P.

Definition 12.5.2 (Split). Here are the settings and assumptions.
(S1) b€ Qb.
(52) Ae M(m,n,Q).
(S3) P:={x € R"|Azx < b}.
(S5) I c{1,2,....,n}.
(S6) S:={z€Plz; €Z (VieIl)}.
(S7) C:={1,2,...,n}\ I
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(S8) m € Z™ such that m; =0 (Vj € C).
(59) Ty € 7.

Then

(i) We say (m,mo) is a split if for any x € S, (w,z) < mp or (mw,z) > mo + 1.

(ii) Let us assume (m,mg) is a split. Then we set

I, := PN {z|rz < m}
Iy := PN {zlme 2 mo + 1}
P(Trﬂfo) = conv(Hl U HQ)

(iii) We set
Psplit = m(71',7r0):splitp(w’ﬂ—(])

Theorem 12.5.3. Here are the settings and assumptions.

(S1) b€ Qb.

(52) Ae M(m,n,Q).

(S3) P :={x € R"|Az <b}.

(S5) I < {1,2,...,n}.

(S6) S:={z€Plz; €Z (ViecI)}.

(S7) C:={1,2,...,n}\ I

(S8) m € Z" such that m; =0 (Vj € C).

(S9) m € Z.
(S10) By := {ulu is a basic solution of uA =m
(A1) (m,mp) is a split.

Then P(™70) is the set of all points in P satisfying the inequalities

ut(b— Az) u™(b— Ax)
>1 B, b 1
p— +ﬂ'0+1—ub_ (Vu € {u € By|mo < ub < m + 1})

Here,

ui = max(u;, 0),u; = —min(u;,0) (i =1,2,...,n)

Corollary 12.5.4. We take over the settings and assumptions in 12.5.3. And the followings are additionals.
(811) Ap:={aijhi<i<njer, Ac = {aij}i<i<n jec
Then PPt s the set of all points in P satisfying the inequalities

ut(b— Ax) N u~ (b — Ax)
f 1-f

> 1

for any u € R™ such that uAjy is integral

(i) wAr is integral.
(i) wAc = 0.
(iii) ub & 7.
(iv) Rows of A corresponding to nonzero entries of u are linearly independent.

Here,
f = ub— |ub]

We will show Gemory’s Mixed Integer Inequalities.

Proposition 12.5.5 (Gemory’s Mixed Integer Inequalities). The followings are settings and assumptions.
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(S1) b€ Q°.

(52) Ae M(m,n,Q).

(S3) P:={x e R"|Ax =b, = > 0}.

(55) I c{1,2,...,n}.

(S6) S:={z€ Plz; €Z (VieI)}.

(87) C:={1,2,...,n}\ I.

(S8) m € Z™ such that m; =0 (Vj € C).

(Sg) Ty € 7.
(510) By := {ulu is a basic solution of uA =m
(511) Ap:=A{aij}1<i<njer, Ac = {aiji<i<n jec
(512) (u,v) € R™ x R™ such that

uA; — vy € Z'

and
uAc — Vo = 0
and
ub & 7.
(513) f:=ub— |ub] > 0.
(514)
a:=uAB:=ub fi=a;— o] (€I
Then

fi 1— aj a;
‘ > Tt ) o > Tt ) o=t
JeLfi<f JjeLfi>f Jj€C,a;<0 jEC,a; < f
We call this Gomory’s mixed integer inequality.
Proof. Remark that
P={zxeR"Az <b, —Azx < —b,—x <0}
And

>1

Proposition 12.5.6 (Gomory’s Mixed Integer Cuts). The followings are settings and assumptions.
(S1) b e Q°.
(52) Ae M(m,n,Q).
(S3) P:={x eR"|Ax =b, z > 0}.
(S4) I c{1,2,...n}.
(S5) S:={2€Plz; €Z (Viel)}.
(S6) C:={1,2,...,n}\ I
(87) B C {1,2,...,n} such that B defines a feasible basis of the equation Ax = b,z > 0. I mean, there are
{bi}icp and {a; ; }icB,jen such that the equation

T + Z a;;r; =b; (Vi € B)
JEN
is equal to Ax =b,x > 0. Here, N :={1,2,...,n} \ B.
(S8) x; :==b;i (i€ B), zj:=0j€N. We call v* a tableau associated with B.
(89) foi=bi—|bi] (i €I). fj:=ai; —|aiz] (j €N).
(A1) z* & S.
Then
(i) foi>0(3ieBNI).
(i) For any i€ BNI such that fo; >0,
Z %ajj + Z 1:}2%4— Z a}(,)ng-f- Z 1(1:7’]]00% >1

JENNI, f;i<fo JENNI, f;>fo jeNNC,a;, ;>0 jeENNC,a;,;<0
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12.6 Reformulation and Relaxation

12.6.1 Lagrangian Relaxation

Lagragian Relaxation is a relaxation method for the MILP problem which has complicated constraints. In Lagragian
Relaxation, a subset of all constraints is fixed. A Lagragian Relaxation is a problem derived by moving the subset to the
objective with a penalty coefficients. Lagragian Dual is the minimum of solutions of all Lagragian Relaxation. It is known
that lagragian dual gives stronger bound than one given by linear relaxation.

Definition 12.6.1 (Lagragian Relaxation). Here are the settings and assumptions.

(S1) c e Q™.

(52) be Q™.

(S3) Ae M(m,n,Q).

(84) p € Nep.

(85) S :={z € ZP x Q% "|Ax < b}.
(S6) m1 € Nep,mg :=m —mj.

aj Ami+1
(S7) Ay = ... |,Ay:= . Here, a; is the i-th row vector of A (i =1,2,....,n+p).

A,y Am
(58) Q :={z e R |Asx <b*,z; €Z (j =1,2,...,p)}.
We call

27 = maxcr
€S

<
Z7 = maxcx
Ax <b
z; €Z (j=1,2,..,p)
2 €Qs0 (j=1,2,..,m)

mi

the original problem. And, for A € RT}, we call

ZLR()\) = meac}gi(c.’li + )\(bl — Al.%'))

—
zpR = max(cx + \(b' — Az))
Az < b°
z; €Z (j=1,2,...,p)
z; € Q0 (7 =1,2,...,n)

LR(\), lagrangian relazation.

Proposition 12.6.2. We take over notations and settings in Definition12.6.1. Then
ZLR()\) > zZr (V/\ € Rglé)

Proof. If z; = —oo the claim of the proposition clearly holds. Let us assume that z; > —oo. Let us fix any = € Q. Since
any constraint of LR(\) is contained in the constraints of the original problem, x satisfies the constraints of LR()A). And,
since A > 0,

cx < (cx + Ab' — A1) < zpr

That implies that
zr < ZLR
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Definition 12.6.3 (Unimodular Matrix). Let A € M(m,n,Z). We say A is unimodular if rank(A) = m and for every
m-th squared submatrixz B
det B =0, +1

Definition 12.6.4 (Totally Unimodular Matrix). Let A € M(m,n,R). We say A is totally unimodular if for every
squared submatriz B
det B=0,+1

Clearly the following holds.
Proposition 12.6.5. For any totally unimodular matrizc A € M(m,n,R), each a; ; =0 or 1.

Theorem 12.6.6 (Lagrangian Dual). We take over notations and settings in Definition12.6.1. And

(A1) {z|A1x < bz € conv(Q)} # ¢.

(S1) zrp = minyso zr(A). We call the problem to find zrp the Lagragian Dual of the original problem.
(A2) The solution of max{cx|Aix < bl,x € conv(Q)} exists.

(A3) —oo < zpp ewists.

(A4) For any A >0, zLr(\) € (—o0,00) exists.

Then
zrp = max{cr|Ajz < bz € conv(Q)}

Proof. From Meyer Theorem, there is C € M(m/,n; Q) and d € R™" such that
conv(Q) = {x € RY|Cx < d}
Let us fix any A > 0. From Proposition12.1.6 and Proposition12.1.7,

zrr(\) = max{cz + AT (b! — A12)|Cx < d} = —min{—cz — ATd' + N[ Aj2| — Cx > —d}
= —max{-Nb' —dTu| - CTp < —c+ AT\, 1> 0} = min{ AT + dTp|CTp > c — ATX, > 0}

Then
zrp = min{AT0r + dTp|CTp > ¢ — AT AN >0, > 0}
From Proposition12.1.6 and Proposition12.1.7,

min{ Ao + dTp|CTp > ¢ — ATX X >0, > 0}
= min{dT,u + )\Tbl\C'Tu + A{)\ >, A>0,u0>0}= maX{ch|C’x <d, Az <b'} = max{ch|x € conv(Q), Ayz < b'}

Therefore,

zrp = max{c’ 2|z € conv(Q), Ayx < b'}

O
Corollary 12.6.7. We take over notations and settings and assumptions in Theorem12.6.6. Then
z1 < zLp < ZLp
Here, zpp is an optimal solution of the continuous relaxzation of the original problem.
Proof of z; < zpp. Let us fix any z € S and A € R’Z"'O. Then
g <cle<clz+ /\T(b1 — A1x) < zpr(N)
Therefore, z; < zpR. O

Proof of z1,p < zrp. From Theorem12.6.6, z;,p = max{c’ x|z € conv(Q), A1z < b'} Since
conv(Q) N{x € R%y| A1z < b'} C conv(S)

max{clz|z € conv(Q), Az < b*} < 2pp. a
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Corollary 12.6.8. We take over notations and settings and assumptions in Theorem12.6.6. And
(A2) conv(Q) = {z € R%y[Agx < %}
Then

ZLD = ZLP
Corollary 12.6.9. We take over notations and settings and assumptions in Theorem12.6.6. And
(A2) As is totally unimodular.
(A3) b? is integer.
Then
ZLD = ZLP

Proposition 12.6.10 (A formulation of Lagragian Relaxation with extreme points and extreme rays). We take over
notations and settings and assumptions in Theorem12.6.1. And

(S9) {vF}rex is a finite subset of conv(Q).

(510) We pick {v*}rerx € Q" and {u"}hey C Q" such that conv(Q) = conv({v*}rek) + cone({u"}hem).
Remark that such {v*}rex and {u"}nen exist by Meyer’s theorem.

Then
(i)

zrr(\) = ATt + max(c — A A )o®

(i)
ZLp = min ATyt 4 max(c — )\TAl)vk)
A>0,(c—AT A1)rh)<0 (YhEH) keK

Proof of (i). Since conv(Q) = conv({vF}rex) + conv({r"}ner), for each z € conv(Q), there are o > 0 and B > 0 such
that >, o = L and 2 = >, agv® + 37, Byr™. Then

2L = max (cT(Z apo® + Z By + AT (0" — A1(Z vt + Z Brr™)))
k h k h

a>0,820,32, ap=1

= AT 4+ (T = AT Az + T _\T g b
xECogJI(Elcgc),ﬁzo( (C 1)£C zh:ﬁh(c 1)7ﬂ )

If there is ¢ — AT A; £ 0, by reaching some /3, — 00, we get z;,gr = co. That is a contradiction. Therefore, ¢ — AT A; < 0.
So,

ZLrR = max (A0 4 (cF = \TA)2) = max  (AT0' + (' = AT A))z) = mgx()\Tbl + (T = AT A )wh)

x€conv(Q) z€ex(conv(Q))

Proof of (ii). It is from (i).

12.6.2 Dantzig-Wolfe Reformulation
Definition 12.6.11 (Ray). Let a € R". We call [0,00)a a Ray of R™.

Definition 12.6.12 (Extreme Ray). Let C be a polyhedral cone. We call R C C an extreme ray of C if R is an edge of
C.

Proposition 12.6.13 (Dantzig-Wolfe Reformulation). We take over notations and settings and assumptions in Theo-
rem12.6.1. And

(S9) {vF}rex is a finite subset of conv(Q).

(510) We pick {v*}rerx € Q" and {u}hem C Q" such that conv(Q) = conv({v*}rex) + cone({u"}hem).
Remark that such {v*}rex and {u"}nep ewist by Meyer’s theorem.

Then
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(i) The problem
max{cz|A;r < btz € conv(Q)}

1s equal to the following problem.

max Z (cv™) A + Z (er™up)

keK heH
Z (Al’l)k))\k + Z (Aﬂ"h)uh < bt
keK heH
=1
keK

K H
AGR’;O ,ueRgo

Speaking of which, the following formulation is called the Dantzig-Wolfe reformulation of the original
problem.

max( Z (™) A, + Z (er™ )

keK heH

D (A )+ > (A, < b

keEK heH

=1

keK

Z (vk))\k + Z (T‘h)uh ez"
kEK heH
AeRLS, peREY

(i) The dual of the Dantzig-Wolf reformulation is equivalent to the Lagragian Dual.

(iii) Let zpwr the optimal value of the Dantzig-Wolfe reformulation. Then zpwr € (—00,00) and
Zr < Zpwr = ZLD < ZLR
Proof of (i). By applying Meyer’s Theorem to that, we get (i). O

Proof of (ii). The Dantzig-Wolf reformulation is equivalent to the following.

max((cTvt . To#E Tt L Tu#H) (2) )
Al’Ul Alv#K A1r1 Al’f‘#H A bl
1 1 0 0 < ) < 1
. | 0 .. 0 H ~1
A>0,p2>0

From Proposition12.1.7, the dual of Dantzig-Wolf reformulation is equivalent to the following.

T
min(((61)" 1 —1) |z |)
22
(HTAT 1 -1 clot
(v#K)TAf 1 -1 : S cTy#E
(rHTAT 0 0 z; =1 Tl
(r#EYTAT 0 0 cTr#H

220,21 20,2020
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By setting z := 21 — 29, the dual of Dantzig-Wolf reformulation is equivalent to the following.

max((b1)T\ + 2)
2> clot — ()T (AT,

z > Tt K — (v# )T (AT A
()" (e~ (A)™X) <0,

W) (c— (A)TN) <0
A>0,z€eR

Then the dual is equivalent to the following.

s Ty in(eTok — (8T (AT
a0y (T 2y <0 o (O AT min(eT0T = (V) (A1) )

From (ii) in Proposition12.6.10, the problem is equivalent to Lagragian dual. O

12.6.3 Column Generation

Proposition 12.6.14 (Dantzig-Wolfe Reformulation and Column Generation). We take over notations and settings and
assumptions in Proposition12.6.13.

(S1) K' Cc K,H' C H.

(52) We call the following problem master problem.

max( Z (™) A, + Z (er™) )

keK’ heH’

Z (A1) A + Z (A <0

keK’ heH’

Z/\k=1

keK'

Z (Uk)Ak + Z (rh),uh ez

keEK’ heH
#K' #H'
AERE7MGRN

Then

(i) The master problem is unbounded, the Dantzig-Wolfe relazation is also unbounded.

(ii) The dual of the master problem is the following.

min(wb* + o)
m(A0") +o > ek ke K
(A" > er h e H'
meRY,0€R

(i1i) Let us assume the master problem has an optimal solution, and (T,
We set

) is an solution of the dual problem.

G =Tk — 7T (ApF) — 5 (k € K),
ep =l — 7T (A (h e H)

If ¢, <0 (Vk € K) and ¢, < 0 (Vh € H), then (7,5) is an optimal solution of the Dantzig- Wolfe
relazation.
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(iv) We take over notations and settings and assumptions in (iii). We call the following problem the pricing
problem.

(:=—-0+ I;leaé((CT — a7l Az

Then

(a) ¢ is unbounded if and only if there is h € H such that ¢, > 0.
(b) ¢ is bounded and ¢ > 0 if and only if there is k € K such that ¢ > 0.
(c) ¢ is bounded and ¢ < 0 if and only if there is k € K such that ¢, < 0,6, <0 (Vh € H,Vk € K).

Proof of (i). Since the feasible region of the master problem is a subset of the feasible region of the Dantzig-Wolfe

relaxation, (i) holds. O
Proof of (ii). It is from the proof of (ii) in Proposition12.6.13. O
Proof of (ii). It is from the proof of (ii) in Proposition12.6.13. O

Proof of (iv). From Meyer’s theorem,

(=—-6+ max O (" =T A e+ > (e = 7" Ar)pn) (12.6.1)
k h

A0, Ar=1,u>0

(iv) is clear from the equation. O

12.6.4 Benders Decomposition
Theorem 12.6.15. Here are the settings and assumptions.
(S1) A€ M(m,n;R).
(S2) B € M(m,p;R).
(S3) b e R™.
(A1) There is a polytope, denoted by Q, and a finite generated cone, denoted by C := cone({r"}_,) such that

P=Q+C

Then
proj.(P) = {zx e R"|(r"T Az < (rM)Tb (h =1,2,...,H)}

Proof. O
Theorem 12.6.16 (Benders Theorem). Here are the settings and assumptions.

(S1) c € Q".

(S2) h € QP.

(S3) Ae M(m,n,Q).

(54) G € M(m,p, Q).

(85) F = {(2,y) € 28 x Qo[ Az + Fy < b}

(56) We call

max {cx +h
(na a y}

—
max{cz + hy}
Az + Gy <b
T € 2%,

y € Q%

the original problem.
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(57) Q := {u € RZy[u"G > h}.

(S8) We pick {uF}rex C Q™ such that conv(Q) = conv({uF}rex). Remark that such {uF}rcx exist by
Meyer’s theorem.

(59) C:={ue RgOhLTG > 0}.
(510) We pick {r’}jes € Q™ and {ri};e; C Q™ such that C = cone({ri};c;). Remark that such {ri};c; and
{r'}es exist by Meyer’s theorem.
Then the original problem is equal to the following problem.
max{n + cz}
n < uf(b— Az) (Vk € K)
(/)T (b~ Az) 2 0 (V] € J)
T €73,
neR

12.7 Semidefinite Bounds

Semidefinite Problem is a generalization of linear programming. In a certain assumption, the problem can be solved
in polynomial time. And a relaxation to a semidefinite problem may provide a tighter bound than linear programming
relaxations. The method started from [49] on which [51] is based. The method was generalized to mixed 0-1 linear program

in [50].
Definition 12.7.1 (Semidefinite Problem). The followings are settigs and assumptions.
(S1) C, Ay, ..., Ay are n X n symmetric matrices.
(52) b e R™.
We set the problem
max(C, X)
(AlaX) = bi (Z = 1727 7m)
X is positive semidefinite matriz
We call it a semidefinite problem.
Definition 12.7.2 (Lovasz-Schrijver Relaxation). The followings are settigs and assumptions.
(S1) Ae M(m,n+ p,Q).
(S2) b e R™.
(S3) P:={x € RL"|Ax > b}.
(84) S:=PU{0,1}" x RL,.
Then
STEP1. We set
T:={z €[0,1]" x RE(|Pj(z) := x;(Az —b) > 0,Q;(x) := (1 —z;)(Az —b) >0 (j = 1,2,...,n)}

STEP2. We set
Pj(z) = Rj(x,y)

and
Qj(x) — Sj(z,y)
by
TiTj > Yi g (] < 4,0 = 1,2,...,n—|—p)
and

xi—a; (1=1,2,...,n+p)
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and
m? —xz; (j=1,2,...,n)

and

Yo,0 = L%, =vj0=yj; =2; (j=1,2,...,n)

1
Remark that the number of variables of (x,y) is in(n + 1) +np. We set

Lin(n+1)+n .
My (P) = {(2,y) € RE" VT Ry (a,y) 2 0,85(2,9) 2 0 (= 1,2, ..m),
Y = (Yij) (nt1)x (nt1) 15 positive semidefinite.}
STEP3. We set
My (P) > (v,y) =z € RS,
and Let N1 (P) denote the image of the above map.
Definition 12.7.3. We take over the notations of Definition12.7.2. Then

STEP1. It is the same as the STEP1 of Definition12.7.2.
STEP2. It is the same as the STEP1 of Definition12.7.2. We set

Ln(n+1)+n .
M(P) = {(z,y) € RS R y) > 0,85(x,9) 2 0 (j = 1,2, ...,n)}

STEPS. We set
M(P) > (z,y) — x € RY,

and Let N(P) denote the image of the above map.

Proposition 12.7.4 (Lovasz-Schrijver Relaxation). We take over the notations of Definition12.7.2 and Definition12.7.3.
Then
conv(S)C Ny(P)Cc N(P)cCP






Chapter 13

Event graph analysis

13.1 Max-plus algebra
Definition 13.1.1 (Semi-ring). Here are the settings.

(S1) R is a set.
(S2) ®,® are binomial operators on R.

We say (R, ®,®) is a semi ring if

(i) For any x,y,z € R,
(zoy)dz=18({y®=2)

(rRy)ez=r0 Yy :2)

(i) For any x,y,z € R,
ThYy=yox

(i1i) For any x,y,z € R,
R (YPz)=zQRQYydrz

(iv) R has the unit element e with respect to &.
(v) R has the unit element e with respect to @.
(i) e@r=x®ec=c¢.

We say R is commutative if ® is commutative. We say R is idempotent if ® is idempotent.
Definition 13.1.2 (R,,4.). Here are the settings.

(51) Riypar = RU{—00}. We set e :=—00 and e :=0.
(§2) For x,y € Ryan
x @y :=max{z,y}

TQRQY:=x+Y
We call Rimaz := Rimaz, D, ®) the maz-plus algebra.
Clearly the following holds.
Proposition 13.1.3. R4, is a commutative and idempotent semi ring.

301
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13.2 Petri net and Event graph

Definition 13.2.1 (Petri net, place, transition). Here are the settings.
(S1) (N, A) is a directed graph.

We say (N, A) is a petri net if there is (P, Q) which is a pair of disjoint subsets of N satisfying the following two
conditions.

(i) N=PUQ,PNQ=¢.
(i) ACPxQUQXP.

We denote this petri net by (N, P, Q, A).

We call each element of P a place and call each element of Q a transistion. Let us fit p € P and g € Q. We say p is
the input place of the transition q and q is the output place of the transition p if (p,q) € A. We say p is the output place
of the transition q and q is the input place of the transition p if (p,q) € A.

We denote the set of all input place of q by w(q) and denote the set of all input transition of p by m(p).

We denote the set of all output place of g by o(q) and denote the set of all output transition of p by o(p).

Definition 13.2.2 (Event graph). Here are the settings.
(S1) (N,P,Q,A) is a petri net.

We say this petri net is an event graph if for each p € P there is the unique q1 € Q such that (p,q1) € A and there is the
unique g2 € Q such that (g2,p) € A.

Definition 13.2.3 (Enability and Firing in petri net). Here are the settings.
(S1) (N,P,Q,A) is a petri net.
(S2) w: A— Nsi. We call w(a) is the weight of a € A.
(S3) My : P — Z>q. For each p € P, we say p is marked with M (p) tokens.
(54) q € Q.

Then

(i) We say q is enable if each input place p of q is marked with at least w(p,q) tokens.
(ii) Let us assume q is enable. We set for each p € P

Mi(p) := Mo(p) + Xo(q)(P)w(q,P) = X (q) (P)w(P, q)

We call My the firing of My with respect to q.

Definition 13.2.4 (Liveness, Autonomous, Time event graph). Here are the settings.
(S1) G := (N, P,Q, A, w, My) is an event graph with weight and token.

Then

(i) We say G is liveness if for any cycle ¢ of G there is p € P whose output transition is enable.
(i) For each q € Q, q is a supplier transition if w(q) = ¢.
(i1i)) We say G is autonomous if G is no supplier transitions.
(iv) Let 7: P — Z>o and v : ANP x Q = Z>¢ such that

v(p.q) < 7(p)
Then (G, 1,7) with time event graph.

Definition 13.2.5 (Enability and Firing in Time event graph). Here are the settings.

(S1) G := (N, P,Q, A, w, My, T,7v) is a time event graph.

(A1) For any q1,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.
(A2) w=1 on A.

(S2) q € Q.
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Then

(i) We say q is enable if each input place p of q is marked with at least w(p,q) tokens and T(p) < v(p,q).
We denote the all enable transitions by E(G).

(i) Let us assume q is enable. We set for each p € P
Mi(p) = Mo(p) + Xo(q)(P)w(P: q) = Xr(q) )W (P, 9), 71 (P) == 0
We call (M1,v1) the firing of (Mo, o) with respect to q.
Clearly the following holds.
Proposition 13.2.6. Here are the settings.

(S1) Go := (N, P,Q, A, w, My, T,70) is a time event graph.
(A1) For any q1,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.
(A2) w=1 on A.

(58) We set
Mi(p) := Mo(p) + XE(Go) (1) — XE(Go) (q2)

Here ¢1 € 7(p) and q2 € o(p). And

(p,q) == Y(p,q) +1 My(p) >0 and q is not enable
TP =g otherwise

(54) We set Gy := (N, P,Q, A,w, My, 7,7).
Then G is a time event graph.
Definition 13.2.7 (Firing time). Here are the settings.

(S1) Go := (N, P,Q, A w, My, T,70) is a time event graph.

(A1) For any q1,q2 € Q, there is at most one p € P such that (q,p), (p,q) € A.
(A2) w=1 on A.

(S3) We define {G1}32,, inductively by the procedure defined in Proposition13.2.6.

Then
mq(k) = {to € Zzo‘]{) = #{t < t0|q S E(Gt)}} (q < Q, ke Nzl)

We call z4(k) the k-th firing time of q. We set
2(k) = (24, (k), ..., Bqup)” (k € N>p)
Definition 13.2.8 (System Matrix). Here are the settings.

(51) {Gy == (N, P, Q, A,w, My, T,Vt) ez, is a sequence of time event graphs by the procedure defined in
Proposition13.2.6.

(52) {x(k)}2, is the sequence by Definition13.2.7.

(§3) We denote the mazimum number of tokens at any one place in {Gi}iez., by M.

Then for each m € {0,1,..., M}

| aju pji ewists and p;; has m tokens in Go .,
[Am]],l L { € otherwise (]7l - 1a27 7#9)

Here pj; is the place such that (q;,p;1), (pji, @) € A.

Proposition 13.2.9. We succeed notations in Definition13.2.8. And let us assume any Gy is autonomous. Then

zk)=Azk) oA @z(k—1)® .. 0 Ay Qx(k—M) (k=M+1,M+2,..)
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