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This note is the result of studying facts based on [1], [2].

1 Preliminary

1.1 Linear algebra

1.1.1 Some facts without proof

For the proof, see [5].

Theorem 1.1 (Hahn Banach Theoreml). Let

(S1) (V,{pn}tnen) is a semi-normed space.
(S2) x,y €V such that x # y.

Then there is real-valued continuous linear function f such that f(x) # f(y).

1.1.2 Tensor Space
Clearly the following holds.
Proposition 1.1 (Tensor Space). Here are the settings and assumptions.

(S1) K denotes one of Q,R, C.
(S2) V,W are K-vector spaces.
(S3) By VY WYV denote by the set of all K-linear functionals of V,W , respectively.

(S4) Forv e V,we W, we set
vew(f,g) = fv)gw) (feV ge W)

Then, for anyv e V,w e W, v@w € B(V,W). We set
VVeWY = {vewlveV,weW})
Proposition 1.2. Here are the settings and assumptions.

(S1) K denotes one of Q,R,C.
(52) V,W are K-vector spaces.
(88) wi, ..., w, € W are linear independent.

(‘54) Vlyeeey Um € Vv \ {O}
Then, {v; ® w;}*, are linear independent.

By Hahn-Banach Theorem,

Proof. there are f1,..., fm € WY such that f;(w;) =, ; (Vi,j) and there are g1, ..., g, € W such that g;(v;) # 0 (Vi)
Let us fix any ay,...an, € K such that >_.*, a;v; ®w; = 0. Since 0 = Y_1" | a;0; @ wi(gj, f5) = a; (Vj), {vi @w;}™, are
linear independent. 0

1.1.3 Kronecker Product
Definition 1.1 (Kronecker Product). Let K denotes one of Q,R,C and A € M(m,n,K) and B € M(p,q,K). Then

a171b171 a171b17q a172b1,1 al,gbl,q a17nb171 aLnqu
al,lbz,l
al’lbp’l ambp’q al’pr’l al,gbp’q al,nbl’q alﬁnbp’q
az1b11

A® B = {Citkj+1 = @i jbri}ijkien = T
a271bp71 . .
am,lbm am,lqu am,ng am72b1,1 am,nbm ammbp,q
am,lpr am,lbp’q am’gb a1 . am’gbnq am,nbp’l am,nbp}q

We call A® B the Kronecker Product of A and B.



Proposition 1.3. Here are the settings and assumptions.
(S1) K =Q,R,C.
(52) Ae M(ml,mg,K),B S M(mg,m4,K),C S M(m,ng,K),D S M(ng,n4,K).
(AZ) mo = N1, My = N3.
Then
(A®B)- (C®D)=(A-C)® (B-D)

Proof. For any 11,12, j1, j2,

(A ® B) : (C ® D)(i1,i2)7(j17j2) = Z (A ® B)(h,iz),(khkz)(c ® D)(k1,k2)7(j17j2) = Z ai1,k1bi2,k2ck17j1 ka,jz
k?l,kQ k17k2

= Z Qiy k1 Cky,j1 Z bi27k2bk2,j2 = (A : C)il,jl (B : D)i27j2 = ((A . C)@(B : D))(i1,i2)a(117j2)
k?l k2

Proposition 1.4. Here are the settings and assumptions.

(S1) A€ M(m,C),B € M(n,C).
(52) A1, ..., \m are the eigenvalues of A.
(S3) pi,..., iy are the eigenvalues of B.
(A1) Nipj (1=1,2,...,m,j =1,2,...,n) are distinct.
Then
Aigj (1=1,2,...,m,5=1,2,...,n)
are the all eigenvalues of A ® B.
Proof. Let x; denote an eigenvector of A with respect to \; (¢ = 1,2,...,m) and y; denote an eigenvector of B with

respect to p; (j = 1,2,...,n). By Propositionl.3, the vector z; ® y; is an eigenvector of A ® B with respect to A;u;
1=1,2,..m,5=1,2,...,n. 0

Proposition 1.5. Here are the settings and assumptions.
(S1) Ae M(m,C),B € M(n,C).

Then
det(A x B) = det(A)det(B)

Proof. By applying triangulization of matrices, we can show that there are {A;}5°, C M(m,C),{B;}2, € M(m,C) such
that A;, B; satisfies the settings and the assumptions in Propositionl.4 for any ¢ and

1—>00 1—»00

So,
lim det(A; ® B;) = det(A® B), lim det(A;) = det(A), lim det(B;) = det(B)
1—00 1—00

71— 00
By Propositionl.4,

Consequently,
det(A ® B) = det(A)det(B)



1.2 Topological space

Proposition 1.6. Let X and Y are topological space and i: X —'Y is homeomorphism. And let U C X ando V :=i(u).
Then i|U : U — V' is homeomorphisim.

Proof. For any closed set in X A and any closed set in Y B, i {(BNV) =i 1(B)NV and i(ANU) =i(A)NV.
Soi~}(BNV) is closed set of X and i(ANU) is closed set of Y. O

Proposition 1.7. Let X is a topological space and U C U’ C X. Let us assume the topology of U’ is the relative topology
respect to X. The relative topology of U respect to U’ is equal to the relative topology of U respect to X .

Proof. Because for any open set Ain X ANU = ANU' NU, the Proposition holds. O
Proposition 1.8. Let X be a Housdorff space and C C X be a compact subset. Then C' is a closed subset of X.

Proof. Let us fix any x € X \ C. For each y € C, there are U, and Vj, such that U, is an open neighborhood of = and

m

Vy is an open neighborhood of y and U, NV}, = ¢. Because C is compact, there are V,,,...,V,, ~such that C C U, V.
Because N2, Uy, is an open neighborhood of z and N2, U,, NUT,V,,, = ¢, « ¢ C. Consequently, C is a closed subset. O

Definition 1.2 (Locally path-connected space). Here are the settings and assumptions.
(S1) X s a topological space.

We say X is locally path-connected if for any U € O(X) and x € U, there is V such that V is a path-connected open
neighborhood of x and V C U.

The following clearly holds.
Proposition 1.9. Any topological manifold is locally path-connected.
Definition 1.3 (Covering Space). Here are the settings and assumptions.

(S1) E, B are path-connected and locally connected topological space.

(§2) p: E — B is a surjective continuous map.

We say (E, B,p) is a covering space if for any b € B there is U such that U is an open neighborhood of b and any connected
component of 7= 1(U) V satisfies ©|V : V — w(V) is a homeomorphism. We call E the total space, B the base space, p
the projection.

Definition 1.4 (Finite covering Space). Here are the settings and assumptions.

(S1) (E,B,p) is a covering space.
We say (E, B, p) is a finite covering space if there is m € N such that for any b € B #p~1(b) = m. We call m the covering
degree of (E, B,p).

1.3 Hilbert Space

Proposition 1.10. Here are the settings and assumptions.

(S1) V is an inner product space.
(A1) {v e V]|lv|| =1} is compact.

Then dimV < oo.

Proof. Let us assume dimV = oo. Then there is a orthonormality {v;}52, C V. Because there is no subsequence of
{v;}$2, which converges in V, {v € V|||v|| = 1} is not compact. This is contradiction. O

Proposition 1.11 (Bessel Inequality). Let

(S1) V is a inner product space.
(S2) {vi}N., is a orthonormal system of V.

Then for any u € V,
N

DI 0) P < JJul?

i=1



Proof. By (S2),
N

N
0< Jlu— S (uviwil 2 = llull? = 3 (u,v)
=1

=1

This impliese the above inequality. 0
Proposition 1.12. Let

(S1) V is a separable Hilbert space.

(52) {v;}32, is a complete orthonormal system of V.
Then
(i) Ifu eV and (u,v;) =0 (Vi), then u = 0.

(ii) For anyu €V, > 2 (u,v;)v; converges and

(iii) Any complete orthonormal system of V' is countable.

Proof of (i). We set W := > Cuv;. There is a sequcen {w; }32; C W such that lim w; = u. So,
1—> 00
lell* = Jim (u, ) =0
71— 00

This implies u = 0. O

Proof of (ii). By bessel inequality, {Zi\il(u, v;)v; }nen is a cauchy sequence in V. Because V is complete, > o=, (u, v;)v;
converges. Because (u — > oo (u,v;)v;,vj) = 0 (Vj), by (i), (ii) holds. O

Proof of (). Let us fix {ws }aea which is any complete orthonormal system of V. For each m,n € N, there is a finite
subset Ay, , C A such that

1
d(vp, Z Cwy) < -

aC€lhm n

We set A* := Uy nApm pn. Clearly A* is at most countable and {wq}aeca~ is a complete orthonormal system of V. So,
A* = A. O
Proposition 1.13 (Projection Theorem). Let

(S1) V is a Hilbert space.

(52) W is a closed subspace of V.
then

V=WaeWw"t

So, for each v € V, there is a unique w € W such that v —w € W. We call w is the orthogonal projection of v. We set
pw V=W by
pu:Vov—weWsto—we Wt

We call pw is the orthogonal projection of W.

Proof in general case. Let us fix any v € W. We set

d:=d(v,W)
Then there is {w;}$2; C W such that
lm |Jv—w;||=d
n—oo

We will show {w;}2, is a cauchy sequence. For any m,n € N,

|[wm _wn||2 = ||vm _wH2 = 2Re(wm — w,w, —w) + ||w, _wH2



And

2Re(wy, — w, wy, — w) = |[(Wy —w) + (wy _w)HQ — |[wm _w||2 — [[wn _w||2
So,
Wy, + W
fwim — wa|? + 4] =" — w|* = 2|Jwpm — w|[* + 2||w, — w]?
2
Because
Wy + W

[lwm — wnl* + 4| = w|[* > [Jwn — wn||* + 4d

2
lwm = wall* < 2/fwm — wl|* + 2/|w, — w|]* — 4d?

So, {w;}$°, is a cauchy sequence. Because V' is Hilbert space,

w:= lim w,
n—oo
exists. Because W is closed, w € W.
v — 7~U||2 = |Jv — wp +wy, — w||2 = v - wn‘|2 +2Re(v — wn, wp, — w) + |[wy, — w||2
So,
o —wl|® = d?
We set

Ui=v—w
Let us assume u ¢ W+, Then there is wy € W such that (u,wg) > 0. So, for any § > 0
d* < ||u — dwo||* = d* — 26 Re(u, wo) + 62[|wo]|?
This implies
2Re(u, wp) < 8| |wol)?

2Re(u,wp)

So, if we take § < , a contradiction arises. So u € W+, O

Proof in case W is separable. Because W is separable, by Gram-Schmit orthogonalization method, there a {w;}$2; which
is a complete orthonormal system of W. Let us fix any u € V. By the same argument as the proof of Propositionl.12,
w =Y .2 (u,w;)w; converges. Because W is closed, w € W. Clearly v —w L W. O

By the argument in the proof of Propoisitionl.13, the following holds.
Proposition 1.14. Let

(S1) V is a pre Hilbert space.
(52) W is a subspace of V.
(S3) veV.
(54) {vn}nen CV such that
lim ||[v —v,|| = inf |jv—ul
n—o0 ueW
then {vn tnen 8 a cauchy space.
Proposition 1.15. Let

(S1) V is a Hilbert space.
(S2) W is a closed subspace of V.
(A1) p:V — W is a surjective self adjoint linear operator such that p*> = p.

then p is the orthogonal projection of W.

Proof. Let us set py the orthogonal projection of W. Let us fix any v € V and w := py (v). Then, firstly, p(v) —w € W
and there is v’ € V such that p(v') = w.

p(v) —w = p(v) = p(v') = p(v) — P*(v) = p(v) — p(w) = p(v — w)
Because v —w € W, for any w’ € W,
(p(v) —w,w') = (p(v —w),w') = (v—w,p"w’) = (v —w,p(w')) =0
So, p(v) —w € W+. These imply p(v) = w. O



By Propositionl.15, the following holds.
Proposition 1.16. Let

(S1) V is a Hilbert space.
(S2) Wh, ..., Wy, are closed subspace of V. and W; L W; (Vi # ¥j).
(A1) p;: V. — W; is the orthogonal projection to W; (i =1,2,...,m).

then .
pi=> pi
i=1
is the orthogonal projection of &7 W;.
Proposition 1.17. Let

(S1) V is a Hilbert space.

(52) {W;}ier is a family of closed subspaces of V.

(A1) W; LW; (Vi #VYy).

(A2) V = @;cW;.

(53) We denote the orthogonal projection of W; by p; (i € I).
then for anyv eV

inf{[lv— > Pjol|| |J C I: finite} =0
jeJ

Proof. Let us fix any v € V and € > 0. By (A2), there are J C I:finite and {v;}iecs such that v; € W; (Vi € J) and
llv=>,csvill <e Weset p:=3>"._; P;. By Propositionl.16, p is the orthogonal projection of ®;e;W;. By the proof of
Projection theorem, |[v —p(v)[| < [lv =3 ;¢ yvill- So, [[v =", ; Pjvl| <e. O

Proposition 1.18 (Riez representation theorem). Let

(S1) V is a Hilbert space.
(S2) feV*.

Then there is w € V such that

fC)= ()
Proof. We set W := Ker(f). We can assume f # 0. Let us take wg € W+ \ {0}. We can assume f(wg) = 1. Let us fix
v eV and u:=v— f(v)wy. Clearly u € W, so u L wpy. This implies

(v,wo) = f(v)[[woll”

Proposition 1.19. Let
(S1) V is a Hilbert space.
(52) {vi}i2) C{v e Vl[jv|[ = 1}.

Then there is subsequence {v, (i)}, and v € V such that for any f € V*
m f(ve()) = f(v)

1— 00

We denote this by

w— lim v, ;) = v
1—00 (1)



Proof. Because (v;,v;) € T1(Vi,j) and T, is compact, then there are subsequences {v,, (1) }72, (n = 1,2,...) such that for
each n € N {v, )}, is a subsequence of {v,,, (k) }r; and limy oo (vy,, (k), Un) exists. We set

¥(n) = @n(n) (n € N)

Then for any n € N, f (vp) = (limkﬂoo(vn,_vw(k)) exists. We set V{) be the minimum sublinear space which contains
{v;}2, and V; := Vj. Let us fix any w € V;. Then there is {w;}32; C Vo such that lim; ,o w; = w. Let us fix any
€ > 0. Then there is ng € N for any m,n > ng ||wm — wy|| < €. |fwm) — f(wa)]| = |f(Wm — wn)| < ||wm — wy|| < €. So,
f(w) :=lim,, 00 f(wy,) exists. Clearly ||f|] < 1. So f € Vi*. By Riez representation theorem, there is v € V; such that

f=(,v). Let us fix any u € V; and € > 0. Then there is u’ € V{ such that ||u — u'|| < % There is ng € N such that for

any k > ng |(v', vy)) — (u',0)] < % So |(u, vy(k)) — (u,v)| < €. This means
kl;ngo(u7v¢(k)) = (u,v) (1.3.1)
Let us fix any g € V*. Then g|V1Vj*. By Riez representation theorem, there is u, € V; such that g|Vi = (-,u,). So,
li = 1.3.2
i g(vyr)) = g(v) (1.32)
O

The following clearly holds.

Proposition 1.20. Any finite linear subspace of a Hilbert space is closed.

1.4 Topological group and representation

Definition 1.5 (Topological group). We call G is a topological group if G is a housdorff space and G is a group and
G x G > (x,y) — zy € G is continuous and G > x — = € G is continuous.

Proposition 1.21. Let G is a topological group. Then the followings hold.
(i) i:G>x— 27t €G is isomorphism.
(ii) For any g € G, Ly : G 3 & — gz € G is isomorphism.
(iii) For any g € G, Ry : G > x> xg € G is isomorphism.

Proof of (i). For any open set U in G, i(U) =i~ 1(U). Because i is continuous, i is open map. So i is isomorhism. O

Proof of (ii). For any open set U in G, Ly(U) = L(g-1)-1(U). Because L,-1 is continuous, L, is open map. So L, is
isomorhism. 0

Proof of (iii). It is possible to show (iii) by the approach which is similar to (ii). O
Proposition 1.22 (Semidirectproduct of groups). Let

(i) G,H are groups.
(i) o: G — Aut(H) is a homomorphism of group.
(i) We set
(91.h1) - (92, h2) := (9192, h10(g1)(h2)) (91,92 € G, h1,ha € H)

Then G x H is a group with -. We denote this group by G x, H.

Proof. Clearly (1g,1g) is the unit element of G x, H. Let us fix any ¢1,¢g2,93 € G and hy, he,hz € H.

(91, h1) - ((92,h2) - (93, h3)) = (91, 1) - (9293, h20(g2)(h3)) = (919293, h1o(g1)(h20(g2)(h3)))
= (919293, h1o(g1)(h2)o(g1)(0(92)(h3)))) = (919293, h1o(g91)(h2)o(g192)(h3))) = (9192, h1o(g1)(h2))(gs, hs)
= ((91,h1) - (g2, h2)) - (93, h3)

So, the associativity of - holds. For every (g,h) € G x, H, (g7, a(g)(h)"*h™1) is the inverse element of (g, h). Conse-
quently, G X, H is a group. O

Definition 1.6 (Representation of group). Let G be a group and V be a vector space on a field K. We call m : G —
Endg (V) a representation of G if n(1g) = idy and w(g1g2) = 7(g1)7(g92) (V91,92 € G).



Definition 1.7 (Continuous Representation of Group). Let G be a topological group and V be a Hilbert space on a field
K. We call m: G — Endg (V) a continuous representation of G if (w,V) is a representation of G and G x V' 3 (g,v) —
m(g)v € V is continuous.

Definition 1.8 (Unitary Representation of Group). Let G be a group and V be a Hilbert space on a field K. We call
m: G — Endg (V) a unitary representation of G if (w, V') is a representation of G and w(g) is a unitary operator for any
geQG.

Definition 1.9 (Subrepresentation). Let (m,V) be a continuous unitary representation of a topological group G and W
be an invariant closed subspace of G. We call (w|W, W) is a subrepresentation of w. We denote w|W by m1. We denote
this by m < w. And let (w2, Va) be a continuous unitary representation of a topological group G. We denote ma < 7 if mo
is isomorphic to a subrepresentation of G as continuous unitary representations.

Proposition 1.23. Let

(S1) G is a topological group.

(52) (w,V) is a finite dimensional continuous representations of G.

Then
G>g—m(g) € GL(V)

18 continuous.

Proof. Let us take {v;}7_; such that {v;}I_; is a orthonormal basis of V. For any ¢g1,92 € G and i, j

(7 (g1)vis v;) = (w(g2)vi, v;)[| < [|m(g1)vs — m(ga2)vil|
So, (m(-)vs,v;) is continuous. O
Proposition 1.24. Let

(S1) V is a vector space on K :=R or C.
(52) A € Endg (V).
(§3) A*(f)(u) := f(Au) (f € V*,ueV).
Then A* € Endg (V™).
Proof. For any a,b € K and f,ge V*and u €V,

A*(af +bg)(u) = (af +bg)(Au) = af (Au) + bg(Au) = a(A"f)(u) + b(A"g)(u) = (a(A"f) + b(A%g))(u)

Proposition 1.25 (Contragredient representation). Let

(S1) G is a topological group.
(52) (mw,V) is a representations of G.

Then
(i) The following 7 is a homomorphism as groups.
™ :G32g— (g h* € GLe(V)

We call T a the contragredient representation of .

(i) If (w,V) is a finite dimensional continuous representations of G, then 7 is continuous.

Proof of (i). For any g,h € G and f € V* and u € V,

©*(gh) f(u) = f(n(gh) ™ u) = f(r(h) "' (g) ™ u) = (7" (h) f)(m(g) " u) = 7 (g) (7" (h) ) (u)
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Proof of (ii). Let us fix {v1,.., vy} an orhonormal basis of V. We set f; := (-, v;) (i =1,2,...,m).

m m

m(g)f () = FQ_mlg™ (wyvi)vi) = Y (u,0) f(m(g™ Yoi) = Y flwlg™" Yoi) filu)

i=1 i=1 i=1
So, 7 is continuous. O
Definition 1.10 (Intertwining operator, G-linear map.). Let

(S1) G is a topological group.
(52) (m1, Vi) and (72, Va) are representations of G.

We say T : Vi3 — Vb is an intertwining operator or a G-linear map if T is a linear and
Tom =mgo0T
If Ty and w5 are continuous representations of G, we denote the set of all continous G-linear mapping from m to ma by
Homg(Vi,Va) or Homeg (w1, m2)
Definition 1.11 (Equivalent between two continuous representations of G). Let

(S1) G is a topological group.

(52) (m1, Vi) and (w2, Va) are continuous representations of G.

We say m, and mo are equivalent if there is T : Vi — Vi such that T is a bijective continuous G-linear and T~1 is a
continuous G-linear.

Definition 1.12 (Equivalent between two unitary representations of G). Let

(S1) G is a topological group.
(52) (w1, V1) and (72, Vo) are unitary representations of G.

We say m and wo are equivalent if there is T : Vi — Vo such that T is a bijective unitary G-linear.
Definition 1.13 (G-linear map.). Let

(S1) G is a topological group.
(52) (m1, V1) and (w2, Va) are representations of G.

We say T : Vi — Vs is an intertwining operator or a G-linear map if T is a linear and
Tom =mg0T
The following is clear.
Proposition 1.26. Let

(S1) G is a topological group.
(S2) (m,V) is a continuous unitary representations of G.
(52) W is a G-invariant subspace of V.

then W+ is also a G-invariant subspace of V.
Definition 1.14 (Completely reducible). Let

(S1) G is a topological group.

(S2) (m,V) is a continuous representations of G.

We say (w,V) is completely reducible if for any invariant subspace W there is an invariant subspace Wa such that
V=W 4+ Ws.

Proposition 1.27. Let

(S1) G is a topological group.

11



(S2) (m,V) is a continuous unitary representations of G.
Then (m, V') is completely reducible.
Proof. Because of (S2), for any invarian subspace of W, W+ is an invariant subspace. So, (7, V') is completely reducible. [J
By Propositionl.26, the following holds.
Proposition 1.28. Let
(S1) G is a topological group.
(S2) (m,V) is a finite dimensional continuous unitary representations of G.
then (7w, V') has an irreducible decomposition.
Proposition 1.29 (Shur Lemma). Let
(S1) G is a compact Lie group.
(S2) (m;,V;) is a continous irreducible representation of G on C (i = 1,2).
(A1) Either Vi or Vs is finite dimensional.
(52)
Then
Homg(V1,V2) = { ) Em %WQ)
Here T is an G-isomorphism from Vi to Vs.

STEP1. Proof of Homg(Vh,V2) = {0} (71 % m2). Let us assume Homeg(Vy, Vo) # {0}. There is f € Homg(V1, Va) \ {0}.
Because Ker(f) is closed G-invariant, Ker(f) = {0}. Because of (A1), Im(f) is finite dimensional. By Propositionl.20,
Im(f) is closed G-invariant subspace of V,. Becuase 73 is irreducible, Im(f) = V,. So, V3 is finite dimensional and f is
bijective. Then V; is finite dimensional. By Proposition1.20, f~1 € Homg(Va, Va). So, f is an G-isomorphism from V; to
Va. O

STEP2. Proof of Homg(V1, Vo) = CT(m ~ m3). Let us fix any f € Homg(V1,Va) # {0}. By STEPIL, f is an G-
isomorphism from V; to V5.

By (A1), V1 and V5 are finite dimensional. So, becuase T o f has a eingenvalue \, Ker(T~!o f — \id) # {0}. Because
71 is irreducible, Ker(T~!o f — Xid) = V4. So, f = AT. O

Proposition 1.30. Let

(S1) G is a commutative topological group.

(S2) (m,V) is a continous finite dimensional irreducible representation of G on C.
then dimm = 1.

Proof. Let us fix v,w € V' \ {0}. Because 7 is irreducible, 7(G)v = V. So, there is g € G such that 7(g)v = w. Because
G is commutative, A : V 3 u — w(g)u € V is continuous G-linear and I'mA # {0}. So, by Shur Lemma, there is A € C
such that A = Aidy. So, w = \v. O

1.5 Homotopy and Fundamental group
Definition 1.15 (Path). Let

(S1) X be a topological space.

We call each element of C([0,1],X) a path. For each ¢ € C([0,1],X), we call ¢(0) the start point of ¢ and ¢(1) the end
point of c. If ¢(0) = ¢(1) then we call ¢ a loop.

Definition 1.16 (Homotop of continuous maps). Let

(S1) X,Y be a topological space.

(52) f,g € C(X,Y).

We say f and g are homotop or homotopy equivalent if there is ® € C([0,1] x X,Y) such that ®(0,-) = f and
CI)(]_, ) =g

12



Definition 1.17 (Homotopy equivalent of continuous maps). Let
(S1) X,Y be a topological space.
(52) f,ge C(X,Y).
We say f and g are homotop or homotopy equivalent if there is & € C([0,1] x X,Y) such that ©(0,-) = f and ®(1,-) = g.
We call ® a homotopy.
Clearly, the following holds.
Proposition 1.31. We succeed notations in Definition1.17. Homotop on C(X,Y) is an equivalent relation on C(X,Y).

Definition 1.18 (Homotopy equivalent of topological spaces). Let

(S1) X,Y be a topological space.

We say X and Y are homotopy equivalent if there is ® € C([0,1] x X,Y) such that ®(0,-) = f and ®(1,-) = g. We call
® a homotopy.

Then, clearly, the followings hold.
Proposition 1.32 (Fundamental group). Let

(S1) X be a topological space.
(S2) zo € X.
(S3) Define
(i) Set
[([0,1],01), (X, x0)] :={c € C(I,X)|c(0I) C {x0}}
Here, I :=10,1].
(ii) For each c1,co € [(I,01), (X, x0)],
€1~ C2
if there is a homotopy ® from ¢y to co such that ®(t,-) € [(I,01),(X,z0)] (Vt € I).
(#ii) For each c1,c2 € [(I,01),(X,xz0)],

0
Co - C1 (t) = 1
2
(iii) Set

(iv) For each [c1], [c2] € m1(X, zo)
[c2] - [e1] = [e2 - 1]

Then ~ is a equivalent relation on [(I,01), (X, zo)] and - on w1 (X, xg) is well-defined and 71 (X, xo) is a group with respect
to -. We call m (X, o) the fundamental group of X with base point xo. If X is path-connected and m (X, zo) = {e}, we
say X s simply connected.

Proposition 1.33 (n-th Homotopy group). Let

(S1) X be a topological space.
(52) zp € X.
(53) n € N.
(S4) Define

(i) Set

[(I™,01I™), (X, x0)] :={ce C(I", X)|c(OI™) C {xo}}
Here, I" := [0, 1]™.
(ii) For each cy1,co € [(I™,01), (X, x0)],

C1 ~ Co

if there is a homotopy ® from cy to ca such that ®(t,-) € [(I™,01), (X, xo)] (Vt € I).
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(iii) For each c1,cq € [(I :=10,1],01), (X, x0)],

1
Cl(2t17t27 7tn) (O S tl < 7)
Cco - Cl(t) = 1 2
c2(2ty — 1,tg, ... ty) (5 <t <1)
(iii) Set
T (X, o) := [(I",01"), (X, w0)]/ ~

(iv) For each [c1],[c2] € mn (X, x0)
[ea] - [e1] = [e2 - 1]

Then ~ is a equivalent relation on [(I"™,0I), (X, xo)] and - on m,(X,x0) is well-defined and 7,(X,x¢) is a group with
respect to . We call m, (X, xq) the n-th homotopy group of X with base point xg.

1.6 Fiber bundle

Definition 1.19 (Topological transformation group). Let G be a topological group. And let Y be a topological space. If
1n:G XY =Y satisfies the following conditions, we say G is a topological transformation group of Y respects to .

i) nfe,) = idy.
(i) 1(g2,n(91,-)) = 1(9291,-) (Vg1,92 € G).
If is clear what 1 is, we denote gy :=n(g,y) .

Definition 1.20 (Effective topological transformation group). Let G be a topological transformation group of a topological
space Y respects to . We say that G is effective if n(g,-) = idy only if g = e.

Definition 1.21 (Coordinate bundle). We call
B = (B7Xa Kp7 {ij}je.]a {¢j}j€]7 G)
a coordinate bundle if

(i) B, X,Y are toplogical spaces. B is called a bundle space or total space. X is called a base space. Y is
called a fibre.

(i) p: B — X is a surjective and continuous map. p is called a projection.

(i1i) G is a topological transformation group of Y respects to nn and G is effective.

1) {Vitics is an open covering of X. We call each V; a coordinate neighborhood.

Vg J

(iv) ¢; : V; x Y — p=1(V;) is an isomorphism. We call qb;l :p H(V;) = V; X Y a local trivialization or a
coordinate function. For each x € V;, we call Y, := p~1(x) a fiber on x.

(v) pogj(z,y) =2 Vje Ve eV, VyeY)

(vi) If ViNV; # ¢, for each x € V; NV}, we define ¢; : Y =Y by

biz(y) = di(2,y)
Then there is the unique g;;(x) € G such that
a0 Gia(r) =n(gj.(x), ")
s an isomorphism.
(vii) gj;: ViNV; = G is continuous.

Memo 1.1. I think, roughly speaking, a coordinate bundle is a pair (B, X,Y, p) with local trivializations ({V;}icr, {¢: }ier
which induce a system of coordinate transformations {g; ;}i jer. Steenrod Theorem, which is showed later, states a system
of coordinate transformations induces a local trivializations.

Definition 1.22 (Equivalent in the strict sense between two coordinate bundles). Let
By = (B, X1, Y, p1, {Vi}ien {d5}jen: G)

and
By = (Ba, Xo,Yop2, (Vo }jem {05} jesn: G)

are coordinate bundles. We say that 281 and By are equivalent in the strict sense if
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(/L) Bl - BQaXl = X27Y1 = }/QaGl = GZ'
(1) Fiz any j1 € Jv and jo € Jo such that Vi j, NVa,, # ¢. For any x € Vi j, N Va,,, there is unique
Gjs.j1 (@) € G such that
9j2,51 (z) = ¢2_7i °P1z

and
Gjgi Vi N Vo, = G

18 continuous.
Proposition 1.34. The relation in Definitionl.22 is equivalent relation.

Definition 1.23 (Fibre bundle). We define that a fibre bundle is a equivalent class by strict sense equivalent of coordinate

bundles.
Clearly the following holds.

Proposition 1.35. Let

(51)
B = (BaXv Yapv {‘/}}jGJv {¢j}j€,]7 G)

(52) X,Y,G are C*®-class manifolds.
(A1) Multiple operations and inverse operation of G are C*°-class.
(A2) The action of G on X is C*-class.

Then B is a C*°-class manifold. We call B a smooth corrdinate bundle.
Definition 1.24 (Bundle map). Let

By := (B, X1,Y,p1,{V1,j}jen  {¢1,5}jen G)

and
By = (B2, X2,Y,p2,{V2,; }jesn, {#2, }jesn, G)

are coordinate bundles. We call (h,h) a bundle map from B, to By if

(i) h: By — Bg is a continuous map.
(ii) h: X, — Xo is a continuous map.
(iii) For each x € X, 2’ := h(z) and Y, :=p~'(x) and Yy :=p~(2') and hy := h|Y,. Then hy : Y, — Yy is
an homeomorphism.
(iv) For any x € V4 j Nh~Y(Vay), there is unique gy j(z) € G such that

¢2_,111(w) © hr © (rbl,fc = gk,j (I’)

(iv) Gr;: Vij Nh~Y(Vag) — G is continuous. We call gy ; a mapping transformation.
We also call h itself a bundle map and call h a map induced by h or call h the induced map from h.
Proposition 1.36. The followings hold.

(i) The identity map of any coordinate bundle is a bundle map.

(ii) The composition of any two bundle maps is a bundle map.

Proof of (i). This is clear because of the definition of coordinate bundle. O

Proof of (ii). Let
%i = (BiaXiaxpia {V;,j}jEJw {d)J}jEJUG) (Z = 17273)

be corrdinate bund}es angl (hlg h}) be a bundle map from B, to Bs and (ha, Eg) be a bundle map from B, to B3. We set
hs := hy o hy and h3 := hs o hy. Clearly, hs and hs are continuous. For any x € X, clearly,

hS,z = h27}{1(m) o hl,x

So, h3,. is a homeomorphism from Y, to Y}, ().
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Let us fix any = € Vi j Nhs  (Vax). Clearly

- -1

hs (Var) = hy !

Y)

This implies
hi(z) € hy~ (Vag)

Because {V2 ;};ec, is an open covering of X, there is j € Jy such that

hi(x) € Va,;

So,
-1
¢3,}{3(w) o h’3,.’E © ¢1,I

= ;}{Z(El(w)) o hQ,x o h’2,3¢ © ¢1,JJ

-1 -1
= 3,z (R () o hQ,x © ¢2,]{1(x) 0 ¢2J;1(w) © h2,x © (bl,x

= G2,k (P1(2))g1,5(2)
Clearly ga.k j(h1(+))g1,5,:(-) is continuous on Vi ; N 53_1(1/3&) N B;l(Vg,j). O

Definition 1.25 (Equivalent between two coordinate bundles). Let

B = (Bl,Xl,Y,ply {Vl,j}jEJu {¢j}j€J17G)

and
B 1= (B2, X2, Y, p2,{V2,;}jesn:s {d5}jess, G)

are coordinate bundles. We say that B1 and By are equivalent if there is h such that (h,idx) is a bundle map from B,
to %2.

The following is clear from the definition of bundle map.

Proposition 1.37. Let
B = (B1, X1, Y, p1, {V1,j}jen {01, }jen, G)

and
By 1= (B2, Xa, Y, p2,{Va j} et {025} jes: G)
are coordinate bundles. And (h,h) is a bundle map from B, to Bo. Then the followings hold.
95,i(2)9i,k(2) = gja(x) (Vo € Vi N Vig Nh™H (Vo)) (1.6.1)

95.i((2))gi k() = gjr(x) (Vo € Vipg NR™ (Vi N Vay)) (1.6.2)

Lemma 1.1. Let
%1 = (BlaXhYapl; {Vl,j}j€J17{¢1,j}j€J17G)
and

By := (B2, X2,Y, p2, {Vaj }iesss {102, jess, G)

are coordinate bundles. And let us assume h is a continous map from X, to Xo. and there is {9i,j}ijes such that for
eachi,j € J gi; € C(V; N h=Y(V;),G) and the followings hold.

5,i(®)gi k() = Gjn(x) (Vo € Vi N Vi b~ (Vo))

95.i(W(@))Gi k() = Gjk(x) (Vo € Vipg R~ (ViiNVay))

Then there is a bundle map h from B to By such that h is the induced map from h and for eachi,j € J gi,j 1S a mapping
transformations of h.
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Proof. For each ¢ € J; and j € Jy such that (V1N TL*I(VQJ)) XY # ¢, we set

h(¢1i(2,y)) = ¢2,(h(@), gj.i(2)y) ((,y) € (Vi NhT (Vay)) x V)

We will show h is well-defined. Let us assume (z,y) € (Vi;, Nh=}(Va;)) x Y and (2/,y') € (Vi,y Nh=Y(Va7)) x Y and

¢1,z‘($7y) = Q14 (Cﬂl,y/)
Then

/

r=podii(z,y) =podru(a’,y) =1
So, ¢1.:(x,y) = ¢1.(x,y"). This implies

/

gvi(@)y =y
So,
G5.i(2)y = G5,i(x)gi0 (2)y = g0 ()Y’
So,

¢a,5(h(x), Gji(x)y) = G2.5.1(2)(93,i()Y) = b2 js hx) © ¢2_;,’,;($) 0 by h(w) (Gjir (x)y') = ¢2,j/,ﬁ(z)(gj’,j(ﬁ(z))gj,ﬂ (2)y")

= b9 i) (G (2)Y') = 2,50 (W(x), 3o i (2)y)
Consequently, h is well-defined. Clearly, h is continuous. Also, clearly, for any x € V7 ; N il_l(‘/g’j)7 h|Y, is an homeomor-

phism from Y to Y}, and

2 OO PLia = Gja(x)

O
Lemma 1.2. The followings are the settings and assumptions.
(51)
%1 = (Bl7 Xla Kpla {%,j}jEJl 5 {d)l,j}jeJl 5 G)
and
By 1= (B2, X2,Y,p2,{V2,j}jesn, {92, }icsn: G)
are coordinate bundles.
(A1) X1 = Xo.
(A2) There are gi ; : V; NV, — G:continuous map(j € J1, k € J2) such that
9.3 (2)gj,4(2) = gri(z) (Yo € ViNV; N VY), g1 () k() = g1,;(z) (Vo € ViNV/ N V)
Then By and Bs are equivalent.
Proof. 1t is from Propositionl.1. O

Lemma 1.3. The followings are the settings and assumptions.

(51)
B := (B, X1,Y,p1,{V;}jer, {®;}jen, G)

and
By 1= (B2, X2, Y, p2, {Vj}jes: {95} jen, G)
are coordinate bundles.
(A1) X1 = Xs.
(A2) There are \j : V; — G:continuous map(j € J) such that

9i.4(@) = Xi(@) g1 ()X (2) (Yo € V;NVj)

Then B1 and Bo are equivalent.
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Proof. We set
Gij(®) == Ni(2) i (2) (x €ViNY)

Then
90,5 ()90 () = Ni(2) " gi,j () g p () = Ni(2) " gin(x) = giw(2)
and
91, (2)3i,5 () = Mo (2) " gra (@i (@) Ni (@) 7 g3, (2) = Mo(2) " gr,i(@)gi (@) = Ae(@) " gr 5 (2) = gr g ()
So, B and B, are equivalent from Lemmal.2. O

Definition 1.26 (System of coordinate transformations). Let
(S1) G is a topological group.
(S2) X is a topological space.
We call ({V;}jer,{9i,j}ics) a system of coordinate transformations in X with values in G if
(i) {V;}jes is an open covering of X.
(it) g;; € C(V; NV;,G) (Vi,j € J).
(iii) gr,; 0 gji =gk m Vi NV; NV, (Vi j, ke J).
Clearly the following holds.
Proposition 1.38. Let

(S1) G is a topological group.
(52) X is a topological space.
(5S3) ({Vi}ies,{9i}ics) is a a system of coordinate transformations in X with values in G.
Then the followings hold.
(Z) giji =€ (VZ S J)
(ii) gij =95 (¥i,5 € J).
Theorem 1.2 (Steenrod’s theorem). Let
(S1) G is a topological group.
(52) X is a topological space.
(S3) ({Vi}ies,{9i;}ics) is a system of coordinate transformations in X with values in G.
(S4) Y s a topological space.
(S5) G is a topological transformation group of Y.
(A1) The action of G on'Y is effective.
Then

(1) There is B,p,{¢;}jcs such that (B, X,p,{V;};jcs,Y.{®;}jcs) is a coordinate bundle and for any j,i € J
such that VNV # ¢, for any x € V; NV, in V; NV,
;11; o (bi,z =05,
(1t) If By and By are topological spaces which individually satisfy (1), (B1,X,p,{V;};es,Y, {qﬁ}}jej) and
(B2, X,p,{Vi}jes.Y, {gb?}jeJ) are equivalent.

STEP1. Construction of B and {¢;},cs. Hereafter, let us assume the topology of J is the discrete topology. We set
T=XxYxJ

We define the relation of T' by
(z,9,7) ~ (@', ¥ k) : <= z=2" and y = g ;(x)y

We will show ~ is a equivalent relation of T. Because g;; = e, the reflexivity of ~ holds. Because g;; = e, by (S5), the
reflexivity of ~ holds. Because g; ; = gj_;, by (S5), the symmetry of ~ holds. Because gx ; © gji = gk, by (S5), the
transitivity of ~ holds. So ~ is a equivalent relation.
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We set
B:=T/~
and
q:T 3 (z,y,)) = [z,y,j] € B
and
p:B>3[x,y,jl—mzeX

By the definition of ~, p is well-defined. And, clearly, p is surjective. Let us assume that the topology of B is the final
topology of B induced by ¢. For any O € O(X),

¢ '(p10) =0 xY x{jeJ|V;n0 # ¢}
In this equation, the right side is an open set of T'. So, p is continuous.
We define ¢; : V; x Y — B by

¢;(z,y) = [z,y,]]
Clearly, ¢; is continuous and

¢;:V;xY CB
and

po¢; = idy,
O

STEP2. Proof of that ¢; is an isomorphism. By STEP1, it is enough to show that ¢; is bijective and an open map. We
will show that ¢; : V; x Y — p~1(V}) is surjective. Let us fix any [z,y, k] € p~1(V;). Clealy x € V), and

(mvyv k) ~ (wvgj,k(l')yvj)
So,

[z, y, k] = ¢;(, gj,x(x)y)
So ¢; is surjective.

Nextly, we will show that ¢; is injective. Let us fix any (z,y), (2',y’) € V; x Y such that [z,y,j] = [’,7/,j]. Then
x =2z and
95.5(@)y =
Because g; j(x) = idy,, y = y'. So ¢; is injective.
Lastly, we will show that ¢; is an open map. Let us fix W; x Wy C V; x Y which is an open set. For any k € J such
that Vi NV #£ ¢, weset 75 : (Vi NV;) XY — (Vi NV;) x Y by

rik(@,y) = (T, 95%(2)y)

By (S5), r; x is continuous.
We will show for any W € O(V; x Y),

oW = U W) x{k} (1.6.3)

kEJ,ViNV; ¢

Let us fix any (z,y) € (V; N Vi) x Y such that 7, x(x,y) € W. Because

0;(@, gjk(x)y) = [rjk(@), ] = q(z, y, k) (1.6.4)
in (1.6.3), the right side is containd the left side. By (1.6.4), it is clear that in (1.6.3), the left side is containd the right
side. So, (1.6.3) holds. Clearly, in (1.6.3), the right side is an open set. So, ¢, is an open map. O

STEPS3. Proof of (i). By STEP1 and STEP2, it is enough to show that for any ¢,j € J such that V; N V; # ¢ and any
zeVinV; #¢

oz © Gie = i (1.6.5)
ForanyyeY
$jn © Die(y)
= ¢;.(z.y.4)
= 05w g4 (@)y. )
954 (@)y
So (1.6.5) holds. .
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STEPS3. Proof of (ii). '
G100V = gji() = 5, 0 G24n (Vi,j, Vo € ViNV)
When we set \;(z) := e (Vi,Vz € V), {\;}; satisfies the conditions of Lemmal.3. So, B; and B, are equivalent. O

Proposition 1.39 (Tangent bundle). The following are settings and assumptions.

(S1) {M,{(U;,vi) }ier} is a n-dimensional C*°-class manifold.
(52) B :=Ugen{z} x Tp(M)).

(S3) p: B> (x,X)—~xze€ M.

(54) Y :=R™.

n d
(85) ¢i 2 Ui x Y 2 (z,0) = (2,325, v; (W)x) € B.

Then {B,p, M,R™ {(U;, ¢i) }ic1, GL(n,R)} is a coordinate bundle. We call the fibre bundle of the coordinate bundle
tangent bundle of M.

Proof. Clearly,
podi(z,v)=a Viel Ve eU,veY)

and
¢i(Us x Y) = p~ 1 (U;)
and ¢; is injective and ¢; is C'*°-class and ¢;1 is C*°-class. So, ¢; is a local trivialization. And

Bz © $ia (V) = (5 © Pia) (V)

and
UiNU; 3z J(¢;, 0 ¢is) € GL(n,R)

is C*-class. So, {J (qﬁj_i © @i z) fzev;nu; is a system of coordinate transformations. Consequently,
{vaa M7 Rna {(Ui7 ¢i)}i€]7 GL(”, R)}
is a coordinate bundle. O

Definition 1.27 (Cross section). Let

B = (B7 Xa Kpa {‘G}jGJa {¢j}j€Js G)
is a coordinate bundle. We say s : X — B is a cross-section if s is continuous and po s = id|X .

Definition 1.28 (Vector Bundle). Let
B:=(B,X,Y,p,G)

be a fibre bundle. We say B is a vector bundle if Y = R™ and G = GL(n,R) and G acts on'Y with g-v =gv (9 € G,v € Y).

Definition 1.29 (Principal Bundle). Let
B :=(B,X,Y,p,G)

be a fibre bundle. We say B is a principal bundle if Y = G and G acts on'Y with g-h = gv (g,h € G) in B.
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2 Lie group and Lie algebra

2.1 Lie group

Definition 2.1 (Locally isomorphism between two topological groups). Let G and H are topological groups. We say G
and H are locally isomorphic if there is U C G and V C H and isomoriphism i : U — G such that U is a neighborhood of
1l and V is a neighborhood of 1y and the followings hold.
(i) For any x,y € U such that zy € U, i(zy) = i(x)i(y).
(i) For any x,y € U, xy € U <= i(a)i(y) € V.
Example 2.1. R and T are locally isomorphic.
Definition 2.2 (Lie subgroup of GL(n,C)). We say G is a Lie subgroup of GL(n,C) if the followings hold.
(i) G is a subgroup of GL(n,C)
(i) G is a topological group
(iii) There is a neighborhood of e in G V' such that
(iti-1) The topology of V is relative topology of GL(n,C)
(11i-2) There is a neighborhood of e in GL(n,C) U such that if x; € V (j e N) andz; -z € U
then x € V.

(11i-3) G has at most countable connected components.
Proposition 2.1. Let
(S1) G is a subgroup of GL(n,C).
(A1) G is a topological group.
(A2) G has at most countable connected components.

Then the followings are hold.

(i) G is a Lie subgroup of GL(n,C)
(ii) There is V' which is a neighborhood of 1¢ and is a closed subset of GL(n,C) and the topology of V is
relative topology of GL(n,C)
Proof of that (i) = (i). We set U := G. V and U satisfies the condition (iii) in Definition2.2. O

Proof of that (i) = (ii). By the condition (iii-1) in Definition2.2, there is W such that W is an open subset of GL(n, C)
and V° =V NW. Clearly W is an open neighborhood of 1gpn,c). There is Wy such that Wy is an open subset of
GL(n,C) and 1 € Wy C Wy c UNW. We set V' := W, N V. By the condition (iii-1) in Definition2.2, there is Z such
that Z is an open subset of G and VNWy =V NZ. So V! = WyNV is a neighborhood of 1¢ in G. Because Wy C U, by
the condition (iii-2) in Definition2.2, V' is closed subset of GL(n,C). O

Proposition 2.2. Let
(S1) G is a Lie subgroup of GL(n,C).

Then, for any W which is a neighborhood of 1¢ in G, there is V' such that V' is a closed subset of GL(n,C) and V' is a
neighborhood of 1¢.

Proof. There is € > 0 such that B(lg,4e) NV C WNV. Because V C G,
B(lg,2) NV C B(lg,4)NV C W

Clearly B(1g,2¢) NV is a closed subset of GL(n,C).

There is Z such that Z is an open subset of G and 1 € Z and Z C V. By Propositionl.6, Z N B(1g,€) is an open
subset of Z. So, there is open subset of G O such that Z N B(lg,e) = ZNO. So ZNO is an open subset of G and
1€ ZNn0O C B(lg,2¢)NV. So, B(lg,2¢) NV is a neighborhood of 1. By Propositionl.6, The topology of B(lg,2¢) NV
is the relative topology to GL(n,C). O

21



Example 2.2. Let A\ be a irrelational number. Let G := exp(i2nA\Z) C GL(1,C). Le us assume G is a topological group
respects to the discrete topology. V := {1} is a neighborhood of 1 on G and V is a closed subset of GL(1,C). So, G is a
Lie subgroup of GL(1,C). Because T is compact, there is subsequence {exp(i2mAp(m))}S_, and © € T such that

lim exp(i2mAp(m)) = x

m— 00

Because X is irrelational, x ¢ G. So, G is not closed subset of GL(1,C).

Definition 2.3 (Linear Lie group of GL(n,C)). We call G € GL(n,C) is a Linear Lie group of GL(n,C) if G is closed
subgroup of GL(n,C)

Proposition 2.3. If G € GL(n,C) is a Linear Lie group of GL(n,C) then G is a Lie subgroup of GL(n,C)

Proof. Clearly G satisfies Definition2.2. Because GL(n,C) satisfies the second countable axiom, G satisfies the second
countable axiom. So G has at most countable connected components. O

Definition 2.4 (General Lie group). We say G is a Lie group if G is a topological group such that there is a Lie subgroup
of GL(n,C) which is locally isomorphic to G.

Proposition 2.4. Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).

(52) V' which is a neighborhood of 1, in Go and U which is a neighborhood of 1g, in G1 and isomorphism
1: U — V satisfying the conditions in Definition2.1..

(83) U' C U and V' :=i(U").
Then i|U’ satisfying the conditions in Definition2.1.
Proof of condition(i). It is trivial. O

Proof of condition(ii). Let us fix any z,y € U’. Let us assume zy € U’. Then by condition(i), i(x)i(y) = i(zy) € V'. Let
us assume #(z)i(y) € U'. Then axy € U. i(zy) = i(zx)i(y) € U'. Sozy € V. O

Proposition 2.5. Let
(S1) G4 is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).

Then there is V := GN B(lg,,€) for some € > 0 which is a compact neighborhood of 1¢, in Gy and U which is a compact
neighborhood of 1a, in G1 and isomorphism T : U =V satisfying the conditions in Definition2.1.

Proof. Let us fix U and V and 7 : U — V such that U is a neighborhood of 14, and V is a neighborhood of 14, and
7 : U — V is isomorphism satisfying the conditions in Definition2.1. There is a open set B; of GL(n,C) such that
V° = G2 N By. There is € > 0 such that B(1lg,,2¢) C B;. We set Vo := B(lg,,€) N Gy and Uy := 771(V3). Because
771G N B(1g,,¢€) is open set in the relative topology with G and subset of Uy, U; is the neighborhood of 1¢,. We set

n =71 Because G2 N B(lg,,e) C GaN By CV, Vo =V N B(lg,,€). So Va is a closed subset of V and Uj is a closed
subset of U.

By Propositionl.7 and Propositonl.6, 7|U; is homeomorphism. So U; is compact. Also, by Proposition2.4.1, 7|U;
satisfies conditions in Definition2.1. O

In this note, unless otherwise stated, U and V are assumed to be the neighborhoods obtained in Proposition2.5.
Proposition 2.6. Let

(S1) G is a Lie group which is isomorphic to a Lie subgroup G of GL(n,C).

(S2) V' which is a neighborhood of 1, in Go and U which is a neighborhood of 1g, in G1 and isomorphism
1: U — V satisfying the conditions in Definition2.1..

Then j :=i~' satisfying the conditions in Definition2.1.

Proof of condition(i). Let us fix any z,w € V. Let us assume zw € V. Then i(j(z))i(j(w)) € V. So j(z)j(w) € U. By

condition(i), i(j(2)j(w)) = i(j(2))i(j(w)) = zw. So j(2)j(w) = j(zw). O
Proof of condition(ii). Let us fix any z,w € V. Let us assume zw € V. By the proof of condition(i), j(z)j(w) € U.
Inversely, let us assume j(z)j(w) € U. Then by condition(ii), zw = i(j(2))i(j(w) € V. O
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2.2 Matrix exponential

Definition 2.5 (Operator Norm). For X € M(n,C),

[ Xop := [|X][:=  sup  [Xv]
llv]|=1, veCn

Definition 2.6. For X € M(n,C),
1 X oo == sup{[zi i, 5 € {1,2, ... n}}

Proposition 2.7. For X € M(n,C),
[1X]loo < [[X[lop < vl X[l

Proof of || X|le < || X|lop. For any i, € {1,2,..,n}, |zi | < |Xe;] < [1X]]. O

Proof of || X||op < v/1||X||oo. We set z; := (2;;)}_, for each i. For any u € C" such that |u| = 1, by Schwartz’s inequality,

| Xu| < [((z1]w), ..., (zn]u))| < \/571812110 |zi] < Vnl|X|]oo

ylyenn

Proposition2.7 implies the following.
Proposition 2.8. M (n,C) is banach space with the operator norm.
Proposition 2.9. Let
(S1) X € M(n,C)

Then for any eigenvalue X of X
Al < [[X]]

Proposition 2.10. Let
(S1) M :={X € M(n,C)| X is diagonalizable }
Then M is dense in M(n,C)
Proof. Because M is triangularisable(See [12]), there is P € GL(n,C) such that

*

(€51
Plmp =

We set for each 0 < s << 1

O s"
Because P~1M P+ E(s) has not a duplicate eigenvalue, so P~ M P+ E(s) is diagonalizable. So M(s) := M+PE(s)P~!
is diagonalizable. lir% M(s) =M. O

S—
Proposition 2.11. (S1) X € M(n,C)

(S2) f is a power series whose radius of convergence is not less than R > 0.
then

(i) If || X|| < R then f(X) exists.

(i1) f(X) is a horomoriphic function for each variable x; ;.

Proof of (i). We set f(z) =: i, ¢;X". By the definition of the radius of convergence,
D leill| X[ < o0
i=1
This implies that {>°1" ; ¢; X;}22, is a cauchy sequence. By Proposition2.8, f(X) exists. O
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Proof of (ii). We set f,,(X) := X" ,¢; X* for each n € N. By Proposition2.7, for any K € (0, R), {X € M(n,C)|||X|| < K}
is compact. And,

sup || fn(X) = fF(X)]] (2.2.1)
1] [<K
= sup || Xl
IXII<K Z-:Z,lil '
- S e
i1=n—+1

= 0 (n— o)

So {fn}52,; uniformly converges to f on compact sets. By Weierstrass’s theorem(See [6]), bhis implies that f is homo-
morphic. O

Proposition 2.12. Let
(S1) X € M(n,C)

(S2) f,h are power series whose radius of convergence is not less than R > 0.
(S3) w is a power series whose radius of convergence is not less than R’ > 0.
(A1) ||X]| < R.
then the followings hold
(i) Ifu= f+h and R= R’ then u(X) = f(X) + h(X).
(i1) If u= fh and R = R’ then u(X) = f(X)h(X).
(iii) If [[f(X)|| < R then wo f(X) = u(f(X)).
Proof. By Proposition2.9, clearly these Propositions hold in M.

By Proposition2.11, w, f + h, fh,u o f,u(f(:)) are continuous on M (n,C). So, by Proposition2.10, these Propositions
hold at X. O

Proposition 2.13. For any X € M(n,C)
det(exp(X)) = exp(tr(X)) (2.2.2)

Proof. Because det(exp(-)) and exp(tr(-)) are continuous, by Proposition2.10, it is enough to show (2.2.2) for any X €
M (n,C) such that X is diagonizable. Let us fix X € M(n,C) such that X is diagonizable. There is P € GL(n,C) such
M 0 .00 exp(Ay) 0 0

0 X ... O . And exp(PXP-1) = 0 exp(A2) ... 0
0 0 ... X 0 0 e exp(Ay)

that PXP~1 = So

det(exp(X)) = det(Pexp(X)P™)
= det(exp(PXP™1))
= erp(h)eap(ha)-eap(in)

= eap(Y_N)

exp(tr(PXP™1))
= exp(tr(X)) (2.2.3)

Proposition 2.14 (Exponential and Logarithm of matrix). Let

()X~ By’

(S1) log(X) := X2, i

for X € M(n,C) such that || X|| < 1.

then

(i) exp(log(X)) = X for any X € M(n,C) such that || X|| < 1.
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(i) log(exp(X)) = X for any X € M(n,C) such that || X|| <1 such that || X|| < log2.
Proof. By (iii) of Proposition, (i) and (ii) hold.
The following Proposition says exponential map is locally isomorphism.

Proposition 2.15.

(i) exp(:) is C* isomorphism to some open set in some neighborhood of O.

(ii) log(E + ) is C™ isomorphism to some open set in some neighborhood of E.
Proof. See the corollary of inverse mapping theorem in [13]

Proposition 2.16 (Basic properties about Exponential of matrix).

(i) exp(X +Y) = exp(X)exp(Y) for any X,Y € M(n,C) such that XY =Y X.
(ii) exp(X)™ = exp(mX) for any X € M(n,C) and m € N.

t’Xz

(iii) exp(tX) =YK, + O(tE+Y) (t = 0) for any X € M(n,C) and K € N.

(iv) %exp(tX) =exp(tX)X = Xexp(tX)

proof of (i).
C’iXin*"
exp(X +Y) = ZOOOE T
iP Xiyd—
S X5 v
04 4!
: i1 Xiyd—i
= XX, I .
IOyl gl
For any M € N
X yi i\ Xiyd—t
IS, mig— - SMonl s e
=041 O —a)! 4!
Xiyd
= ||EogisM,0§j§M,z’+j>MTj,||
< ow_ X
< 0<i<M,0<j<M,itj>M ~ 4
gl
X Y|
TS I .|| EJMOII I
jl
U XY
—SiLoS o Nl | l
0@ — )l j!
Because IXIF 0 (Y1
X Y|
IIEM a EMJf—ewp(l\Xll)ewp(HYH)
and X
j. X 3 Y J—t
lim M%7 || = exp([| X|| +[[Y]])

P G i
and exp(||X||)exp(||Y]]) = exp(]|X|| + ||Y]|), the following holds.

x| Y| : XY
i st X I g oy XV
J! (j—i)l! J!

M—00 1!

So

X! Y7
ea:p(X—l—Y):A}iin »M, 07 EM 0T = exp(X)exp(Y)
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proof of (ii). It is easy to show (ii) from (i) O
proof of (iii).

t X! X!
leap(tX) = SKo =l < 152k |
ti—K—i—lXi
= R e |

|t|i—K+1 | ‘X||1—K+1

< HEHX SR i
i—K+1 i—K+1
S
=[S THIX] R et X 1) (2.2.4)
O
proof of (iv). By (i), for any t5 € R
exp(tX) —exp(toX) = exp(toX)(exp((t —t9)X)—F)
= (eap((t —t0)X) — E)exp(toX)
By (i),
exp((t —t9)X) — F =X + o(t — to)
So (iv) holds. O

Proposition 2.17.

t2[X,Y]

exp(tX)exp(tY) = exp(t(X +Y) + 2

+o(t%))

Proof.
exp(tX)exp(tY) = (E+tX + %t2X2 +O(t))(E +tY + %t2Y2 +0(t%))
= E+tHX+Y)+ %tQ(Xz + Y24 2XY) 4 o(t?)
So
loglexp(tX)exp(tY)) = (X +Y)+ %t2(X2 + Y2 +2XY) + O(t%)
—%(t(X +Y)+ %tQ(XQ + Y% 4+2XY) +0(t%))?
+0(t%)
= t(X+Y)+ %752()(2 +Y?4+2XY) — %tQ(X +Y)?
+0(t%)
— X 4Y) 4 %tQ(XY _YX) +0()

By Proposition2.16,

exp(tX)exp(tY) = exp(t(X+Y)+ %tQ(XY —-YX)+0())

Proposition implies the following.

Proposition 2.18.

exp(tX)exp(tY exp(—tX)exp(—tY) = emp(t
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2.3 Lie algebra

2.3.1 Definition of Lie algebra

Definition 2.7 (Lie algebra of Lie subgroup). Let G is a Lie subgroup of GL(n,C). We set
Lie(G) :=={X € M(n,C)|exp(tX) € G (Vt € R)}

We call Lie(G) Lie algebra of G.

Definition 2.8 (Lie algebra of Lie group). Let Gy is a Lie group and Gy is a Lie subgroup of GL(n,C) such that Gy is
locally isomorphic to Go. We set Lie(Gy) := Lie(G3).

By Proposition2.32, Lie(G1) is well-defined.
Definition 2.9 (General Lie algebra). Let
(i) K be a field.

(i) L be a vector space on K.
(iii) L has operation [-,-] which satisfies the followings.
(a)Alternativity. [ X, X] =0 for any X € L.
(b)Jacobi’s Rule. [X,|Y,Z]| +|Y,[Z,X]]+[Z,[X,Y]] =0 for any X, Y, Z € L.
(c¢)Bilinearity. [aX + bY,cZ + dW] = ac[X, Z] + ad[X, W] + bc|Y, Z] + bd]Y, W] for any X, Y, Z, W € L
and a,b,c,d € K.

then we call L a Lie algebra on K.
Clearly, the followings hold.

Proposition 2.19. For any Lie albegra L,
[X,Y] = ~[Y.X] (VXY € L)

Definition 2.10 (Lie subalgebra, ideal). Let L be a Lie algebra. We call L' C L a Lie subalgebra of L if L' is a
subvectorspace of L and [L',L') C L'. And, if L' is a Lie subalgebra and [L,L'] C L' then we call L' is an ideal of L. We
call {0} and L are trivial ideals.

The following clearly holds.

Proposition 2.20. Let g be a Lie algebra and by and ho are ideals of g. We denote the minimam ideal containing by
and b2 by ([b1, ba]).

Proposition 2.21. Let g be a Lie algebra. Then 3 :={X € g|[X,Y] =0 (VY € g)}

Definition 2.11 (Simple Lie algebra). Let g be a Lie algebra. We call g is a simple Lie algebra if g has no non-trivial
ideals and g is not abelian.

By Proposition2.24, the following clearly holds.
Proposition 2.22. Let g be a simple Lie algebra. Then {([g,g]) = g.

Definition 2.12 (Direct sum of Lie algebras). Let L be a Lie algebra. And let gy, ..., gx be ideals of L and L = ©F_,g;.
Then we say L is the direct sum of g1, ..., §k-

Definition 2.13 (Abelian Lie algebra). Let g be a Lie algebra. We call g is an abelian Lie algebra if [g,g] = 0.
Proposition 2.23. Let 3 is the center of a Lie algebra and fix any X € 3. Then (X) is an ideal of g and irreducible.
By Proposition2.24, the following clearly holds.

Proposition 2.24. Let g is a Lie algebra which is the direct sum of g1, ..., 8k which are ideals of g. Then if i # j then

9, 85] = {0}

Proposition 2.25. Let g is a Lie algebra which is the direct sum of g1, ..., gx which are ideals of g. Let us fix any
1€ {1,2,...,k}. For any b which is an ideal of g;, b is an ideal of g.
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Proof. Let us fixany X € gand Y € g;. There are X; € g; (j =1,2,.,,,.k) such that X = Z?:l X;. By Proposition2.24,
XY =X,Yegyg;
O

Definition 2.14 (Semisimple Lie algebra). Let g be a Lie algebra. We call g is a semisimple Lie algebra if g is a direct
sum of finite simple Lie algebras.

Definition 2.15 (Reductive Lie algebra). Let g be a Lie algebra. We call g is a reductive Lie algebra if g is a direct sum
of finite simple Lie algebras and an abelian Lie algebras.

Proposition 2.26 (quotient Lie algebra). Let g be a Lie algebra and by be an ideal of g. Let g/h be the quotient vector
space. We set for each X,Y € g
[(X+5,Y +b=[X,Y]+b

[-,-] is the well-defined Lie bracket on g/h. So g/b is a Lie algebra.
Proof. For any X,Y € g and hx,hy € b,
(X 4+ hx,Y +hy] =[X, Y]+ [X, hy] = [Y + hy, hx]
So [X + hx,Y + hy| € [X,Y] +b. This means that [, -] is the well-defined Lie bracket on g/b. O
Proposition 2.27 (Adjoint representation of a Lie algebra). Let g be a Lie algebra. We set for each X € g
ad(X)Y = [X,Y] (Y €g)

Then

ad(aX +bY)=a-ad(X)+b-ad(Y) (Va,Vb € R,VX € g,VY € g) (2.3.1)

and
ad([X,Y]) = [ad(X),ad(Y)] (VX € g,VY € g) (2.3.2)

We call ad the adjoint representation of g.
Proof. By linearlity of Lie bracket, (2.3.1) holds. And for any X,Y,Z € g

([X,Y], Z]
= _[Z’ [Xa YH
(X, [Y, Z]] + [, [Z, X]]
(X, [v, Z]] - [V, [X, Z]]
(ad(X)ad(Y) — ad(Y)ad(X))Z
[ad(X),ad(Y)]Z

7, X
X,Z

So (2.3.2) holds. 0

2.3.2 Examples of Lie group and Lie algebra

Example 2.3 (R*). Clearly R* is Linear Liegroup of GL(1,C). So R* is Lie subgroup of GL(1,C). And clearly
Lie(R*) = R.

Example 2.4 (C*). Clearly C* is Linear Liegroup of GL(1,C) and Lie(C*) = C.

Clearly G := {(z _ab) la,b € Rsuchthata® + b* # 0} is Lie subgroup GL(2,R and G is isomorphic to C* and

Lie(G) = {(Z ab) la,b € R}. Clearly the right side is subset of the left side. We will show the proof of the inverse in

below.

Proof. Let us fix any X € Lie(G).
exp(tX) = E+tX +O(t?) (t — 0)

We define
M(t) == (a(t) b(%) = exp(tX) —tX
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So there is C' > 0 such that ||M(t)|| < C|t|? for any t € R. We assume |z11 — 22| # 0.
We pick t # 0 such that

|$1,1 — X222

< ST

Because X € Let(G)
t(z11 — w22)| = |a(t) — d(1)]|
Because for any t € [—1,1] |a(t) — d(t)] < 2C|t|*> < |t||z11 — z2.2],
[t(z1,1 — 22,2)| < [t|z1,1 — T2,2]
So 1 < 1. It implies contradiction. O
Example 2.5 (SL(n,R), SL(n,C)). By Proposition2.13,
Lie(SL(n,R)) = {X € M(n,R)|tr(X) =0}

Example 2.6 (O(n), U(n)).
Lie(O(n)) = {X € M(n,RIXT = - X} (2.3.3)
Lie(U(n)) ={X € M(n,C|X* = =X} (2.3.4)
proof of (2.3.3). Let us fixany X € M(n,R) such that X7 = —X. Then for any t € R exp(tX)exp(tX)T = exp(tX)exp(tXT) ==
exp(tX)exp(—tX) = E. So the right side is subset of Lie(O(n)). Nextly let us fix any X € Lie(O(n)). Because

for any ¢t € R exp(tX) € M(n,R). By the argument similar to Example2.4, X € M(n,R). By Proposition2.2,
E = exp(tX)exp(tX)T = exp(t(X + XT) + O(t?)). By the argument similar to Example2.4, X + X7 = O. O

proof of (2.3.4). It is similar to the proof of (2.3.3). O

Lie(SL(n,R)) = {X € M(n,R)|¢tr(X) = 0}

Lie(SL(n,C)) ={X € M(n,C)|tr(X) = 0}
Example 2.7 (R). Because i : R 3 ¢ — exp(t) € (0,00) is isomorphism of topological groups, R is a Lie group. Clearly
Lie(R) = {a + nrila € R,n € Z}.
Example 2.8 (C). By inverse function theorem about holomorphic function, i : R x (=m,7) 3 (a,b) — exp(a)exp(ib)R is
isomorphism of topological spaces. Clearly i|R x (—g, g) is isomorphism in Definition2.1. So C is a Lie group. Clearly
Lie(C) =C.

2.3.3 Basic properties of Lie algebra
Lemma 2.1. Let

(S1) A:N>n+— A(n) € M(n,C) and B:N>n— B(n) € M(n,C).
(A1) B(m) = O(—)

2
(A2) S = supmen||A(m)||™ < oo

then
{Amm)(B + Bom)}™ = A(m)™ +O(-)
Proof.
{AG)(B + BOn)Y™ = A(n)(E + Bm)) A(m)(E + B(m)...A(m)(E + B(m))
= A(m)"+)_ C(m)
k=1
Here, for each k € {1,2,...,m}
Cr(m) = | Z | A(m)* B(m)A(m)™2B(m)...A(m)™ B(m)A(m)™ "2~
Then [[Ci(m)l| < Gl AGm) [ B@F < ZmFO(—0) = O().
S0 Sy 1Ckm)]| = 1y (m) + SR [ICk(m)I| < O(--) +mO(-—5) = O, a



Proposition 2.28. Let G is a Lie sub group of GL(n,C). Then Lie(G) is a R-vector space and for any X,Y € Lie(G)
[X,Y] € Lie(G).

Proof. There is W such that W is an open subset of GL(n,C) and 1 € W and WNG C V.
By the definition of Lie(G), For any X € Lie(G) and a € R, aX € Lie(G).
Let us fix any X,Y € Lie(G). By Proposition2.2,

exp(sX)exp(sY) = exp(s(X +Y) + O(5?)) = exp(s(X + Y))(E + O(s%)) (s — 0)

So
t 1o 1

ferp(-- (X + Y))(E + O(—p))™ = explt(X +Y)) +O(-)

This implies
1 t

exp(t(X +Y)) + O(E) = {exp(a

There is § > 0 such that exp(s(X +Y) € W (Vs € (=6,0)). Let us fix s € (—4,9). So for sufficient larget m € N
1 1

exp(s(X +Y)) + O(E) eEWNG. So exp(s(X +Y))+ O(E) ev,

Because V is closed set, exp(t(X +Y)) € V. Consequently X +Y € Lie(G).
Also, by similar argument to the above one,

X)exp(%Y)}m (m — 50)

exp(t[X,Y]) = n%i_r)n()o{exp(%X)exp(%Y)exp(%X)exp(%Y)}m

Consequently [X,Y] € Lie(G). O

From the proof of Proposition, the following holds.

Proposition 2.29. Let G is a Lie subgroup of GL(n,C) and V is a closed subset of GL(n,C) and V is a neighborhood
of 1g. And we set
gy :={X € M(n,Clexp(tX) € V, |t| < 1}

Then gy is a R-vector space and for any X,Y € gy [X,Y] € gy.

2.4 The structure of C“-class manifold of Lie group
2.4.1 Local coordinate system of Lie group

Lemma 2.2. For Xy, Xs, ..., X,, € M(n,C),

m

exp(Xi)exp(Xa)...exp(Xp) = E+ X1+ Xo+ ... + X + O(Z [ X))

i=1

Proof. For any i,
o(l1Xill) = oY I1Xill)
i=1
So, by the definition of exponential of matrix and Lemma2.4.1

exp(X1)exp(Xa)...cap(Xpm)
= (E+ X1 + o[ X1|))(E + X5 + (|| Xl [))--(E + Xon + 0{] | Xul})
= F+Xi+Xo4 . 4+ X,

+ > X, Xy Xy + 00> [1X])
2<k<m,i1 <iz<...<ij =1
= E+X1 4+ Xo+ .. +X,,

+ > o(Xi,) + oY [1Xil)
2<k<m,i1 <iz<...<ij =1

= E4+ X1+ Xo4 ..t X

+ > o> 11Xl + o> IIXil])
2<k<m,i1<iz<...<ip i=1 i=1

m

= E+Xi+Xo+ ..+ X +0>_|IXil])

i=1
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O
Lemma 2.3. Let us fix any subvectorspace V1 and V2 of C™ such that V3 & Vo = C™. Then Vi and Va are closed subset.

Proof. There is P € GL(n,C) such that V; = P{w € C"w; =0 (j = 1,2,....,dimV})}P~! and Vo = P{w € C"|w; =
0(j=dimVy +1,..,n)}P1 O

Lemma 2.4. Let
(S1) G = GL(n,C).
(52) g1, 92, .-, @m are vector subspaces of Lie(G) such that
Lie(Gz) = ®i,9:
(S3) gi(e) :={X € Lie(G)|||X]| < €} (1 =1,2,...,m,e > 0).

i: @ 8.(e) - G
w w
(X1, Xo, ..., Xm) +—  exp(Xi)exp(Xa)...exp(X,y,)

then there is € > 0 such that i(®219i(€)) is an open set and i| ®, gi(¢) is C¥-class isomorphism.

Proof. We set

j:G — M(n,C)

w w
y = log(y)
By Lemma2.2,
joi(X1, Xa, ooy Xim) = X1 4 Xo 4 oo X + o(|| X ]| + || Xa]| + - 4 [ Xl )
So, the jacobian of j o4 at O is non-singular. By inverse function theorem(see [13]), the proposition holds. O

Lemma 2.5. Let
(S1) Gy is a Lie subgroup of GL(n,C).

Then for sufficient small € > 0,
G2 Nexp(B(0,¢€)) = exp(Lie(G2) N B(O,¢))

Proof of the right side C the left side. It is trivial. O

Proof of the left side C the right side. There is a vector subspace g such that M(n,C) = Lie(G) & q. Proposition2.4,
: Lie(G)®q 3 (X,Y) — exp(X)exp(Y) is locally homeomorphism. Let us assume there is {ex}32; C (0,1) such that
hm e = 0 and for each ¢ the left side C the right side. By Lemma2.4, there are Z; € B(O,¢x) and X € Lie(G2) and

k— o0
Y € q (k=1,2,...) such that for any k
exp(Zy) = exp(Xy)exp(Yy)
and
lim [[Xp[| =0, lim [[Yy|| =0
k—oco k—oo

and
Ykl # 0
We can assume |[Y|| < 1 for any k. Because B(O, 1) is compact, there is a subsequence {Y,, (1)}, such that hm [

Y. Clearly ||Y|| = 1. By Proposition2.3, Y € q. So Y ¢ Lie(G).
Because V is a neighborhood of 1¢,, there is € > 0 such that exp(B(O,¢€)) NGy C V. Let us fix any ¢t € (0, ¢).

||Y< 0 Ve =
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Hrk]

Because 1, := fm] — 00, t= kli_)n(’)lo o So
exp(tY) = lim exp( H::] 5 Y (k)
= [lim exp(Yp()) 7]
For any k,

exp([tre| Yo = {exp(— X )exp(Zom) '™ € Go Nexp(B(O,€)) C V

Because V is closed set, exp(tY) € V. So for any t € R

t
- 1
et ea,

exp(tY) = exp(

[5]‘*‘1

So Y € Lie(G2). This is contradiction. O
Proposition 2.30. Let G be a topological group and Gy be a connected component of G which contains 1g. Then Gy is
closed normal subgroup of G.

Proof. Because G is connected, Gy = Gy. So Gy is closed. Because x +— ™! is isomorphism, Gal is connected and
1g € Gal. So Gal C Gy. Because = +— gz is isomorphism, for any g € G, gGy is connected and contains 1. So for any

g € Go, gGo C Gy. This implies that G is subgroup of G. And for any g € Go, gGog~ ' is connected and contains 1..
So for any g € Go, gGog~' C Gy. This implies that Gy is a normal subgroup of G. O

Proposition 2.31. Let

(S1) G is a connected Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) Gs.
(S2) Gy is a connected component of G1 which contains 1g, .

(A1) N is a connected open neighborhood of 1¢, .

(S3) Np, := {nina..nm|n; € N, i =1,2,...,m} for each m € N.

then

(i) Go is closed and open subset of G.

(ii) Go = UX,N;.

(i1i) Any connected component of Gy is closed and open subset of Gy.

(iv) Gy satisfies the second axiom of countability. Specially, Gy is paracompact.

(v) Gy is separable.

(vi) G is o-compact.
Proof of (i) and (ii). By Lemma2.5, we can assume N = n(exp(Lie(G2) N B(O,¢))) for some € > 0 and N = N~1. We
set H := U2, N;. By continuity of multiple operation in G, for each ¢ € N, NN; is connected. Because 1¢, € N; for any

i € N, H is connected. So,
H C Gy

Because N, is an open subset for each m € N, H is an open subset. Let us fix any g € H¢. If we assume gN N H # ¢, then
there is m € N and there are ng € N and n1,no, ..., nm € N such that gng = ning..nym. So g € N,y N~' = N,,N = Npy1.
This implise g € H. This is a contradiction. So gNNH = ¢. This means H is a closed subset of G;. Because Go C HUH®
and H is open and H°€ is open and G is connected and Gy N H # ¢, Go N H¢ = ¢. This means

GoCH
So Go = H. 0

Proof of (ii). Let us fix and set any connected component of G; C. And let us fix g9 € C. Clearly C = goGp. Because
L, is isomorphism, C is open and closed. O
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Proof of (iv)(v). In the proof of (ii), we set N’ := n(exp(Lie(G2) N B(O,¢€))). By (ii), Go = U2 ;N/. Because N,
is compact for any n € N, clearly, G satisfies the second axiom of countability. Because B(O,¢€)) is separable, N’ is
separable. Because N, is separable for any n € N, clearly, Gy is separable. And, by (S1) and (iii), G; satisfies the second
axiom of countability and G is separable. O

Proof of (vi). Let {X;}22, is a sequence of all connected components of G. Let fix {z;}{2, such that z; € X; (Vi). In
(A1), we can assume that N is relative compact. Then G = UX_; UL 2N, and Uz, N, is compact (Vm € N). So,
G is o-compact. O

From the proof of Lemma2.5, by Proposition2.2, the following holds.
Lemma 2.6. Let

(S1) Gy is a Lie subgroup of GL(n,C).
(A1) W is a neighborhood of 1¢, in Ga.
(52) gw = {X € M(n,Clexp(tX) e W |t| < 1}.

Then for sufficient small € > 0,
W Nexp(B(O,€)) = exp(gw N B(O,¢€))

Proposition 2.32. Let G is a Lie subgroup of GL(n,C) and W is a neighborhood of 1. Then
Lie(G) ={X € M(n,C)lexp(tX) e W (0 <t << 1)}

Proof. By Proposition2.2, there is V' such that V is a closed subset of GL(n,C) and V is a neighborhood of 1 and V' C W.
Clearly gy C gw and gy C Lie(G). We assume that there is X € Lie(G) \ gv. By Proposition2.29, (X) N gy = {0}. By
Lemma2.4, there is 6 > 0 such that

(—9,0) x (B(O,6)Ngyv) 3 (t,Y) — exp(tX)exp(Y) € GL(n,C)

is injective. By Lemma2.6, {exp(tX)exp(gy N B(O,0))}ie(—s,6) is a family of neighborhood of some point of G. Because
{exp(tX)exp(gv N B(O,09))}ie(—s.5) are disjoint, G does not satisfy the second axiom. This contradicts with Proposi-
tion2.31. O

By Lemma2.6 and Proposition2.32, the following holds.
Lemma 2.7. Let

(S1) Gs is a Lie subgroup of GL(n,C).
(A1) W is a neighborhood of 1a, in Gs.
(52) gw = {X € M(n,Clexp(tX) e W [t| <« 1}.

Then for sufficient small € > 0,
W Nexp(B(O,¢€)) = exp(Lie(G2) N B(O,¢€)) (2.4.1)

Theorem 2.1 (von Neumann-Cartan’s theorem I). Let

(S1) G is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(52) 91,92, ..., 9m are vector subspaces of Lie(G2) such that

Lie(Gg) = @ﬁlgi (2.4.2)
(53) gi(e) :={X € Lie(Go)|||X]|| < €} (1 =1,2,...,m,e > 0).
(S4) For any x € Go

by @;ilgi(e) — Ga
w w
(X1, X2,.., Xm) — zexp(Xiy)exp(Xa)...exp(Xp,) (2.4.3)

(S5) ¢ =1,
(S6) ¢ := exp(:)
then
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(i) Gy is a C¥-manifold and {n, o ¢}.cq, is a local coordinate system.
(ii) {n.ov}.eq, is a local corrdinate system which is equivalent to {n, o ¢}.cq, -

(i1i) There are open neighborhood of 1¢, U and open neighborhood of 1g, V and 7 : U — V is a C¥-class
homeomorphism.

STEPI1. Showing i, is locally injective. We set

Jz G2 — M(’I’L,(C)

w w
y +—  log(zty) (2.4.4)
By Lemma2.2,
Ju 0t (X1, Xoy oo, Xin) = X1+ Xo 4+ oo+ Xop + o(|| X0 || + | X2 + - + || Xml]) (2.4.5)
So, the jacobian of j, o i, at O is non-singular. By inverse function theorem(see [13]), i, is locally injective. O

STEP2. Constructing local corrdinates system of Go. By Lemma2.7, there is € > 0 such that
Ve := exp(Lie(G) N B(0,¢)) =V Nexp(B(O,¢)) (2.4.6)

Clearly V. is an open neighborhood of 1¢,. By (2.4.6), for any Xy € Lie(G) N B(O,¢€) and ¢ > 0 such that B(Xy,d) C
B(Oye),
exp(Lie(G) N B(Xy,d)) =V Nexp(B(Xy,9)) (2.4.7)

Because the topology of V' is equal to the relative topology respect to GL(n,C), i. : Lie(G)NB(O0,¢€) — GaNexp(B(O,¢))
is an continous and open map. By STEP1, i, is a homeomorphism.
And, for any x € Ga, i, : Lie(Gy) N B(O,€) — zV, is homeomorphism. O

STEPS. Constructing local corrdinates system of G1. There is 6 > 0 such that
VsV Vs C VL (2.4.8)

Us :=n(Vs). For any 2/ € Gy, ¢, : Lie(G2) N B(0,0) 2 X — z'n(exp(X)) € 2'Us. Clearly ¢/, is homeomorphism. By
Proposition, U, and V; satisfy the conditions in Definition2.1. O

STEP/. Showing (i). Let us assume zUsNwUs # ¢ and let us fix any X € ¢, 1 (2UsNwUs) and let us set Y := ¢, (4. (X)).
Then
Y = log(t(w™ zn(exp(X))) (2.4.9)

There are u,,u, € Us and v,, v, € V5 such that
Uy = Wy
and
N(vz) = uz, n(vy) = uy
By (2.4.8),
vyt eV, (2.4.10)

So
This implies
By (2.4.10),

So
Y = log(r(n(vyzy " )n(exp(X)))) (2.4.11)
Because v,z texp(X) € V,
n(vyzz n(exp(X)) = n(vyaz  exp(X))
So
Y = log(v,z; texp(X)) (2.4.12)

Consequently, ¢! o ¢, is C*-class. O

w
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STEP5. Showing (ii). It is possible to show (iil) by from STEP1. to STEPA4.
STEPG6. Showing ¥ ~' o ¢ is locally C*-homeomorphism. It is possible to show STEP6 by STEPL.
STEP7. Showing (ii). If zUs N wUs # ¢,

¢_1oTwonzo¢:¢_1o¢oz/)_1o7'wo77zo¢oqp_lo¢

and
Y loryonop=vtor,on, 00 og
So by STEPG6, (iii) holds. O

Proposition 2.33. Let G be a Lie group. Then there is an open neighborhood U such that U has no subgroups without
{e}.

Case when Lie(G) = {0}. By von-Neumann Cartan theorem, {e} is an open neighborhood. O

Case when Lie(G) # {0}. There is € > 0 such that Fxp : Lie(G) N B(0,2¢) > X — Exzp(X) € Exp(Lie(G) N B(O, 2¢)) is
a diffeomorphism and Exp(Lie(G) N B(O, 2¢)) is an open subset of G. We set U := Exp(Lie(G) N B(O,¢)). Let us any

X X
Ezp(X) € U such that X € Lie(G) N B(O,¢) \ {0}. We set g := Exp(Lqu) Then € < LH ||J||X|| < 2. So,g¢U.
This implies that U has no subgroups without {e}. O

€ €

2.4.2 Analycity of Lie group

Definition 2.16 (One-parameter group). We call g € C(R, G) a one-parameter group of G if g(s+1t) = g(s)g(t) (for any
s,teR).

Proposition 2.34. Let Gy be a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C). Let us assume T is a
local isomorphism from G1 to Go. And let g € C(R, G) be a one-parameter group of G. Then there is € > 0 and such that
there is the unique X € Lie(G2) such that

7(g9(s)) = exp(sX) Vs € (—¢,¢) (2.4.13)

Ezistence. Let us fix 7: U — V is a local isomorphism and ¢ > 0 and i : Lie(G2) N B(O,2¢) — G Nexp(B(O,2¢)) be a
homeomorphism and § > 0 such that g((—26,20)) C U. There is the one-parameter subgroup h such that h|(—24,26) =
7 o g|(—26,29).
If h = 1¢g,, then O satisfies (2.4.13). Else if h = 1¢,, there is tg € (0,0) and X; € Lie(G2) N B(O,¢€) such that
X
la, # h(ty) = exp(X1). We set X := t—l
0
There is Y7 € Lie(G2) N B(O, €) such that

M) = eap(i)

Then exp(X1) = h(to) = exp(2Y7). Because 2Y; € Lie(G2) N B(O, 2¢), X1 = 2Y7. So,
4

h(g) = eozp(%Xl)

And there is Y7 € Lie(G2) N B(O, €) such that
to
n(2) = eap(vs)
t
Then exp(Y;) = h(§0) = exp(2Y2). Because 2Y3 € Lie(G2) N B(O,2¢), Y1 = 2Y5. So,

t 1 1
h(zo) = €$P(§Y1) = exp(ZXl)

So, by mathematical induction,
t 1
h(=2) = exp(5; X1) (Ym € N)

By calculating powers of both sides,
k k
h(toyn) = eﬂfp(to2meo) (Vk,m € N)
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k k
Because {t02—m|kz, m € N such that o < 1} is dense in [0, ],

h(t) = exp(tXp) (Vt € (—0,0))
O

Uniqueness. Let us fix any X,Y € Lie(G2) such that exp(tX) = exp(tY) (Vt € R). If there is a € R such that X = aY,
exp(t(a —1)Y) = E (Vt € R). By (i) of Theorem2.1,a=1or Y =0.

If there is X and Y are linear independent, there are Zi, Z>, ..., Z, such that Zy, Z,, ..., Z., X, —Y are the basis of
Lie(G3). exp(tX) = exp(tY’) implies exp(tX)exp(t(—Y)) = e. This contradicts with (ii) of Theorem2.1. O

Theorem 2.2. Let

(S1) G1,1 be a Lie group which is isomorphic to a Lie subgroup G12 of GL(n,C).
(S2) Ga,1 be a Lie group which is isomorphic to a Lie subgroup Gz of GL(n,C).
(A1) ® € C(G11,G2,1) is a homomorphism.

then
(i) There is a homomorphisim of Lie algebras v : Lie(G1,1) — Lie(Ga,1) such that
®(m (exp(tX)) = m2(exp(tu(X))) (Jt| < 1) (2.4.14)

(i) ® is C¥-class.

(iii) If @ is a local isomorphism, then v is an isomorphism.
STEP1. constructing ¢. For each X € Lie(G1 1), by Proposition2.34, there is only one Y such that

& (1 (exp(tX))) = m(exp(tY)) (any t such that |t| < 1)
We set «(X) =Y. O
STEP2. Showing ¢ is a linear. For any X € Lie(G1,1) and a € R, clearly ¢(aX) := ac(X).
For any X, Y € Lie(G1,1) and ¢ € R such that [t] < 1,

B (cxp(t(X +1))))
= B ( Jim (erp( X)erp(LY))™)

= @ Jim_ni((eap( - X)eap(--¥)™)

— lim (n((enplo-X)eap(--Y)")

= W}gnoo @(nl((emp(%X)exp(%Y)))m)

= Jim B0 ((eap(-X)eap(—Y )™

t

Zy )y
= lim {mpeap(-- (X)) maeap( (V)1
= lim {ma(erp(--u(X))erp(-u(Y))}"
=l m({erp(-u(X))erp(-u(Y))}™)

= i Jim {erp(-u(X))erp(--u(Y)))™)
= mt(X) + oY)

= lim {20 (eap(-- X)) 2 (cap(

So
UX+Y)=uX)+(Y)
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STEP2. Showing (ii). Let 1); is the local corrdinate of G; 2 in von Neumann-Cartan’s theorem(i = 1,2). By (i), for any
x € G117 and X € Lie(Gy,1) such that || X|| <« 1

O (111 0 Py (X)) = @(2)2(vh3 " (1(X))
This implies
Va(Ta(a) 2(P(ne1 0 U7 (X)) = o(X)
Because ¢ is a linear mapping, ¢ is C“. O

STEP3. Showing ¢([X,Y]) = [«(X), (Y
D (1 (exp(t([X, Y]

= d(m(

—_
—_

. By Proposition2.18, for any X, Y € Lie(G1,1) and ¢ € R such that |t| < 1,
)
X

%

~—
]
8

=

(%Mp(‘?ﬁmexp(%mm»
M ern = xpeep( =L vyym)
™)

(gY)exp(%ﬁX)exp(_?\/{Y
™)
My yean 2L x)eap =L yym)
ViV

—Vi ;\/EY
(gY)exp(TX)exp(W IN™

(exp(

lim
m—00

= @ lim n((exp(——X)

m—0o0

S
s

= lim ®(m((exp(—X)

g
=S

Ay ern( =L )ep(Y
—Vi ;ﬁy

= lim @ ((eap(-X)

g
S

S
3

= lim ®(n((eap(-X)

X)

S
s

= Tim_ B0 ((ea(

=t (@ (e X))@l erp L)@ eapt— L) @0 (- Loy

S S Y

= tim {maern( 00 nateap( (v ) mafean(- V) ma(emp(- Yy

=t a0 Nern(- Y0 Yy

- ngnoow({exp%aof))exp(?(Y))expv%(X»exp(f?(m)}m)

= ol tim Lern( a0 ep( L (v )ep(~ Lu(X)eap(~ L)y

= m2(tu(X),«(Y)])

Proposition 2.35. Let
(S1) G11 be a Lie group which is isomorphic to a Lie subgroup G12 of GL(n,C).
(S2) Ga,1 be a Lie group which is isomorphic to a Lie subgroup Gz of GL(n,C).
(S3) Gs1 be a Lie group which is isomorphic to a Lie subgroup Gs o of GL(n,C).
(A1) f:G1,1 — Gaa is a homomorphism of Lie groups.
(A2) g: Go1 — G311 is a homomorphism of Lie groups.

(S4) By Propositionprop:homomorphismanalytic, homomorphisms of Lie algebras derived from fog, f,g, re-
spectively. We define ®(f o g), ®(f), ®(g) are homomorphisms of Lie algebras derived from f o g, f,g,
respectively.

then

(fog)=2(g) 0 @(f) (2.4.15)
Proof. Let us fix any X € Lie(G1,1). Because for ¢ € R such that |t] < 1

n3(exp(t®(g o f)X)

= go f(m(exp(tX)))
9(n2(expt®(f) X))

= ns(exp(t®(g)®(f)X))
®(fog) =2(g) 0 2(f). O
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By Theorem2.2, any inner automorphism of G; is C*-class. By von-Neumann Cartan’s theorem, This implies the
following two Proposition.

Proposition 2.36. Let

(S1) G is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).

(S52) For sufficient small open neighborhood of 1g, V and z € Gy, we set p, : V 3 g gz € Gy.
then

(i) {p-0@}.eq, is a local corrdinate system of G which is equivalent to {n, o ¢}.cq, -

(ii) {p. o ¥}eq, is a local corrdinate system of G1 which is equivalent to {n, oY }.cq, -

Proposition 2.37. Let
(S1) G is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
then for any g € G,

(1) lg : G1 3 x — gx € Gy is C¥-class homeomorphism.

(i) rg : G1 2 & — xg € Gy is C¥-class homeomorphism.
These Propositions imply the following theorem.
Theorem 2.3 (von Neumann-Cartan’s theorem II). Let
(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(S2) 91,92, ..., 9m are vector subspaces of Lie(Gs3) such that
Lie(G2) = &2, 0
(S3) gi(e) :={X € Lie(G2)|||X|| < €} (:i=1,2,...,m,e > 0).
(S4) For any z € G

iy Bitigi(e) — Go
w w
(X1,X2,..., X)) +—  zexp(Xi)exp(Xa)...exp(Xym)
then G1 x G1 3 (x,y) = xy~t € Gy is C¥-class.
Proposition 2.38 (Exponential mapping of Lie algebra). Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(52) € > 0 and exp(Lie(G1) N B(O,¢)).

(S3) For each X € Lie(G1), set Exp(X) = n(exp(ﬁ))m for m € N such that X € B(O,e¢).
m m
then the followings hold.

(i) Exp is well-defined and continuous.

X X i X
Proof of (i). Let us fix any m,m’ € N such that — € B(O,¢) and — € B(O,¢). Then ! € B(O,¢) i =
m m
0,1,...,maz(m,m’). By the Definition of locally isomorphism(Definition2.1),
(eap(—- X))™ = nleap(—— X )™ = nleap(-5 X))™
exp(— = n(ex = n(exp(—
nexp m nexp mm! nexp m'
So Exp is well-defined. Because n and exp are continuous and (G is topological group, Exp is continuous. O
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2.5 Correspondence between Lie groups and Lie algebras
2.5.1 Tangent space of Lie Groups
Proposition 2.39. Let

(S1) Gy is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(S2) For each X € Lie(G1),

UX)(f) = oo fnleap(tX) (] € C=(16,))

then 1(Lie(G1)) C Thg, (G1) and v : Lie(G1) — Ti4, (G1) is a isomorphism of vector spaces.
STEPO:Proof of 1(Lie(G1)) C Tig, (G1). By Leibniz product rule in calculas, «(Lie(G1)) C Tig, (G1)- O

STEP1:Proof of linearity of v. Let us fix any X € Lie(G;1) and a € R. For the formula of the compositition of f(n(exp(-X)))
and a-, t(aX) = a(X)
And let us fix any Y € Lie(G1). By Lemma2.2,

FO X +Y)) = flele™ v(HX +Y))))) = f(n(e((tX,tY) +o(t))))

By the chain rule, «(X + Y)(f) = %‘
t=0

Ffn(p(uX,wY))) and ¢t — (tX,tY),
Because f(n(exp(t(X +Y)))) = f(n(exp(tX)exp(tY) + o(t))),

4
dt,—o

fn(p(tX,tY))). By applying the chain rulte to the composition of (u,w)

(X, tY))) = «(X)(f) + «(X)(f)

O

STEP2:Proof of that v is injective. Let us fin any X € Lie(G1) such that X # O. By linearity of ¢, it is enought to show
1(X) # 0. There is Xo, X3, ..., X,. € Lie(G1) such that X, X, X3, ..., X,. is a basis of Lie(G1). Here, r := Lie(G;). Let us

set fx(n((ty, ta, ... tr))) :=t1 for [t1] < 1,..., |t,| < 1. Clearly fx € C*(1¢g,) and «(X)(fx) =1. So «(X) # 0. O
STEP3:Proof of that v is surjective. By Proposition2.1, dim T, = Lie(G1). By this and STEP1 and STEP2, ¢ is surjec-
tive. O

2.5.2 Homomorphism of Lie groups

Theorem 2.4. Let

(S1) G1,1 be a Lie group which is isomorphic to a Lie subgroup G12 of GL(n,C).
(S2) Ga1 be a Lie group which is isomorphic to a Lie subgroup Ga2 of GL(n,C).
(A1) ® € C(G11,G2,1) is a homomorphism.

then

(1) d®.(i1(X)) = i2(«(X)) (VX € Lie(G11). Here, i; : Lie(G;1) = Te(Gi1) (i = 1,2) are isomorphisms of
two vector spaces.

(i) ©(Bap(X)) = Bapliz (d, (i (X)) (VX € Lie(G1,))
STEP1. Showing (i). Let us fix any X € Lie(G1,1) and f € C*(1g,,). Then

f(@(m(exp(tX)))) = f(nz(expti(X))) (VE: |t] < 1)

Differentiating both sides by ¢ and setting ¢ = 0,

d®c (12 (X)) (f) = i2(«(X))(f)
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STEP2. Showing (ii). Let us fix any X € Lie(G1,1). For sufficient large m € N,

B(Brp(--X))"

@(Brp(X))
= B(m(eap(-X))"

= mafenp(u( X))

2.5.3 Invariant vector fields of Lie Groups

It is easy to show the following proposition.

Proposition 2.40 (Regular representation on C*°(G)). Let Gy be a Lie group which is locally isomorphic to a linear Lie
subgroup Go. For g € Gy and f € C*(G), we set

m(9)f(x) == f(g~ x), 7r(9)f(x) == f(zg), (z € G1) (2.5.1)

Then wp, and mgr are representation of G1. We call 7w, the left regular representation of G1 and mr the right reqular
representation of G1

Proof. By

(917 (g92) f(x)
= w92 f(gy ')
flgs g )
f((9192) ")
= 7TL(9192)f(fU)

and

Tr(91)TrR(92) f(2)
= 7r(g2)f(zg1)
= [f(zg192)
= 7TR(9192)f( )

7y, and TR are representation of G. O

Definition 2.17 (2(M)). Let M be a C*-class manifold. Denote the set of all C*°-class vector fields by X. Denote the
algebra on R generated by C*°(M,R) and X(M) with the operation of Endc(C*(M)) by 2(M).

Definition 2.18 (Invariant vector field on a Lie group). Let Gy be a Lie group which is locally isomorphic to a Lie
subgroup Go. We call P € 2(G1) an left invariant differential operation if wp(g)P = Pw(g) for any g € G1. We call
P € 2(G1) an right invariant differential operation if nr(g)P = Prg(g) for any g € Gy. If P € X(G1) then we call P a
left invariant vector field on Gy by X1 (G1). If P € X(G1) then we call P a right invariant vector field on Gy. We denote
the set of all left invariant differential fields on G1 by by X (G1). We denote the set of all right invariant differential
fields on Gy by by Xr(G1).

The following clearly holds.
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Proposition 2.41. Let Gy be a Lie group which is locally isomorphic to a Lie subgroup Go. Then X1(G1) and Xg(G1)
are algebras on R.

Proposition 2.42. Let

(S1) G is a Lie group which is isomorphic to a Lie subgroup Go of GL(n,C).
(S2) For each X € Lie(G),

v (X) () (@) := %\tzof(xn(exp(tX))) (feC®(g,, v €G1)) (2.5.2)

and
(X)) = Sleollerp(—1X))2) (f € C=(la,, = € C)) (2.5.3)

then the followings hold.
(i) i1, is an isomorphism of Lie algebras between Lie(G1) and X1, (G1). In particular, for anly X,Y € Lie(Gy)
[tn(X), e (Y)] = (X, Y]) (2.5.4)
(i) tr is an isomorphism of Lie algebras between Lie(G1) and Xr(G1).

STEP1. 11,(Lie(G1)) C X1(G1). By analiticity of multiple operation of G and the product rule in calculas, ¢f,(Lie(G1)) C
XL(G1). For any g € G7 and f € C*(G,) and = € Gy,

71(9)en(X)(f)(x)
= w(X)(f)g™")

= o e menp(iX))
= 2 1 enenp(X))g

— i7rL(g)f(scn(exp(tx)))|t:0

dt
= w(X)mr(g)f(x) (2.5.5)
So ¢1,(X) is left invariant. O
STEP2. 1r(Lie(G1)) C Xr(Gy). It is easy to show this by the similar method to STEP1. O
STEPS. v, and 1 are R-linear and injective. It is easy to show this by the similar method to Proposition2.39. O

STEPS. 11, and vg are surjective. Let us fix any F' € X1(G1). By Proposition2.39, there is X € Lie(G1) such that
F(f)(e) = uX)(f) (Vf € C*(Gy), Yz € G1) (2.5.6)
Because F' is a left invariant vector field, for any x € Gy,

F(f)(e) =
= mE D))
= Pl )
= Sl e (X))o

_ %f(xn(exp(tX)))lt:O
= L)) (25.7)
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STEPS5. Calculas of 1([X,Y]). Let us fix any f € C*(1¢,).
By Proposition2.18,

(X YD)
= O Fnlenp (11X, Y1) emo

= %f(n(ewp(ﬁX)ewp(\/iY)ea:p(—MiX)exp(—\/iY)))|t:0 (2.5.8)

O

STEPG6. Taylor expansion of f(n(exp(t; X1)exp(taXsa)exp(ts Xs)exp(t4Xy4))). By the definition of ¢z, for any iy € Z N
[0, 00),

on(Xa)™ (f) (exp(ti X1)exp(taXo)exp(ts X3))

= (%)i4f(77(exp(t1X1)6xp(t2X2)€$p(t3X3)eﬂfp(t4X4)|t4:0 (2.5.9)

By repeating the above discussion in the same manner below, for any 41,142, i3,44 € Z N [0,00),

v (X1) " ep(Xa)2ep (X3) 2 ep (Xa)™ () (e)

J . )
= (871)21...(a—u)“f(n(ﬂizle:cp(th,c))\t:O (2.5.10)
So,
flexp(t1 X1)exp(taXa)exp(ts Xs)exp(taXy))
= f(e)
4
+ Y w(Xp()
k=1
1111 i 4 i1 N
T e a0 S
+ o) (2.5.11)

O

STEP7. Showing t,([X,Y]) = [tp(X),n(Y)]. Inwesett; =ty = —t3 =ty =tand X; = —Xsg=Xand Xo =X, =Y
in (2.5.11),

Fleap(VEX)eap(VEY )eap(—VEX )exp(~ViY))
= fle)
+ (X)), o(X]()E
+ o(t)) (2.5.12)
By (2.5.8),
(X, YD) = [(X), «(XN(F) (2.5.13)
O

STEP4 in the proof of Proposition2.42 implies the following Proposition.

Proposition 2.43. Let Gy be a Lie group which is locally isomorphic to a Lie subgroup Go. Let us fiz any Fy, Fy € X1,(G1)
such that Fy(f)(e) = Fa(f)(e) (Vf € C(e)). Then Fy = F.

2.5.4 Taylor expansion of C“-class function

STEPG in the proof of Proposition2.42 implies the following Proposition.
Proposition 2.44. Let

(S1) Gy be a Lie group which is locally isomorphic to a Lie subgroup Gs.
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(52) f be a C*-class function at a neighborhood of 1g, .
(53) Xq,.., X € Lze(Gl)
(S4) 9(t) = f(3L, tiX).

Then
0 .. 0

(871) (%) mg(0) = op (X1)" e, (X)) f (2.5.14)
Theorem 2.5. Let

(S1) Gi1 is a Lie group which is isomorphic to a Lie subgroup G1 2 of GL(n,C).
(S2) Ga1 is a Lie group which is isomorphic to a Lie subgroup Ga 2 of GL(n,C).

then the followings are equivalent.

(i) Lie(G1,1) and Lie(Go,1) are isomorphic.

(i) G11 and Go1 are locally isomorphic.

Proof of (ii) = (i). If (ii), by the same argument of the proof of Proposition2.2 and Lemma2.6 and von Neumann-
Cartan’s theorem, (i) = (i). O

Proof of (i) = (ii). Let ® : Lie(G11 — Lie(G2,1 be an isomorphism. Let Xi1,..., X1, be a basis of Lie(G1,1. And
let us set Xo,; := ®(X1,) (1 =1,2,...,m). Weset e; : (—€,€)™ > (t1,....tm) = I exp(t; X;:) (j =1,2). Thereis e >0
such that e;((—¢, €)™) is an open subset of G; and e;((—e¢,€)™) C V; and e; is homeomorphism(j = 1, 2).

Weset U : i (e1((—€,€)™)) = n2(e2((—€,€)™)) by ¥(e1(t)) := ea(t). Thereis § > 0such that e;((—6,)™)e;((—6,0)™) C
ej((—e,€)™) (j =1,2). We set ¢;;: (—6,6)?™ — (—¢,€) by

ej(@)e;(y) = ej(dji(z, ), .. djm(z,Y)) (2.5.15)

j=1,2). We set ¢;;(e;j(x)e;j(y)) := ¢;;(x,y). By von Neumann-Cartan’s theorem, ¢ ;1 are relal analytic functions.
3,9\€j J 7, {3.4}
So, for each j,i there are Cj; 15 I,J € Z™

Gji(w,y) =Y Chig st (2.5.16)
We will show ¢ ; = ¢p2,; (i =1,2,...,m). By Proposition2.44,
Chiag = tn(X1)™or, (Xom) ™ e (X1 en, (Xom )" 405.4(0) (2.5.17)

Let us fix k,1 € {1,2,...,m}. Because ® is an isomorphism, there is ¢ 11, ..., Ck,;,m € R such that

(X X0] = ) e 1i X (2.5.18)
=1
So, by (2.5.4),
e (X )en (X50) = e (X500 (X k) + ) erpaen(X;,0) (2.5.19)
=1

By repeating apply of this equation to ¢z, (X1)™ ...t (Xm)'™, Cr,i1.0 = Cair.g. S0 ¢p1; = o, (i =1,2,...,m).

sy

We set W, :=n;(e;j((—6,6)?m)) j = 1,2. Because ¢1,; = ¢2; (i =1,2,...,m), for each x,y € Wy

xy €Wy <= U(x)U(y) € Wy (2.5.20)

and if xy € W,
U(zy) = U(x)T(y) (2.5.21)
Consequently, G1,; and G5 ; are locally isomorphic. O
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2.5.5 Differential representation
Clearly the following holds.
Proposition 2.45 (Definition of differential representation of a continuous representation of Lie group). Let
(S1) G is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C). Ga has at most countable
connected components.
(S2) (m,V) is a finite dimensional continuous representation of G.
(S3) P :={v1,va,...., 0.} is a basis of V.
(S4) For each f € Endc(V), denote the representation matriz with respect to P by ®(f).
(S5) By ®|GL(V) : GL(V) — GL(n,C), introduces a topology of GL(V').
Then

(i) ®|GL(V): GL(V) — GL(n,C) is an isomorphism of topological groups. So, GL(V') is a Lie group.
(ii) m: G1 — GL(V) is an homomorphism of Lie groups.

(i1i) Lie(GL(V)) = M(nC). By Proposition2.2, © introduces the homomorphism from Lie(G1) to M (nC). we
denote this homomorphism by dm.. We call dr. the differential representation of m.

(iv) dm is continuous.
Proof of (iv). Because dr is a linear mapping from Lie(G1) to M (nC), dr is continuous. O
Proposition 2.46 (Adjoint representation of a Lie group). Let

(S1) Gy is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C). Gy has at most countable
connected components.

(S2) For each g € Gy, we define o(g) € Auto(G) by o(g)(x) := grg~! (z € G1).
Then

(i) For any g € Gy, o(g) is an automorhism of a Lie group. By Proposition2.2, we denote the endmorphism
of Lie(G1) by Ad(g).
(i) Ad(G1) C GL(Lie(Gy))
(i1i) (Ad,GL(Lie(G1))) is a continuous representation of G on R.

Proof of (i). Because 0(g71) = o(g)~! and analyticity of the group operation on Gj, (i) holds. O

Proof of (ii). Because o(lg,) = idg,, Ad(lg,) = idLeq,)- Let us fix any g,h € G1. Because o(gh) = o(g)o(h), Ad(gh)
is the homomorphism of a Lie algebra Lie(Gy) derived from o(g)o(h). By Proposition2.35, Ad(gh) = Ad(g)Ad(h). So,
Ad(G1) € GL(Lie(Gy)). O

Proof of (iii). Let us fix v := (v1, v2,...,v,) which is a basis of Lie(G1). We denote the representation matrix of Ad(g)
respect to v by R(g). Let us fix € > 0 such that exp(B(O,¢e) N Lie(G1)) C V. Let us fix § > 0 such that {vY|Y €
B(0,25) N C"} C B(O,¢€) N Lie(Gy). For any Y € B(0,1) NC", exp(§Ad(g)vY) = 7(gn(exp(5Y))g~1). So,

1

vR(g)Y = Slog(r(gn(ezp(dY))g ")) (2.5.22)
By setting Y = ey, ..., Y = e,,, vR(-) is continuous. Because v is N x r-matrix and rank(v) = r, R(-) is continuous. So,
(Ad, Lie(Gy)) is a continuous representation of Gj. O

Proposition 2.47. Here are the settings and assumptions.
(S1) Gy is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C).
Then

(i) dAd = ad.
(i) Ad(Exzp(X)) = Exp(ad(X)) (VX € Lie(Gy).
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Proof of (i). Let us assume i : Lie(G1) — T.(G1) be an isomorphism of vector spaces in Proposition2.39. Let us fix any
X,Y € Lie(Gq) and s,t € R such that |s| < 1,[t| < 1 and f € C°°(e). Then

F(Bap(sAd(Eap(tX))Y)) = f(Bap(tX)Eap(sY)Eap(~tX))

And, by Proposition2.4,
Ad(Exp(tX)) = exp(tdAd(X))

Because

1o S om0 f (Bap(1X) Exp(sY ) Brpl(~1X)
d d

= £|s=0a
d .

= o ls=0i(s[X, Y])(f)

= (X, Y])(f) = i(ad(X)Y)(f)

le=of (n(exp(sY) + st[X, Y] + O(t?)))

and

4
dt =0

= L lemoi(Ad(Bap(tX)) (V)(f)

% |s=0f(Ezp(sAd(Ezp(tz))Y))

= Lloieap(tdAd(X)(V)(f)

- %L&:oi(E + tdAd(X)(Y) + O(t*))(f)

= Sleoi(B)(f) + @A) (V)(F) + O)

= i(dAd(X)(Y))(f)
i(dA(X)(Y))(f) = i(ad(X)Y)(f). So, dAd = ad. 0

Proof of (ii). By (2.5.5) and (i),
Ad(Exp(X)) = Exp(dAd(X)) = Ezp(ad(X))

Proposition 2.48. Here are the settings and assumptions.

(S1) G is a linear Lie group of GL(n,C).
Then for any g € G

(i) The representation matriz of Ag(g) is g @ (g7) ™" with basis {E; j}; ;.

(ir) det(Ag(g)) = 1.

Proof of (i). We set h := g~1. Let us fix any i, jo and i, j. Then
(940400 )iy = (9Fi009 iy = Y (9Bi0jo)iibiy = > 9ik(Big o kilig = Gisiohos = Giiol] 4o
! k.l

So, the representation matrix of Ag(g) is g ® (¢7)7 . O
Proof of (ii). By Propositionl.5 and (i), (ii) holds. O

2.5.6 Baker-Campbell-Hausdorff formula
Proposition 2.49. Here are the settings and assumptions.
(S1) S,T € M(n,C).
Then
E — exp(—ad(S))

| oerp(—S)eap(S + sT) = ad(9)

ds
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STEPI1. Simplifieing S. Clearly
d
£|5:06(£p(75)6xp(5 + sT)

and

P
are continuous respects to S. For any P € GL(n,C)

d
P£|s:06xp(75)ezp(5 +sT)P~!

d
= d—|s:06xp(fPSP71)ezp(PSP71 +sPTP™!)
s

and

Py (-1 ad(S)" p-1

= (p+1)!

N L pad(PSPThY
= p;)( R I VL

So, we can assume S is a diagonal matrix.
STEP2. Linearity respects to T. By Wierstrass’s theorem,

exp(—S)exp(S + sT)

(S + sT)?
= exp(—S) lim |5 OZ +S

m—> ds

We set
SJrsT
L, (T) := exp(— |s OZ

Because
d .
—|s=0 (S T)
" omolS + T)

= %E:o Z sSITS™I71 4 o(s)

=0

= ) STsI

Jj=0

L., () is linear for any m € N. Because L,,(-) normed converges to

d
g\szoea@p(—S)exp(S +s°)

di|s:o€$p(—5)exp(5 + s-) is linear.
s

STEPS. Simplifying T. By STEP2, we can assume T' = Ej ;.

STEP. Showing this equation. If [S,T] = 0, the both side equals to T. So, we can assume [S,T] # 0. We set Ay, ...

by
A O 0
g_ 0 X 0
0 0 An
We set A = A; — ;. Then
ST = \T
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Because [S,T] # 0, A\; # \; and i # j. Because A\;T and T are commutative, by replacing S by S — A\;T', we can assume
A; = 0. Then

TS=T1T°=0
So

ad(S)T = AT

d
bS5 +4)

d
= |s Uexp {ZS

T+o 1)}

Consequently, this Proposition holds. O
Proposition 2.50. Let
(S1) S,T € M(n,C).

Then

. log2
(1) I It < o5
X1+ 1Y

(ii) We set {Zm}%_1 by Z(t) =3 °_| Znt™ then
Z1=X+Y

then Z(t) := log(exp(tX)exp(tY')) converges.

and for any m € NN [2,00)
Im= > CeadW,,)..ad(We,_,)ad(X)Y (2.5.23)
ce{0,1}m~2
Here Wy := X and W1 :=Y and C. € Q and C, does not X,Y .
(i) If || X ||+ ||Y]| < log2 then Z :=>""_| Z, exists and exp(X)exp(Y) = expZ.

log2

Proof of (i). U |t| < ————
< =T+ 7

then
|lexp(tX)exp(tY) — El|

mog o my
s 13 b S v
=0 1=0
< am |3 xS v -
- m—oo = Z! = Z!

leap[t[[| X |[lexplt|[[Y]] — 1|

leaplt| (I X + Y1) — 1]
1

IN

AN CIA
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log2
So, if [t| < o9

So

Because

by Proposition2.49,

So,

Because

has no constant,

X[+ 1Yl
Proof of (ii). By Proposition2.47,

then log(exp(tX)exp(tY')) converges.

& enp(z(1)

%exp(tX)ea:p(tY)
exp(tX)Xexp(tY) + exp(tX)exp(tY)Y

exp(tX)exp(tY)exp(—tY)Xexp(tY) + exp(tX)exp(tY)Y
exp(Z(t))(exp(—tY)Xexp(tY) +Y)
exp(Z(t))(exp(—tad(Y))X +Y)

exp(—Z(t))%exp(Z( t)) = exp(—tad(Y))X +Y

cap(~2(1)) eap(Z(1)
= eap(-2(0) 5 lamocpl(Z(t +5)
= cap(-2(0)) - smocap(Z (1) + 57'(1) + o)
= eap(~Z(1)) Slsmoeap(Z(1) + 57'(1)) +ols)

= eap(~Z(0) L lioean(Z(1) +7'(1)

(—l)pMZ’(t) — cap(—tad(Y))X + Y

— Z( 1)P+1 ad(Z(1 ))'p Z'(t) + exp(—tad(Y)) X +Y

Sy st 2

Z1=X+Y

We assume Z1, ..., Z,, satisfies the condition (2.5.23). Because

and

Z(t) = Zit + Zot? + ... + Zpyt™ +

Z'(t) =t + 220t + .. - MZpt™ "+ (M A 1) Zpy i ™

m _1)ym .
(m+1)Zmi1 = > 1Zi, ... 25, 7y + ( m? ad(Y)™X

k=1 11++’Lk+(l71):’n’L71
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Because of (2.5.6) and the assumption of this mathematical induction,

(m+1)Zm1

= > Dicad(We,)..ad(We,_,)ad(X)X
e€{0,1}m—1
+ > Dacad(We,)...ad(We,_,)ad(X)Y
ee{0,1}m~-1
+ Y Dscad(W,,)..ad(W,,_,)ad(Y)X
ec{0,1}m—1
+ Y. Diycad(W.,)..ad(We,_,)ad(Y)Y
ee{0,1}m~-1

Because ad(X)X =0 and ad(Y)Y =0 and ad(Y)X = —ad(X)Y,

(m + I)Zm—H

= > (D2 — Dso)ad(We,)...ad(We,,_, )ad(X)Y
e€{0,1}m—1

So Z,,+1 satisfies the condition (2.5.23). O

2.5.7 Analytic subgroup
Theorem 2.6 (Analytic subgroup). Let

(S1) G is a Lie group which is locally isomorphic to a linear Lie subgroup G2 of GL(n,C).
(S2) b be a Lie subalgebra of Lig(Gy).

Then there is H such that H ‘s a subgroup of G1 and H is a Lie group and Lie(H) = . We say H is a analytic subgroup
of G whose Lie algebra is b.

STEP1. Construction of H. There are X1, ..., Xp, ..., X, ..., Xn € M(n,C) such that N = n? and Xi,..., Xy is a basis
of M(n,C) Xy,..., Xk, ..., X;, is a basis of Lie(G1) and X, ..., X is a basis of h. By von Neumann-Cartan’s theorem,
there is € > 0 such that

e:(—€,e)" Dt Exp(z t;X;) € Gy

i=1
is a C'“-class homeomorphism to an open subset of U and
N
E:(—e, o)V 5t Exp(z t;X;) € GL(nC)
i=1

is a C“-class homeomorphism to an open subset of GL(nC). We set
H :={Ezp(X1)...Exp(X;)|Xy,....,X; € b, l € N}
Clearly H is subgroup of G;. O

STEP2. Constructing the topology of H. We set the topology of H whose fundamental neighborhood system of H is
{hExp(Br(0,s¢€))|0 < s < 1, h € H}. We will show {hExp(B;(0,s¢))|0 < s < 1, h € H} satisfies the aixoms of a
fundamental neighborhood system.

Let us fix any exp(zle t;X;) such that t € (—se, se)¥. We will show there is § > 0 such that

k k

k
exp(z tiXi)exp(Z(—(;, 0NX;) C ea:p(Z(fse, s€)X;) (2.5.24)

i=1 i=1 i=1
There is €; > 0 such that t + (—ey,€1)* C (—se, se)*. There is § € (0, €) such that

k k k N

eap(d_tiXi)exp(Y (=0,0)X;) Ceap(d X+ (—e1,6)X))

i=1 i=1 i=1 i=1
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By the continuity of exp and log, we can assume

k k N

log(exp( Zt Xi) exp(Z( 3,0)X;)) C Z(—e,e)Xi

i=1 i=1 =1
By Baker-Campbell-Hausdorff formula,

k k N

log(exp(z tiXi)exp(Z(—é, 9)X,)) C Z(—e, eX;Nh

i=1 =1 i=1

Because e;vp|(ZN 1(—¢€,€)X;) is injective,

M»

exp Zt i X:))exp( ( 0,0)X;)
=1 =1
k k N
- BCCp(Z(—G, G)Xi N t: X + Z —€1, E1
i=1 i=1 i=1

K
= BIP(Z X5 + Z(*Eh €1)X;)
i=1 i=1
K

- easp(Z(—se, s6)X;)

i=1
Let us fix any hq, ho € H such that
h1Exp(Bi (0, s1€)) N haExp(By(O, s2€)) # ¢

Then there is u; € FExp(Bi(O, s1€)) and us € Exp(By (O, s2€)) such that hiu; = hous. By (2.5.24), there is § > 0 such
that w3 Exp(Bg(0,0)) C Exp(Bi(0, s1€)) and ug Exp(By(0,9)) C Exp(Bi (0, sg€)).

h1Exp(B (0, s1€)) D hyui Exp(By(0,9))
= hlugEacp(Bk(O, (5)) C hQE{,Ep(Bk(O, 826))

Consequently, {hExp(By(O, s€))|0 < s < 1, h € H} satisfies the aixoms of a fundamental neighborhood system.
O

STEP3. Showing properties of H. Clearly Exp : h — H is continuous. Because By (O, ¢) is connected and Exp is contin-
uous, Exp(By(O,¢€)) is a connected. So H is connected. And clearly H is Housdorff space. O

STEP4. Showing H is a topological group. It is enough to show continuity of the multiple operation and the inverse
operation of H. Let us fix any ¢g1,92 € H and s € [0,1). We set g := gflgg. It is enouth to show for sufficient small
51,82 € [0,1) {g1 Exp((Bk(O, s1€))} g2 Exp((By (O, s2¢)) is contained gExp((By (O, se)). For sufficient small X,Y € b,

{91Ezp(X)} g2 Bap(Y')
= Eap(-X)gEzp(Y)
99 ' Exp(=X)gExp(Y)
= gBExp(-Ad(g~")X)Exp(Y)

By the defitnition of H, there are Zy, ..., Z; € b such that
g~ " = exp(Zy)...exp(Z)
So, by Proposition2.47,

Ad(gHX
= Ad(exp(Zy))...Ad(exp(Zy)) X
= exp(ad(Zy))...exp(ad(Zy)) X
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By Proposition2.3, b is a closed subset of M(n,C). So, Ad(g~')X € bh. By Baker-Campbell-Hausdorff’s formula, for
sufficient small X,Y € b,
Bap(—Ad(g~")X)Exp(Y) € Exp((Bi(0, s¢))

So, the multiple operation and the inverse operation of H are continuous.
O

STEP5. Showing H is a Lie group. We can assume 7(e((—¢,€)™)) C V. By Baker-Campbell-Hausdorff’s formula, there
is €7 > 0 such that

T(e([=er, 1] x {0} )7 (e([=er, 1] x {0}"7F)) € 7(e((—e, €)% x {0} 7))

We set Vi := 7(e([—e1, €1]% x {0}™F)). Clearly Vj is a neighborhood of the unit element in H and Vi C V. Because
7(e([—e1, €1]% x {0}™~*)) is compact subset of GL(n,C), Vg is closed subset of GL(n,C). We will show the topology of
Vi is equal to the relative topology of GL(n,C). It is enough to show for any t € [—ey, €] such that for any o < e

k k k N

Ve N eatp(z tiXi)eacp(Z(—oz, a)X;) =V N eacp(z tiXi)exp(Z(—oz, a)X;)

i=1 i=1 i=1 i=1
Let us fix any t € [—€1,€1]% and o < € and

k k N

exp(z tiXi)u € eﬂﬁp(z tiXi)el‘P(Z(—% ) X;) NVg

i=1 i=1 i=1

Because e:cp(Zle —tiXi)exp(Zle[—el,el]XZ-) C emp(Zle(—Q €)X;) and exp is injective in Ei]\il(—e, €)X,

k
we eap(3(~e, ) X;)
i=1
So,
k k k
emp(z t; Xi)u € ewp(z tiXi)exp(Z(—a,a)Xi)
i=1 i=1 i=1
Consequently, H is a Lie group. Clearly Lie(H) = b. O

Proposition 2.51. Let G be a Lie group and H is a closed subgroup of G. Then H is a Lie group.

STEPI1. Showing that H has at most countable connected components. For any h € H, the connected component of H
which contains h(called H},) is contained some connected component of G.So, H has at most countable connected com-
ponents. 0

STEP2. Showing that H is a Lie group. We set
h:={X € M(n,C)|Exp(tX) e UNH (Jt| < 1)}

Because U N H is closed, by the argument which is similar to the proof of Proposition2.3.3, b is a Lie algebra. And clearly
b is a Lie subalgebra of Lie(G). Let us take Xy, ..., Xk, ..., Xin, ..., Xy which is a basis of M (n,C) such that X, ..., X} is
a basis of h and X3, ..., X, is a basis of Lie(G). Because U N H is closed and H satisfies the second countable axiom, by
the argument which is similar to the proof of Lemma2.7 and Baker-Campbell-Hausdorff formula,

k m N

Exp(hN Z(—e, )X;) = Emp(Z(—e, )X;,)NH= Exp(Z(—e, )X;,)NH

We set

So, by the argument which is similar to the proof of Theorem2.6, Vi is closed neighborhood of e and the relative topology of
Vi to G is equal to the relative topology of Vi to GL(n,C). So, by Proposition2.32, H is a Lie group and h = Lie(H). O
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2.6 Invariant measure

2.6.1 Existence of Invariant measure

Definition 2.19 (Baire measure). Let X be a locally compact Housdorff space. We say p is a Baire measure on X if
Ce(X) € LY(X, p)

Definition 2.20 (Invariant measure). Let G be a locally compact topological group. We say p is a left invariant measure
on G if for any f € C.(G) and any go € G

/fmm@@wa/ﬂmwm>
G G

We say p is a right invariant measure on G or a right Haar measure on G if for any f € C.(G) and any go € G

| Homin(o) = [ f(a)auts)
G G
We say G is unimodular if there is a left and right Haar measure on G. We call a left and right Haar measure on G
a Haar measure on G.
We say p is a right invariant measure on G
Notation 2.1. Let G be a Lie group and go € G. For each g € G and x € G, Ly, () := gox.
Definition 2.21 (Left invariant form). Let
(S1) G is a Lie group and m := Lie(G).
(52) w is a m-form on G.

We say w is left invariant if for any g € G dLyw = w. Here, for eahc v1,...,vm € Tp(G),
(dLgw)z (V1 ..., Um) 1= Wy (dLgv1, ..., dLgvm)

Lemma 2.8. Let G be a Lie group and m := Lie(G). And let us w. a antisymmetric m-th tensor at 1g and w # 0. For
each © € G and vy, ...vym € Tp(G),
We (V1 oy U ) 1= We (AL, M1, .y AL 0y

Then w is a C¥-class left invariant form.
Proof. Let us fix any g, € G and vy, ..., vy, € Tn(G).
(Lgw)z(v1, ..., Um)
= wga(dLgv1,...,dLgvp,)
we(dL,,) dLgvy, ...,dL, .} dLgvn,)
we(dLy'dL, dLgvy, ..., dLy "dL, ' dLgvn, )

= we(dL vy, .y dL;  vy) = we(v1, ooy U)

Lemma 2.9. Let

(S1) G be a Lie group.

(52) w be a C¥-class left invariant form.

(S3) g €G.

(S4) (Ua, o) and (Ug, ) are local coordinates on G and gUg N Uy # ¢.
(S5) For any x € Uy and y € Ug

Wo = B (2)dpar A . Adom, wy =Ls(y)ddss A ... Adpgm

Then, for any x € Ug N L;an,
Pp(x) = det(J (Yo © Lg © ¢3)(¥(x))) Palgr)
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Proof. Let us fix any x € Ug N L;an. Then
Wy = @/3(1‘)(d¢5,1 VANPIVAN dd)g,m)x

and
Wgz = @a(gx)(d¢a71 AN A d¢a,m)gw
50, B B B d
ol (G (o) = Ly (). ALl (7))
and
e (AL (52 )ALy (22 ),)) = et (b o Ly 0 b5) (165 ()

6wﬁ,m

These implies that
Dy(x) = Pa(ga)det (Yo © Ly 0 dp)(vp(x))

By following the argument of the proof of Lemma2.9 in reverse, we can show the following proposition.
Lemma 2.10. Here are settings and assumptions.
(S1) G is a Lie group.
(52) {Uq, Y0 }aca is a system of local corrdinates of G.
(53) {Potaca is a family such that @, € C*(Uy,R) (Va € A).
(A1) Then, for any g € G and x € Ug N L, U,
Dp(x) = det(J (tha © Lg 0 ¢5)(¥3(2))) Pa(g7)

(S4) We set
wy = o (2)dpa1 A ... Nddam (x € Uy, a0 € A)

Then w is well-defined and C* left-invariant form.
Proposition 2.52. Here are settings and assumptions.

(S1) G is a Lie group.

(52) wis a C™ class form on G such that wy #0 (Vg € G)
(583) w is the measure on G induced by w.

(A1) p is left invariant.

Then w is a left invariant form.

Proof. By Lemma2.9, There is a {U,, ¥a aca is a system of local corrdinates of G preserving the orientation of G and
@, > 0 on U, (Va € A) and det(d,' o Lyotpg) > 0. Let us fix any g € G and Ug N g U, # ¢. Let us fix any
f € C(gUsNU,). Because p is left invariant,

/UﬂmglU (g9x)dp(z / fgz)du(z / flx)dp(x /gUﬁmUa f(x)du(x) = /wal(gUBmUa)f(wa(x))fﬁa(z/}a(m))dx

By change-of-variables formula for integral

[ Hevdnta) = [ Pl ()@ (15 (1))dy
Usng—1U, Vg (UpNg~'Ua)

@) @alg @) det(05 0 Ly o) s
Yo (gUsNUa)

So, for any g € G and x € Ug N L U,,

Dp(x) = |det(J (Yo © Lg 0 ¢5)(¥p(2)))|Pa(g2)
Because det(J(ta © Ly 0 ¢5)(¥5(x))) > 0

Dp(x) = det(J (o o Lg 0 ¢5)(¥5(2)))Palgr)

So, w is left invariant form. O
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Lemma2.9 implies the following.
Lemma 2.11. Let G be a Lie group in which there is a left invariant form w. Then G is orientable and w is C*-class .

Proof. By replacing two variables if necessary, there is a local coordinate system {Uy, ¥4 }aca such that &, > 0 (Vo € A).
By Lemma2.9, {U,, s taca preserves the orientation of G. O

Lemma 2.12. Let

(S1) M is a paracompact C™-class manifold.

(52) H: M — M is a C*°-class homeomorphism.

(53) {Uq}aen is a open covering of M.

(S4) f is a C*-class function on M.

(A1) supp(f) is compact and there is o € A such that supp(f) C Us.

Then there are {Ug, }N., and {fi}., € C°(M) such that {H(Ug,)}N, is a covering of supp(f) and

and

Proof. Because supp(f) is compact, there are {Ug, }¥; such that {H(Ugs, )}, is a covering of supp(f). Because supp(f)
is paracompact and {H (Ug, )}, is a open covering of supp(f), there is {h;}; C C°°(M) such that {h;} , is a partition
of unity which is subordinate to {H (Ug,)}Y.,. We set f; :=h; (i =1,2,...,N). Clearly {fi}Y, satisfies the conditions in
this Proposition. O

By Riesz-Markov-Kakutani representation theorem|8], any left invariant measure induces a measure.
Theorem 2.7. Let
(S1) G be a Lie group.
Then

(i) There is C*-class left invariant form w on G.
(i) G is orientable by w.

(iii) The measure induced from w is left invariant. Specially, G has a left invariant measure.

Proof. (i) is from Lemma2.8. (ii) is from Lemma2.11. We will show (iii). We set m := Lie(G). Let us fix f € C°(G) and
go € G. For z € G,

(Lgo f) () := f(gox)

By (ii) and the second contable axiom, there is {U;, 15, Vi, ®;, p;i 12, such that {U;,1;}$2, is a local coordinate system of
G and {U;,¥;}$2, is local finite and for each i V; € O(R™)

Vi Ui = V;
is an homeomorphism and {U;,1;}32, preserves a orientation of G and for each ¢ and = € U;
Wy = (DZ(ZL')(d'l/Jl’l TANAN dwz,m)z

and ®; > 0 and {p;}2, is a partition of unity subordinating {U,;}$2,. We set for each i, f; := fp;. By Lebesgue’s

convergence theorem,
fw= /fiw» /L fw= /L fiw

/GfiWZ/GLgofiw

So, it is enough to show for each 4
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By Lemma 2.12, we can assume that for each ¢, there is j such that supp(Lg, f;) C U;. Because supp(f;) is compact, there
is an open set U/ such that
supp(f;) C U} C U;

and
supp(Lyg, fi) = Ly supp(f;) C L U, € U;

We set ¢; := 1, * and V; := ¢;(U;) and ¢, := wj_l and V; := ¢;(U;). By change-of-variables formula for integral and
Lemma2.9,

[ twto=[ s (w)is
G wj(Lyo U£

= [ 5(6ilansy @) (a)ds
¥ (Lgg U]

= / fi(¢i(i o Ly, 0 (7))
P (

Ly U})

xdet(J(1h; © Lgy 0 ¢5)) (5 0 Lyl s 0 1hs 0 Ly, 0 ¢5(x)))) ™"
X®;(1hj 0 Ly i 0pi 0 Lg, 0 ¢5(x))))

[ 5t w0 Ly o 0,)) 0 0 Lyt 0 04(3)
<b,(1 0 Ly, 64(y)dy

/ F(6:(9))®: () dy
’

= /C;fiw

O
2.6.2 Haar measure
Theorem 2.8. Let
(S1) G be a Lie group with m := dimLie(QG).
(S2) Wt is a left invariant m-form and W is a right m-form on G.
(A1) wk = wk.
(S3) dgr, is the left invariant measure induced from w™. dggr is the right invariant measure induced from w't.
Then
(i) wf = det(Ad(-))w’.
(ii) dgr = |det(Ad(-))|dgr. We set Ap(-) := |det(Ad(-))| and Ag(-) := |det(Ad(-))| L.
Proof. Tt is enough to show (i). Let us fix any g € G. and v € Ty(G) and u := dL,'v. Then
Wl (V) = w(dLyu) = we(dRydLyu) = wo((Ad(g)i~ (u)) = det(Ad(g) )we ()
= det(Ad(g))we(dLg_lv) = det(Ad(g))w" (v)
This implies (i). O

Proposition 2.53. Any compact Lie group is unimodular.

Proof. Let us fix any G be a compact Lie group. Clearly, |det(Ad(G))| is compact subgroup of RZ. So, |det(Ad(G))| =
{1}. O

55



2.6.3 Integral on all inverse elements
Proposition 2.54. Let

(S1) G is a Lie group.

(S2) I:G3g—gted.

(83) [ € Ce(G).

(S4) w be a left invariant and right invariant form on G.

/G Flg™hw = /G Flg)w

STEP1. Construction of a left invariant form. We set m := dim(Lie(G)). Let us fix {(Ua,¥a)}aca & system of local
coordinates which preserves the orientation of G. Let us fix {as}aea such that for any a € A a,, € C*(U,,) and

then

W|Uq = aqdpl A ... A dp™
Then {(I(Us),%a o I71)}aen a system of local coordinates of G. For any «, 8 € A such that (I(U,) N (I(Ug) # ¢,
Yo oI 'o Wﬁ 01_1)_1 = Ya O¢§1

So, {(I(Us),%a © I 1) }aeca preserves the orientation of G.
We set w’ by
w’g(ul,ug, vy Uy ) 1= U.}Ifl(g)((dl)l L(g) ULy s (dI)Iill(g)um)

We will show w’ is left invarinat. Because w is right invariant,
wE (o) (@L)gv1, . (dLy) gum) = Wog ((dLy) gv1, (L) gUim) :wI(zg)((dl)I(my)(dL )g 1}1,...,(dl)7(1 o (dL2)gvm)
= ((dI)I(vcy (dL[([E)) (d]) I(zy) (dL1($));1vm) = w[(wq)(d(LI(:v) (e} I))I(xy)vh veey d(L[(w) e} I))I(acy)vm)
= wreg(dIoR ),(}w)vl, d(I oR ),(zy) Um) = WR, (0 10y, (A1 © Ry )I(w)ul, wd(I o R, )I(my)vm)
-1 —

- wRI(wW(gW((dR )Ruaz)(zm)(dl)f(g)vl’"' (AR, )Rumu(g))(dl)f(g)”m)

= sz(I)(z(g»((dRI ac)) (dl)](g)vl7"' (dRI(z )](g)(dl)j(g)vnl)

= wi )(dI)I(g)vl,... (dI)I(g)vm) = wy-1(g)(dl);? L(g)ULs e (dI);ll(g)vm) = W (V1, -y V)
So, w’ is left invariant. So, there is C' € R such that w’ = Cw. O
STEP2. Display of X using local coordinates.

w;(ul,uQ, ...,um) = wlfl(g)((dl)l 1(g )ul, (dI)I__ll(g)um) = we(d(Lpl(g))gl(dI)I__ll(g)ul, ...,d(L[ 1(9)) (dI)I 1(g )U,m)
= we(d(I o Llfl(g))e_lul d(] olLj- 1(g)) um) = we(d(Lg)e_lul, ey d(Lg)e_lum)

For any w1, ..., um € T,(G),

w;(ul, Uy vey U ) = WI—I(g)((dI)I 1(g) UL - (dI)I__ll(g)um) = (A)I—l(g)((dl)l__ll(g)'ll17 ey (dI)I__ll(g)um)
= aa(Iil(g))dwi ARTIRA dd)gf((dl)l,l(g)ul, e (dI)[_—ll(g)Um)

aa(I_l( ))d¢l o (dI)fll( ) ARTA d¢1 o (dl);—ll( )(Ula vy Umn)
= a1 (9)d(Wa 0 I j-1(g) A Ad(Ya 0 I 701 g (V14 ooy Um)

this proposition holds. So,

By setting f =1, w’ = w. So,

By the proof of Proposition2.54, the following holds.
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Proposition 2.55. Let

(S1) G is a Lie group.

(S2) I:G3g—gled.

(83) f € Ce(@).

(S4) w be a left invariant on G.

then

/G Flg~hw = /G F(9)Ar(g)s

2.6.4 IL?(G)
Proposition 2.56. Let G be a Lie group. Then LP(G) is separable for any p € NN[1,00).

Proof. By Proposition2.31 there is {U;}?°, which is a local finite open covering of G and {p;}$2, is a partition of unity
with respect to {U;}$2; and for any i U; is C°°-class homeomorphic to (0,1)™. For each i, L?(U;) is separable. So, there is
{fik}ix C C®(G) such that supp(f; ) C U; (Vi,Vk) and {f; x|U;}r is dense in LP(U;) (Vi). We set A := {Zf\;l fix; ki €
N (i=1,2,..,N), N € N}. Clearly A is separable.

Let us fix any f € LP(G). Let us fix any € > 0. Because limy_, o f * XuN U, = f and f € LP(G), by Lebesgue’s
convergence theorem, there is N € N such that

€
‘|f_f*Xuf’=1Ui|| < b}

We set f1 := f*xy, and f; := f = XUAUY_,_, U, (i =1,2,..,N). Then f XuN U, = Zi\il fi. There are f; k., ..., fiky

such that ||f; — fix |l < % (i=1,2,..,N). Clearly

N

€

1 *xu~ v, — Z;fik <3
i

So, |I1f = 220 fik
By the proof of Proposition2.56, the following holds.

< e. Consequently, LP(G1) is separable. O

Proposition 2.57. Let G be a Lie group. Then there is at most countable subset of C.(G) which is dense in LP(G).

2.6.5 Convolution
Definition 2.22 (Convolution of function and linear functional). Let
(S1) G be a Lie group.

(82) f € Ce(@).
(S3) T is a C-linear functional on C.(G).

Then
T f(z) :=T(1:(f)) (z € G)

Here,

() = flzy™) (z,y € G)
Notation 2.2 (Dirac delta function §,). Let G be a topological group and x € G. We set 6, by

02(f) = f(2) (f € C(G))

Definition 2.23 (Convolution of functions). Let G be a Lie group. Let us fix dg, which is a right invariant measure on
G. Let us fix f,g € C(G) and assume supp(f) or supp(g) is compact. We set

fga) = /G fayHg(w)dg(y) (x € G)

Proposition 2.58. We succeed notations in Definition2.23. Then
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(i) fxg€C(G)
(ii) If f1, fo € Ce(G) then fi * fo € Co(G) and supp(f1 * f2) C supp(f1)supp(fa)
(iti) If fs, f3 € Cc(G) then (fi* f2) * f3 = fu = (fax f3).
Proof of (i). Firstly let us assume g € C.(G). Let us fix any z € G and € > 0.

/f zy")g(y)dg, (y )—/ ()f(fvy’l)g(y)dgr(y)

We set K := dg,(supp(g)). Becase f,g € C(G), for each y € supp(g), there is U, , and V, such that U, is an open
neighborhood of = and V}, is an open neighborhood of y and

|f(zw™ ) g(w) = flaw™)g(w)] <

Ki - (V2 € Upy, Y € )

Because supp(g) is compact, there are V,,, ..., V,,, such that supp(g) C U_,V,,. We set U, := N} U, ,,. Then clearly

[Fzwg(w) = flaw™g(w)| < g (V2 € Us Yw € V)

So,
[fxg(z) = fxg(x)] <e (V2 €Us)

This means f * g is continuous.
Firstly let us assume f € C.(G). Let us fix any z € G.

/f zy~g(y)dgr(y /f )g(yz " z)dg, (y /f g9(yx)dg,(y)
= / . Fly=Hg(yx)dg,(y)

So, we can prove continuity of f x g by the argument which is similar to the proof in case g € C.(G). O

Proof of (iii). Let us fix any = € G.
(e )< o) = [ e falar™ o) = [ [ Floy™ ) o) () ) (0

/ / Fr(@(zy) ™) oy g (2) £3(4)dgn (y / / Fr(wz ) falzyY)dge (2) f3(v)dga (1)
by Fubini Theorem

=/Gf1( /f2 2y™Y) fa(y)dgr (v)dg, (= /f1 D fa* f3(2)dgr(2) = fu * (fo % f3)(2)

2.7 Various types of Lie group
2.7.1 Connected component of Lie group
Proposition 2.59. Let

(S1) Gy is a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C) and G1 be connected.
(A1) There is open neighborhood of 1¢, U such that for any xz,y € U zy = yx.

Then G1 is commutative.

Proof. By Proposition2.31, we can assume that for any g € G there are ¢1,...,gp € U such that g = g1 - g2...gps. Let us
fix any g = g1 - g2...9gp and h = hy - ho...hy such that g1,...,gp, b1, ..., Ay € U.

gh = 01 gQthl -hQ...hN
= hi-ha.hy g1 92---9m
hg (2.7.1)
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Proposition 2.60. Let

(S1) Gy be a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C).

(52) Gi be the connected component of Gy.
Then G1 is path-connected.
Proof. For sufficient small ¢ > 0, N(¢) := Exp(B(O,¢€)) is path-connected. Clearly, finite multiple of N(e) is path-
connected. So, by Proposition2.31, G is path-connected. O
2.7.2 Reductive Lie group

Definition 2.24 (Reductive Lie group). Let G C GL(n,C) be a linear Lie group. We say G is a reductive Lie group if
for any g € G g7 € G. Let G be a Lie group. We say G is reductive if G is locally isomorphic to a reductive linear Lie
group and G has finite connected components.

The followings clearly hold.
Proposition 2.61. Let G C GL(n,C) be a linear Lie group and G be reductive. Then

() ]
G={g'lgeG}
(i) _
Lie(G) = {XT|X € Lie(G)}
Proof of (i). For any g € G, g = gTT. So the above equation holds. O
Proof of (ii). For any X € Lie(G), exp(tXT) = exp(tX)T. So Lie(G) = {XT|X € Lie(G)}. O

Proposition 2.62. Let g be a Lie algebra. We set
(X,Y) := ReTr(XTY) (X,Y € g)
then

(i) (-,-) is an inner product on g.
(ii) (ad(X)Y,Z) = (Y,ad(XT)Z) for any X,Y,Z € g.

Proof of (i). For any XY € g,

(V,X) = ReTr(YT'X)= ReTr(X'Y)
= ReTr(XTY)=(X,Y)=(X,Y)
Also,
= wi,l
2,
So, (i) holds. O

Proof of (ii). Because Tr(XTYTZ) =Tr(ZXTYT),

= ReTr(Y'XT — XTYT)Z) = ReTr
= ReTr(YTad(XT)Z) = (Y,ad(X")Z

(ad(X)Y,Z) = ReTr((XY - Y X)) 2)
YIxTz —vyTzxT)
) (2.7.2)
So, (ii) holds. O

Lemma 2.13. Let g be a Lie algebra and ﬁT = g. For any b which is an ideal of g, b+ is also ideal. Here, we assume
the inner product of g is (-,-).

Proof. Let us fix any X € g, Y € bt, Z € h. By the assumption, ad(X?)Z € h. By Proposition2.62,
(ad(X)Y,Z) = (Y,ad(X")Z) =0 (2.7.3)

So (ad(X)Y € . O
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Proposition 2.63. Let G1 is a reductive Lie group such that Gi is locally isomorphic to Go which is linear Lie
group of GL(n,C). Then Lie(Gy) is a reductive Lie algebra. And we denote the center of Lie(G1) by 3 and denote
([Lie(G1), Lie(G1)]) by g1. Then

Lie(Gl) =3Do1 (274)

and g1 is a semisimple Lie algebra or {0}.

Proof. We set g := Lie(G1). If Lie(G1) has no trivial ideal, then Lie(Gy) is reductive. Otherwise, Lie(G1) has a
trivial ideal h. By Proposition2.13, g = h @ h+. We set h; := b and by := h. If h; has a subset which is a not
trivial ideal of b1, by Proposition2.13, the subset is a not trivial ideal of g. By repeating the above argument, there
are gi,..., 0, Gr+1, --, -gm such that gi1,..., 8-, 8r+1, .., -0 are ideals of g and gy, ...,g, are one-dimensional abelian Lie
algebras and g1, ..., m are simple Lie algebras. So g is reductive. Clearly g1 @ ... @ g, is the center of g. Clearly
(lg,9]) C ([@r+41,Gr41]) D - ® ([Gm> Im])- S0 ([9,0]) C rs1 D ... B gy Because for each j € {r+1,...,m} g, is simple Lie
algebra, ([g;,9;]) = 8;. S0 gr+1© ... & g C ([g,9))- O
Proposition 2.64. Let g be a semisimple Lie algebra and g = g1 ® ... D g, = b1 © ... © by, and g; and b; are ideal of g
and simple Lie algebras. Then m = n and there is o : {1,2,....,m} — {1,2,...,m} such that o is bijective and g,(;) = b;
(Vi e {L1,2,...,m}).

Proof. For each i, g1 D {[g1,91]) = ([g1,61]) & ... ® ([g1,bn]). Because ([g1,g1]) is not zero, there is o(1) such that

<[91,f)a(1)}> is not zero. Because <[gl,bc,(1)]> C by and b, (1) is simple and g; is simple, g, = <[gl,ha(1)}> = b,1)- By
repeating the above argument, O

2.7.3 Discrete subgroup and Abelian Lie group

Definition 2.25 (Discrete subgroup). Let G is a topological group. We call H C G a discrete subgroup of G if H is a
subgroup of G and the relative of H to G is equal to the discrete topology.

Proposition 2.65. Let
(S1) Gy is a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C).
(S§2) H is a subgroup of Gi.
then the followings equivalent.
(i) H is a discrete subgroup of G .
(i) There is an open neighborhood of 1¢, U such that UNH = {1¢, }.
(i1i) H is a closed subgroup of G1 and H is a Lie group which is locally isomorphic to {1g,}. And Lie(H) =
{0}
Proof of that (i) = (ii): Because {1g,} is an open set of relative topology, there is an oen set U such that {1g,} =
UNH. 0

Proof of that (ii) = that H is closed set: There is Uy such that U; is open neighborhood of 1, and UflUl C U. There
is Us such that Us is open neighborhood of 14, and U2_1 C Uy and Us; C U;. Let us assume there is g € H \ H. There is
u € Uy and h € H such that gu = h. So g € hU;. Because G is a Housdorff space, there is Us such that Us is an open
neighborhood of 1¢, and Us C Uy and h™1g ¢ Ug_l. So h ¢ gUs. Because g € H, there is hy # h such that hy € gUsz. So
there is ug € Us such that hs = gusz. So hgugl = hu~!. Because h~'hy € U{lUg CU.Soh thy e UNH = {1g,}. This
implies h = ho. This is contradiction. O

Proof of that H is a Lie group: Because of (ii), H is locally isomorphic to {1g,}. Because {1¢,} is a linear Lie group of

GL(n,C), H is a Lie group. O
Proof of that (ii)) = that Lie(H) = {0}: By von-Neumann-Cartan’s theorem, exp is locally injective. So Lie(H) =
{0} O
Proof of that (iii)) = (ii): By von Neumann-Cartan’s theorem, there is € > 0 such that
exp(B(0,¢))NT(HNU) = exp(Lie(H) N B(O,¢)) = {1a, } (2.7.5)
So
n(exp(B(O,€) N V)N

= n(exp(B(O,€))NT (Hﬂ U))

= exp(Lie(H)N B(O,¢)) ={1¢, } (2.7.6)
This means (ii). O
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Proof of that (ii) = (i): For any h € H, {h} = hU N H. This means (i). O

Proposition 2.66. Let us fix any H which is a discrete subgroup of R™. Then there are linearly independent subset
X1, Xp CR™ such that H=Y._, ZX;. r =0 means H = {0}.

Proof of that n = 1. We can assume H # {0}. Thereis Y € H\ {0}. We set to :=inf{t > 0[tY € H}. We assume ¢; = 0.
t
There is {t;} C (0,00) such that lim; ,.. t; =0 and ;Y € H (Vi). Let us fix any ¢t > 0. tY = lim;_, o [t 1t;Y. Because H

is closed, tY € H. This implies RY C H and Y # 0. This contradicts with H is a discrete subgroup. '
So tg > 0. We set X1 := tgY. We assume there is X € H \ ZX;. There is t € H \ Z such that X = tX;.
(t—[t)toY = (t — [t]) X1 € H. This contradicts with the definition of tg. O

Proof of that n > 1. We assume the Proposition is true if n < N and N < 1. Let us take X; € H as in the N =1 case.
(0,1)X; N H = ¢.

There is Xo, ..., Xy € RY such that X, Xo, ..., Xy is a basis of RY. We set H' := {t’ € RN¥~!|3s € R such that sX; +
SN, tX; € H}. Clearly H’ is a subgroup of RN 1.

We assume H' is a not discrete subgroup of RV =1, By the same argument as above, there is a sequence {t;'}$2, C H’
such that lim ¢;" = 0. Because X; € H, there is a sequence {s;}2; C [—%, %] such that s; X1 + Zf; t; X; € H (Vi). We

11— 00

11
can assume there is sg € [75, 5] such that lim s; = so. Because H is closed, sg X1 € H. By the definition of X3, so = 0.
1—00
N

Because s; X7 + Z;VZQ t;;X; € H\{0} (Vi) and lim s;X; +Z t; jX; = 0. This means H is a not discrete subgroup. This
1—> 00
j=2
is contradiction. So H' is a discrete subgroup.
By the assumption of the mathematical induction, there is Z1, ..., Z, € RN~! such that Zi, ..., Z, are linear independent
and H' = 2;1 7.Z;. There are sy, ..., s, € R such that X/ ; := s;X; + Z;Zl Z; ;X; € H (Vi). Because

1 $1 Sy
0 z Zr
(X1, X}, Xiy) = (X1, o, Xiv) .1.11 - (2.7.7)

0 z1n-1 Zr,N—1

1 S1 Sy

0 21,1 Zr,1 . ’ / . .

and the rank of is (r +1), X1, X5,..., X, are linear independent.
0 zi,N—1 - ZrN-1

Let us fix any X € H. Because X1, X, ..., Xy is a basis of RY, there are s and to, ..., tx such that X = sX; +t2Xo +
..+ tnXn. Because (to,...,tn) € H', there are mo,...,my € Z such that (t,...,tx)7 = maZo + ... + myZn.
Because X — Y i X/ e RX1NH =7ZX,, X € ZX, +Y.,_, ZX|. Consequently, H = ZX1 + Y ._, ZX]. O

Proposition 2.67. Let
(S1) Gy is a Le group which is locally isomorphic to a Lie subgroup of GL(n,C).
(A1) Gy is connected.
Then the followings are equivalent.
(i) Gp is abelian.
(ii) Lie(Gy) is abelian.
STEP1. Showing (i) = (ii). Let us fix any X,Y € Lie(G1). Because
exp(t(X +Y) + 2[X, Y] + O(t?))

= exp(tX)exp(tY)
exp(t(X +Y) + 2[Y, X] + O(t*)) (2.7.8)

, [X, Y] =Y, X]. So Lie(Gy) is abelian. O
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STEP2. Showing (ii) = (i). Thereis e > 0such that exp(B(O,€))exp(B(O,¢€)) C V. Let us fix any g, h € n(exp(B(0,¢€))).
There is X,Y € B(O,¢) such that g = n(exp(X)), h = n(exp(Y)0. Because X and Y are commutative,
)

gh = nlezp(X))n(exp(Y)
= n(exp(X)exp(Y))
= nlezp(X +Y)) =nlexp(Y + X))
= n(exp(Y)exp(X)) = n(exp(Y))n(exp(X)) = hyg (2.7.9)
By Proposition2.59, GG; is abelian. O

Proposition 2.68. Let
(S1) G is a Lie group.
(A1) Gy is abelian.
(A2) Gy is connected.
(52) N := dimLie(G).
Then there is v € {1,2,...,n} such that T x RN=" is C%-class isomorhic as Lie group to G.

STEP1. Showing that Exp : Lie(G1) — Gy is continuous and surjective. There is € > 0 such that for any g € G there
are exp(Xy),...,exp(Xy) € Ve := exp(B(O,€)) which satisfies g = exp(X7)...exp(Xpr). Because Lie(G1) and G, are
commutative, Exp : Lie(G) — G; is homomorphism of topological group.

Because Exp is a locally isomorphism from Lie(G1) N B(O,€) — n(exp(B(0,€))) N V°, by Proposition2.31, Ezp is
surjective. 0

STEP2. Showing that Exp~*({1g}) is a discrete subgroup of R™. By von-Neumann-Cartan’s theorem, there is ¢ > 0
such that exp~t({1¢}) N B(O,¢€) = O. So exzp~1({1g}) is a discrete subgroup of RV. a

STEPS. exp is an open map. Because G is abelian, for any X € Lie(G) exp(B(X,¢€)) = exp(X)exp(B(O0,€)). Because
exp(B(0,¢€)) is open, exp is an open map. O

STEP/. Construction of a isomorphism of Lie groups. By Proposition2.66, there are Xi,..., Xy € Lie(G) and r such
that Xy, ..., Xy is a basis of Lie(G) and

exp ' ({1g}) = ZZX (2.7.10)

We set i : T" x RVN=" — G by

i(exp(i2m0y), ..., exp(i27h,.), t) := exp ZQ X+ Z t: X;) (2.7.11)
i=r+1

By STEP3, i is an open map. So 7 is homeomorphism and isomoriphism of topological groups. By Proposition2.2, i is a
C“-class isomorphism of Lie groups. O
2.7.4 Nilpotent Lie group
Definition 2.26 (Nilpotent Lie algebra, Lie group). Let G be a Lie group and g := Lie(G). We set

go:=9, 8 :=[gi-1,0,] (1=1,2,..) (2.7.12)

We call g is a Nilpotent Lie algebra if there is n € N such that g, = {0}. We call G is a Nilpotent Lie group if G is
connected and Lie(G) is a Nilpotent Lie algebra.

Proposition 2.69. Let G be a Lie subgroup of GL(nC) and G be a Nilpotent Lie group. Then Exp : Lie(G) — G is
surjective.

Proof. Let us fix any g € G. By Proposition2.31, there are Xy, ..., X,,, € Lie(G) such that g = exp(X1)exp(Xs)...exp(X,,).
Let us fix any X,Y € Lie(G). By Baker-Campbell-Hausdorff formula, there is a polynomial Z(¢) sucht that for |¢| < 1

exp(tX)exp(tY) = exp(Z(t)) (2.7.13)

Because exp(-X )exp(-Y') is holomorphic, the power series of exp(-X )exp(-Y") is equal to the power series of exp(Z(t)). The
convergence radius of the power series of exp(Z(t)) is co. By identity theorem of holomorphic function(see [6]),

exp(X)exp(Y) = exp(Z(1))

So exp is surjective. O
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2.8 Universal covering group of Lie group
Proposition 2.70 (Universal covering group). Let

(S1) Gy is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) Gs.
(A1) Gy is path-connected.

Let R
Gy :=[([0,1],{0}), (G1,{1c, })]

and for each c1,co € le c1 ~ ¢y if there is a homotop ® from ¢y to co such that

O(s,0) =€, P(s,1) = c1(1) = 2(2) (Vs)

and ) )
G1 = Gl/ ~
and A )
p:Glac}—)[C]EGl
and )
q:G13[c—c(l) € Gy

and A

[c1] - [e2] :=[c1ca] (for c1,c0 € GY)
Then

(i) There is a Lie group structure of G1 such that p: Gi1— Gy is locally isomorphism of Lie groups.
(ii) Lie(Gy) = Lie(Gh)
STEP1. Showing ~ is equivalent relationship on G1. Ttis easy to show by the fact homotop is equivalent relationship. [

STEP2. Showing the multiple operation of G is well-defined. Let us fix any c¢1,dy, ¢2,ds € G such that ¢; ~ ¢o and dy ~
ds. Then there is ®., &4 such that . is a homotopy from ¢; to ¢ and ®4 is a homgtopy from d; to dy. Because @, - &4
is a homotopy from ¢ - dy to ¢ - ds, ¢1 - dy ~ co - do. So, the multiple operation of G is well-defined.

O
STEP3. Showing q is surjective. This is from (A1). O
STEP/. Showing Gy is group. This is from the group structure on Gj. O

STEPS. Constructing the topology of G1. There is € > 0 such that
Exp : Lie(G1) N B(O,¢) — Exp(B(0,¢€)) NGy

is C*-class homeomorphism and
sup [lerp(X) — E|| < 1
X€eB(O,e)

For each s € [0,1], we set
We s :={[[0,1] 3t — Exp(tsX)]|X € Lie(G1) NsB(0,¢€)}

and for each §j € G4
W§75 = gWe,s
We will show {Wjs}.ca, sefo,1) satisfies the axiom of system of fundamental neighborhoods.
Let us fix any [d][d] € [¢|W.s, [d] € W, 5. Clearly, there is s; € [0, 1] such that for any ¢ € [0, 1]
d(t) Exp(s1 B(O,€)) C Eap(sB(O,¢))

Let us fix any X € s1B(0,¢). We set Z := d(1)Exp(X). Because Exp(sB(O,¢)) is simply connected, d(-)Exp(-X) ~
Exp(-Z). This implies that
c(-)d(-)Exp(-X) ~ c(-) Exp(-Z)

So,
[cd]We s, C [c]We,s
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Let us fix any [c1][d1] = [c2][d2] € [c1]We,s; N[c2]We.sy, [d1] € We s, and [da] € We s,. By the argument in the previous
paragraph, there is s3 € [0, 1] such that

[Cldl}We,s;; C [Cl]We,sla [02d2]W6,53 C [CQ]WE,SQ

So,
[Cldl]we,33 - [Cl}We,sl N [62]We,52

O

STEPG6. Showing that G is a topological group. Firstly, we will show G is Housdorff space. Let [¢]G \ {e}. Because G is
Housdorff space, there is s € (0, 1] such that

e ¢ c(1)Exp(B, (O, se¢))

So,
le] & [JWe,s

Consequently, G is Housdorff space.

STEP7. Showing that q is a local isomorphism. Because ExpB,,(O,¢) is simply connected,
qlw., : Wea 3 [ = ¢(1) € Exp(B(0,¢))

is injective. And clearly g|, , is surjective. Because ExpB,,(O,€) is simply connected, for any s € [0, 1] and [c] € W1
such that [c]We, s € We 1,
q([c]We,s) = c(1)ExpB,, (O, se)

So, q|w., , is continuous and open map. Because Exp is continuous, there is s € [0, 1] such that
Exp(B,,(0, soe) Exp(Byn (0, spe) C Exp(B,, (0, sge))
Because ExpB,, (O, €) is simply connected,
[c1][eo] € We sy = c1(1)ca(1) € Ezp(Bim (O, soe))
Consequently, ¢ is a local isomorphism. O

Showing that G is path-connected. Let us fix any [c] € G. We set, for each s € [0, 1],

Then, clearly, C is a continuous path from [{e}] to c. O

Proposition 2.71. Let G be a path-connected topological group and G be a universal covering group of G. Let us assume
x be the operation of m(G). Then for any c; € C([0,1],G) such that ¢(0) = e and ¢y € 7(G),

[e] - fea] = [ea] * [ea] = [c2] - [en]

Proof. We set
Dy (s,t) :=c1(L(s(2t — 1)) + (1 — s)t)ea(L(2st) + (1 — s)t)

and
Do(s,t) :=ca(L(s(2t — 1)) + (1 — s)t)er (L(2st) + (1 — s)t)
Here,
0 (u<0)
Lu):=¢ v (0<u<1l)
1 (u>1)
Clearly, ®; is a homotop from c¢; - c2 to ¢1 * co and @5 is a homotop from c¢3 - ¢; to ¢ * co. O

By Proposition2.71, the following holds. We will show another proof using adjoint representation of Lie group.

Proposition 2.72. Let G be a path-connected Lie group and G be a universal covering group of G. Then g t(e) is
contained in the center of G. In special, 7(G) is commutative group.
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STEP1. Showing that Ad(g) = id (Vg € ¢~ *(e)). Let us fix any go € ¢~ '(e) and Y € Lie(G). By the definition of Ad,
goEap(tY)gy' = Eap(tAd(go)Y) (t] < 1)

So,
Exp(tu(Y)) = ¢(Bxp(tY)) = q(goExp(tY)gy ') = q(Exp(tAd(go)Y)) = Exp(tu(Ad(go)Y))

This implies
uY) = (Ad(g0)Y')

Because ¢ is a local isomorphism, ¢ is an isomorphism. So, Y = Ad(go)Y . O

STEP2. Showing that ¢~ (e) is contained in the center of G. Because (G) is path-connected, it is enough to show gy is
commutative with Exp(B(O,€)) for sufficient small € > 0.

goExp(Y) = goExp(Y)gy g0 = Exp(Ad(go)Y )go = Exp(Y)go

Theorem 2.9. Let

(S1) G;1 is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) G;2 (i = 1,2).
(A1) Lie(G1,1) and Lie(Ga,1) are isomorphic as Lie algebras.

then G1,1 and Ga,1 are isomorphic as Lie groups.

2.9 Compact Lie group
Definition 2.27 (Killing form). Let g be a Lie algebra. We set

[X,Y] :=Trace(ad(X)ad(Y))
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3 Irreducible decomposition of unitary representation

3.1 Some facts admitted without proof

In this subsection, We will present some facts that we will use without proof in the pages that follow.
For the following Proposition, see [?].

Proposition 3.1 (Shur Lemmall). Let G be a topological group and (w,V) be an continuous irreducible representation
of G and A :V — V be a continuous intertwining operator with respect to G such that A # 0. Then there is A € C such
that A = \I.

Definition 3.1 (Extreme point). Let

(S1) V is a vector space on C.
(S2) A is a convex set of V.
(S3) z € A.

We say x is an extreme point of A if for any y,z € A and X € [0,1] such that = Ay + (1 — Nz © = y = z. We denote
the set of all extreme points of A by Ex(A).

Definition 3.2 (Extreme set). Let

(S1) V is a vector space on C.
(52) A is a convex set of V.
(S3) B € A.

We say B is an extreme set of A if for any y,z € A and X € [0,1] such that x = Ay + (1 — \)z € B then y,z € B.
For the following three Propositions, see [5].
Theorem 3.1 (S.Mazur Theorem). Let

(51) (V,{pn}nen) is a semi-normed space on R.
(52) g €V.
(S3) ACV is a closed convex subset with xog ¢ A.

Then there is real-valued continuous linear function f such that f(zo) =1 and |f(z)| <1 (Vz € A).
Proposition 3.2. Let

(S1) (V,{pn}tnen) is a semi-normed space.
(S2) f is a real-valued continuous linear functional on V.

(S3) K is a compact convex subset of V.
Then {z € K|f(x) = max{f(z)|x € K}} is an extreme set of K.
Proposition 3.3 (Krein-Millman Theorem). Let

(S1) (V,{pn}tnen) is a semi-normed space.
(52) K is a compact convex subset of V.
(83) Ex(K) is the set of all extreme ompact convex subset of V.

Then

(i) Ex(K) is not empty.

(i) K is the closure of the convex full of Ex(K).
Theorem 3.2 (Stone Weierstrass Theorem, lattice version). Let

(S1) X is a compact metric space.

(52) V is a R-vector subspace of C(X,R).

(A1) V means the pointwise mazimum. Then fVgeV (Vf,ge V).

(A2) For any x,y € X such that x # y, there is f € V such that f(x) # f(y).

Then V is dense in C(X,R).
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3.2 Continuity of representation
3.2.1 Baire Category Theorem
Theorem 3.3 (Baire Category Theorem). Let

(S1) X is a complete metric space.

(52) {An}S2, is a sequence of closed sets of X such that A, C An11 (Vn € N).

(A1) X = U2 A,.
Then there is n € N such that A3, # ¢.
Proof. Let us assume

A =¢ (VneN) (3.2.1)
Let us fix g € Ay. In this proof, for each z € X and ¢ > 0 we denote D(x,¢) := {y € X|d(z,y) < €}. Then there
1
is 1 € B(xg,1) \ A;. Because A§ is an open set, there is ¢(1) € N > 1 such that D(zy, ﬁ) C A§ N B(xo,1). If
P

you repeat this procedure in the same way below, there is ¢ : N — N and {z,}22, C X such that ¢ is narrow sense

1
monotonically increasing and D(z,, ﬂ) C AS N B(zp-1, ) (Vn € N). Because clearly {z,}52, is a cauchy
o(n

p(n—1) .
sequence, o, := lim x, exists. By (A1), there is n € N such that z, € A,,. Because x,, € D(n, ﬁ) C AS (Ym > n),
1
Zoo € D(n,——) C AS. This is contradiction. O

o(n)

3.2.2 Uniform boundedness principle
Theorem 3.4 (Uniform boundedness principle). Let
(S1) X is a banach space.
(S2) Y is a normed space.
(53) {Th}rear C B(X,Y).
(A1) For any v € X, {||Tav||}ren is bounded.

Then {||Tx||}rea is bounded.

Proof. Weset A, :={v e X|||Thw|| <n (VA€ A)} (neN). {A,}52, satisfies the assumptions in Baire category thereom.
By Baire category thereom, there is n € N such that A # ¢. So there is v9 € X and € > 0 such that B(vg,2¢) C A,. For
any A € A and w € X such that ||w|| =1,
1 1
[ Taw|| = HET/\(EW +vo) — ET/\'UOH
because vg, w + vy € B(vg, €)

1 1 1 1 n o n 2n
= ||=Th(ew + vg) — =Thwol| < ||-Tx(ew + vo)|| + ||-Tavo|] < —+ — = —
€ € € € € € €

2
So, ||T,\||§?n (VA € A) O

3.2.3 Weakly continuity of representation
Theorem 3.5. Let

(S1) G is a local compact topological group.
(52) (mw,V) is a representation of G.
(A1) For anyu €V, G> g~ w(g)u € C is continuous.

Then (w, V) is continuous.
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Proof. Let us fix Uy which is a local compact neighborhood of e. By (A1) and uniform boundedness principle,

sup || (g)[| < o0
g€Uo

Let us fix any € > 0 and gy € G and uy € V. By (Al), there is U; which is an open neighborhood of e such that
U, CcUy

€

2

)([I7(go) [l + 1),

|17 (g0U1)uo — uol| <

€
2(supyep, Im(9)ll +1)

So, for any x € Uy and u € B(uy,

€
I (goz)u —m(go)uol| < [Im(goz)u — 7(gox)uol| + |Iw(goz)uo — m(go)uoll < llm(go)llop /I ()l[epllu — uoll + 5 <€
O

In speciality, the following holds. However, this theorem can be proved without using Theorem3.5. The proof is given
below.

Theorem 3.6. Let

(S1) G is a topological group.
(S2) (m,V) is a unitary representation of G.
(A1) For any u,v € V, G > g — (n(g)u,v) € C is continuous.

Then (w,V') is continuous.

Proof. Let us fix any u € V and g € G. Let us fix any v € B(u, 12 ¢ ). There is U which is an open neighborhood

(2f|ul| + 1)
of e such that ¢
(g™ h)u, u) — [[ul]?] < 3

By (S2), for any h € gU andveB(u,2 ¢ ),

(Ifull + 1)

[l (hyu — 7(g)oll* = ||ull® — 2Re(n (g~ h)u, v) + [[v||* = [lul|* — 2Re(u, v) + [[v]|* + 2Re(u, v) — 2Re(r (g~ " h)u,v)
= ||u —v||* + 2Re(u — (g~ h)u,v) = |Ju — v||* + 2Re(u — w(g~ ' h)u,u) + 2Re(u — 7(g~  h)u,v — u)

€ € _ 2¢ _ 2¢
<gtgt2lu—mnl "hyulll|v — ul| < 5 +2(ull + llm(g "R)ul])||u — || = 5 20l + lul Dl =]l
2 b lulllfu—vll < 2+
== ull|lu —v 4+ - =€
3 -3 3
So, (m, V) is continuous. O

3.3 Cyclic representation and Unitary dual

Definition 3.3 (Cyclic representation). Let G be a topological group and (m,V') be a continuous representation of G. We
say (m, V) is a cyclic representation of G if there is v € V' such that

N
> mlgivlgr, ..gv € G} =V

i=1
Clearly the following holds.
Proposition 3.4. Let G be a topological group. Any continuous irreducible representation of G is a cyclic representation.
By Proposition2.31, the following holds.

Proposition 3.5. Let G be a Lie group and (w, V') be a continuous cyclic representation of G. Then V is countable. In
speaciality, if w is unitary representation and dimm = oo, then V ~ 12 as Hilbert space.

By Proposition3.5, we can set of all continuous irreducible unitary representations of a Lie group.
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Notation 3.1. Let G be a Lie group. We set
Q. := {(m, V)| V is closed subspace of I* and (m,V) is a continuous cyclic representation of G'}
Definition 3.4 (Unitary dual). Let G be a Lie group. We set

G = {(m, V)| V is closed subspace of I* and (m,V) is a continuous irreducible representation of G}/ ~

Here, ~ 1is the isomorphic relation as unitary representations. We call G the unitary dual of G.

Proposition 3.6. Let
(S1) G is a Lie group.
(52) (m;,V;) is a continuous unitary cyclic representation of G with cyclic vector v; such that ||v;|| =1 (i = 1,2).
(A1) (m1(g)vr,v1) = (m2(g)v2, v2) (Vg € G).

Then (w1, V1) and (72, Va) are isomorphic as continuous unitary representation of G.

STEP1. Construction of orthonormal basis of V1. Let {g;}2, is a dense subset of G. We set {h;}$2, is a subgroup of G
generated by {g;}52;. There is a {f;}32; C {h;}32, such that {m(f;)v1}52, is a basis of the vector space W; which is
generated by {m1(h;)v1}52,. We take {w;}$2; which is the orthonormal basis of W3 by Gram-Schmit orthogonalization.

At the end of this step, we will show {7r2( fi)v2}524 is a basis of the vector space Wy which is generated by {ma(h;)v2}52,.
For showing this proposition, it is enough to show for each aq,...,any € C

N N
Zaml(fi)vl =0 << Z aiﬂ'g(fi)vg =0 (331)
i=1 i=1

Because of (S3) and (A;),

N N N
Yoam(fijur =0 <= Q_am(fi)v,m(9)n) =0 (Vg € G) <= > ai(m(g™" fi)vr,v1) =0 (Vg € G)

i=1 i=1 i=1

N N N
s Zai(ﬂ'g(gilfi)vg,vg) =0 (Vg S G) < (Z amg(fi)vl,ﬂg(g)vl) =0 (Vg S G) <~ Zaiﬂ—Q(fi)'UQ =0

i=1 i=1 i=1
So, (3.3.1) holds. O
STEP2. Construction of orthonormal basis of V. By (Al), clearly

N N
1> aim(fvillv, = 11D aima(fi)vallv, (Y, ...;ay € C) (3.3.2)

i=1 i=1

We set, for each w; = Z;V:ll a; ;m1(fj)v1,

We will show {w}}22, is an orthonormal basis of V5. By (A1), {w}}52, is clearly orthonormal. Let us fix any k& € N. Then
there are aq,...,any € C such that
fk v = Z a;W;

Because w; € Wy, by (3.3.1),

mo(fr)ve = Zaw

So, {w;}?2, is an orthonormal basis of V5. O
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STEPS. Construction of isomorphism. We set

N N
(I)(Z aiwi) = Zazw; (al, LL,aN € (C)
i=1 i=1

Clearly ® is an unitary isomorphism between Hilbert spaces. We will show ® is G-linear. Because w; = v1 and wj = vg,
(I)(Ul) = V2

Let us fix any ¢ € N. Then there are a,...,a, € N such that

1(gi)v1 = Z a;jw;
Because w; € Wy, by (3.3.1),
2(9:)v2 = Z%

So,
@(71(gi)v1) = ma(gi)®(v1)

Because W is dense in Vi and @ is unitary, ® is G-linear. O

Proposition 3.7. Let (m,V) be a continuous unitary representation of a topological groupG. Then there is a subset of
G-invariant cyclic subspaces D such that
V=P w

weD

Proof. We denote the all of nonzero invariant closed cyclic subspaces by . Clearly © # ¢. We set

N
T:={D CDlv; € Wi(i =1,2,..., N),{W;}¥, is a distinct subset of D, Zvi =0 = v; =0 (Vi)}
i=1

Let us fix any every totally ordered subset of T, T'. Clearly UpcrD € ¥. So, by Zorn’s lemma, ¥ has a maximum element
D. We set Vo := @yyecp W. Let us assume Vi~ is nonzero. Then V- has a nonzero invariant closed cyclic subspace W.
Clearly, D U {W} € T. This contradicts that D is a maximum element. So, V5= = {0} and V =1}, O

3.4 x-weak topology of L'(G)

Definition 3.5 (x-weak topology). Let V' be a normed space. We denote the weakest topology in which for any x € V
V* > f = f(x) € C is continuous by O, (V*). We call this topology *-weak topology of V*.

Clearly the following two propositions holds.
Proposition 3.8. Let V be a normed space. O,,(V*) is induced by the family of seminorms {-(x)}zev.
Proposition 3.9. Let V be a separable normed space and {x,}nen be a dense subset of V.. Then

|f(zn) — g(zn)]
L+ [f(zn) g(xn)|

d:V*xV*> t—)Z € [0, 0)

is a metric on V* and O, (V*) is induced by d.

Theorem 3.7 (Banach-Alaoglu theorem). Let V' be a separable normed space and {x,}nen be a dense subset of V. Then
B = {f e V¥||f|| <1} is a compact subset in O, (V*).

Proof. Because (V*,0,,) is metrizable, it is enough to show (V*, O,,) is sequencial compact. Let us fix any {f,}nen C B.
By the same argument as the proof of Propositionl.19, there is a subsequence {gn}ny = {f,(n)}nen such that for any
1 €N lim g, (z;) exists.

n— oo

€
Let us fix z € V and € > 0. Let us fix x; such that ||z — z;|| < 3 Because {gn(%;)}nen is a cauchy sequence, there is

ng € N such that |g,(2;) — gm ()] < % (Vm,n > ng). Then for any m,n > ng
L€
19m (@) = gn(@)] < lgm (@) = g (@3)] + g (2:) = gn (@) + lgn(@) = gn(zi)] < 2/]z o il[ + 5 <€
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S0 {gn(x)}nen is a cauchy sequence. This implies lim g,(z) exists. We set
n— 00

g(x) == lim gu(z) (z € V)

n—0o0

Cearly ||g|]| <1 and w— lim g, = g. [
n—oo

3.5 Positive definite function on a group
3.5.1 Definition and Basic properties

Definition 3.6 (Positive definite function on a group). Let G be a group and ¢ € C(G,C). We say ¢ is positive definite
if for any n € C and g1,92,...,9n € G and ¢1,¢3,...,c, € C

> cickp(g; tgr) > 0 (3.5.1)
3.k

Example 3.1. Let G be a group and (7, V) be a unitary representation of G and v € V. Then the following is a positive
definite function.

(r(-)v, v) (3.5.2)

Proof. For any n € C and ¢1, g2, ...,9, € G and ¢y, ¢, ...,c, € C

ZCJCk m(g; Lgr)v, v) chck m(gk)v, m(g;j)v ZCW gk )V ,ZC}W(%)U) = ||Z5k7f(9k)v||2 >0
J k

O
Proposition 3.10. Let G be a group and ¢ is a positive definite function on G. Then
(i) (e) =0
(ii) (g7") = ¢(9)
(iii) |e(g)] < ¢le)
. 1 _
(i) 1e(g1) = @(g2)* < Sp(e)lip(e) — Rewp(gy " g2)]
Proof of (i). We succeed in the notation of Definition3.1. By setting n =1 and g; = e and ¢; =, (i) holds. O
Proof of (ii). By setting n =2 and gy = e and go = g and ¢; = 1 and ¢3 = a,
(1+lal*)g(e) +ap(g) +ap(g™") 20
By setting a =1,
Imp(g) = —Imp(g™")
By setting a = 1,
Rep(g) = Rewp(g™")
So, (ii) holds. O
Proof of (ii). By the above proof of (ii),
(1+ |a*)p(e) > —2Re(ap(g))
By setting a = —exp(—iarg(a)),
2¢(e) = 2|p(g)|
So, (iii) holds. O

Proof of (iv). We set n =3, ¢c3 =1, g3 =3 in (). Then we get
0 < c129(g195 1) + c2Gi0(9297 1) + c10(91) + e2(92) + crp(gi ) + 095 1) + p(e) + lea [Pip(e) + [eal* o (e)

By (ii),
0 < 2Re(c1629(g195 1)) + 2Re(crp(g1) + cap(g2)) + () + |er[*(e) + |eal*o(e)
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Moreover, we set ¢c; = —co = . Then

0 < —2|al*Re(p(g1g5 1)) + 2Re(al(g1) — #(g2)) + p(e) + 2lal*p(e)
= 2[af*(p(e) — Re(p(grg5 1)) + 2Re(a((g1) — ¢(g2)) + ¢ (e)

©(g1) — »(g2)
2|p(g1) — w(g2)*
o(e)(p(e) — Re(o(g195 1))
2lp(g1) — »(g2)[?

We can assume ©(g1) # ¢(g2). We set @ = —¢(e) Then 2Re(a(p(g1) — ¢(g2)) + w(e) = 0 and

2|al*(p(e) — Re(p(9195 1)) = . So, we get (iv). N

The following is clear.
Proposition 3.11. Let G be a group and ¢ is a positive definite function on G. Then

(i) ¢1,p2 are positive definite functions on G and ay, g are positive numbers. Then a1+ aaps is a positive
definite function on G.

(ii) We set
Py := {p|p is a continuous positive definite function on G such that p(e) =1}
and
Py := {¢|p is a continuous positive definite function on G such that p(e) < 1}
and

P := {p|y is a continuous positive definite function on G }

Then Py and Py and P are converz.

Theorem 3.8 (Schur product theorem). Let M := {m; ;};; and N := {n; ;};; be nonnegative definite m-th Hermitian
matrices. Then M o N := {m; jn; ;}:; is nonnegative definite. We call M o N the Hadamard product of M and N.

Proof. There are A := {a;;}:; and A := {b; ;};; such that
M= A*A, N = B*B
This means . .
mi; = Zai_,jai,kani,j = Zbl_,jbl,k
i=1 1=1
So,

m
My NG 5 = E i kbi k@i, ;b
il=1

For each 4,1, we set the (m, 1)-matrix v, ; by
Vg = "(ai1bi1y s Qimbim)
Then vi,lv;l is a m-th nonnegative definite Hermite matrix and
MoN = Zvi,lvzl
il
So, M o N is nonnegative definite. O

Proposition 3.12. Let @1, po are positive definite functions on a group G. Then p1p2 is a positive definite function on
a group G.

Proof. Let us fix any gi,...,gm € G. By Proposition3.10, {(p1¢2)(g; 'g;)}:; is an Hermite matrix. By Theorem3.8,
{(<p1<p2)(gi_lgj)}i7j is nonnegative definite. So, 12 is a positive definite function on a group G. O
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3.5.2 GNS construction for unitary representation

We introduce the following notation.

Notation 3.2. Let G be a Lie group and f € C(G). Then

[r(@) = Ag(x)f(z7!) (z € G)
Clearly the following holds.
Proposition 3.13. Let G be a Lie group and f € C(G).
(i) fre€C(G).
(i) 1 = 1
Theorem 3.9 (GNS construction). Let G is a Lie group.
(S1) G is a Lie group.
(S2) ¢ is a continuous positive definite function on G.
(§3) We set (f,g) :=¢x* fxg™(e) f,g € Cc(G).
(S4) We set Ho := C.(G)\ N. Here, N :={f € C.(G)|||f|| = 0}.
(55) Tylf] = [f(9)] ([f] € Ho,9 € G)
Then

(i) (f,9) = /Gw(:v’ly)f*(y)g*(x)dxzzdyzz = /Gw(zy’l)f(y)g(x)dwRdyR
(i) Ho is a pre-Hilbert space.
(iii) T is well-defined continuous unitary representation on Ho of G.

(iv) We set H be the completion of Ho. Then T is well-defined continuous unitary representation on H of G.
(iv) H is separable.

(v) Let us assume {fn}nen C Ce(G) and f € C.(G) and suppen||falloo < 00 and li_>m fn = f (pointwise
convergense). Then lim ||f, — f|| =0.
n— oo
(vi) [|£1l < 5D, yesupn(r) 2@y DIZ|fl L1 (6 (VF € Cel(@))
(vii) (H,T) is cyclic.
(viii) ¢(g) = (Tgv,v) (Vg € G).

(iz) If o(-) = (7(-)u,u) for (w, V) which is a continuous cyclic unitary representation of G with cyclic vector
u. Then (m,V) and (T, H) are isomorphic as continuous unitary representations.

STEP1. Proof of (i).

(f9)=(px* [)*xg"(e) = /G‘p*f**(l'_ Vg (x)dxg = /G/G(p(x— y ) (y)dyrg* ()dz R
/ / ey ly~DAW)dyrg® (v)daer

// o y)F mmwj/ @™y fy )9l DAWA(@)dyrdar

/ / p(zy™ ) f(y)g(x)dyrdar
0

STEP2. Proof of (f,f) <0 (Vf € C.(G)). By the same argument as in the proof of Proposition4.2, there is { Ep, ; }nen,1<i<e(n)
and {xmi}nGN,lgiS@(n) such that

By Proposition2.55,

{En,i}nEN,lgiggo(n) C B(G)dlbjOlnt (Vn S N)
and
T i € En,i (Vn € N7 1 S Vi § 30(71))
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and
[ f(z) - (xm)l\<* (Vz € B, ;,Vn e N, 1 <Vi < p(n))

and
llo(@™ y) =z, any)ll < = (Vw € Epni,Vy € B, j,Y¥neN, 1 <Vi<p(n))
We set
Zs@ T iTny) (@) f(Tn3)XE, i(T)xE, i () (2,9 € G,n €N)
and

F(z,y) == p(a"'y) f(2) f(y) (z,y € G)
Then clearly
lim F,(z,y) = F(z,y) (Vz,y € Q)

n—oo

and
1F oo < llllool 1112

So, by Lebesugue convergence theorem,

hm//Fn(xay)dedyR://F(xay)dedyR:”ﬂF
n—o Jg Ja GJa

Because ¢ is positive definite,

/G/GFn(xay)dedyR = ;@(x;,txnj)f(xnﬂf(xnj) 20

O

STEPS3. Proof of (g, f) = (f,g) (Vf € C.(G)). By Proposition3.10, ¢(yz~") = ¢(zy~1) (Vz,y € G). So, by (i), (g, f) =
(f,9) (Vf € Ce(@)) B

STEP/. Proof of (ii). By STEP2,

I, 9l < Ilgll (Vf, g € Ce(G))
So, (1, -2) is well-defined on Hg by this inequality. Consequently, (ii) holds. O

STEPS. Proof of that (T, f,T.9) = (f,g9) (Vf,g € C.(G),Vz € G).

(T.f.T-9) / / (ay™ )T f(2)T- F () drndyn = / / (2y~1) f(22) F(y2)dwnilyn
- /G /G p(@2(y2) ") f(w2) (g2 dondyn = / / ey f(@) F W dzrdyn = (£,9)

O
STEPG6. Proof of that T is well-defined and unitary. It is clear from STEPS5. O

STEP7. Proof of (#i). By STEPG, it is enough to show T is continuous. Let us fix any f,g € C.(G). By Theorem3.6, it
is enough to show G 3 z — (T, f,g) € C is continuous. Let us fix any € > 0 and fix any z € G. Let us fix U such that U is
a compact neighborhood of e and U~ = U. For = € supp(f)U, there is V,, and U, such that V,, is an open neighborhood
of x and U, is a compact neighborhood of ¢ and U, C U and U, ! = U,

€

|fyz) = f(y)] < (fG fsupp(f)UO lp(xy=1)T.-1g(x)|dzrdyR + 1)

(Vy € V,Vz € Uy)

Because supp(f)U is compact, there is V., , ..., V. which is a covering of supp(f)U. Uy := U, N...NU,,, . For any w € zUy,

\(wa,g)—(Tzf,g)l=I(Tz—lwf,Tz—lg)—(f,Tz—lg)\S/G/ " lp(z ™ y)g(@)||f(yz) — f(y)ldyrdar < €

STEPS. Proof of (iv). By Proposition5.7, H, is clearly separable. Because H, is dense in H, H is separable.
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STEPY. Proof of (v). (v) is proved by Lebesgue convergence theorem. O
STEP10. Proof of (vi). This is followed by

IFI2<  sup Iw(wy_l)l(/G F(@)ldg)? (Vf € Cu(C))

z,y€supp(f)

O

1
STEP11. Constructing a cyclic vector. There is {f,}52,; C C.(G) such that supp(f,) C exp(B(O, ﬁ) and f, > 0 and
Jo fndg =1 (¥n € N). Then for any n € N

\|fn\|2<\|¢||oo/ F(@)f(y)dady = | ¢l]oc

So, there is subsequence { fu(n)}ne; and v € H such that

O Jey =Y

Then for any f € C.(G)

n—oo

(frv) = lim (f.£,) = lim / . / P W@y

By the same argument as in the proof of STEP7,

lim ! n(z)dady — “Hf(y)d
n_},ool/supp(f) /supp(fn) p(zy ™) f(y) fo(a)dady /supp(f) ply™)f (y)dyl
_ 1 -1 -~ -1
AN B B O Ty R e M

~ lim / / o) (yz) — f )| fu(x)dzdy
=0 Jsupp(f) J supp(fn)

< / sup  p(e)|fy2) — f(y)ldy =0

upp(f) zEsupp(fn)
So,
(f,v) == f(e)
O

STEP12. Calculas of f xk*. Let us fix any f,k € C.(G). By Propositiond.2, fG Ty fk*(y)dy exists. By the same
argument as in the proof of STEP2 and STEP7, there is {Ey i fneni<i<p(mn) and {Tnifnen1<i<pm) such that

{En,i}nEN,lgiS(p(n) C B(G)dlSJOIHt (Vn S N)

and
Yni € Eni (Yn e N, 1 <Vi<a(n))
and )
1K (y) = K" (yn)ll < — (Vy € Bni,Vn €N,,1 < Vi < an))
and

_ 1 .
|| f(xy™t) — f(myn1)|| < - (Vz € supp(f)supp(k),Vy € E, ;,Vn € N,,1 <Vi < a(n))

We set for n € N

a(n)

/Zf:vym (i) X5 (9)dy (2 € )

Then

lim F,, = f * k™ (pointwise convergence)
n—oo
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and
[Fnlloo < [IflloollE™ [loodg(supp(f)supp(k))dg(supp(k*)) (Vn € N)

So, by (v),
lim F,, = f+k™ (in H)
n—oo
Also,
a(n)
Fy=) T, 1 [k (yns)
i=1

By Proposition4.2 and (vi),

n— oo

lim F, = / Ty fE*(y)dy (in H)
G

So,

/G'Ty—l fE*(y)dy = f+ k*

STEP13. Proof of (vii). Let us fix any f,k € C.(G).
(FF) = @ (f % k*)(e) = (f * k*,0) = ( /G T, fK* (y)dy, v) = /G (T, [ (), 0)dy = /G (FK* (), Ty)dy
— [ £k T8y = / k(y™)T, 85 (y)dy)
G

So,
k:/Gk(yfl)TyvAR(y)dy

By the same argument as in the proof of Propositiond.2, k € {3}~ ¢;m(g:)v|e; € C,g; € G,i =1,2,...,m,m € N} So, v is
a cyclic vector of H. O

STEP14 Proof of (viii). For any f € C.(G),

/90(9’ F(g)dg = 9+ f(e) = /f YT, 0Ar(y)dy, v) /f “1)(Ty, 0)Ar(y)dy

iy

So, for any y € G,

p(g™") = (Ty-1v,v)

STEP15 Proof of (ix). This is clearly followed by Proposition3.6.
By the proof of Theorem3.9, the following holds.
Proposition 3.14. Let G is a Lie group. We will succeed in notations of Theorem3.9.
(S1) G is a Lie group.
(52) ¢ is a bounded borel measurable function on G.

(A1) (f, )= @xfx[fr(e) 20 (Vf € Ce(@)).

Then by the same method to Theorem3.9, we can construct a cyclic continuous unitary representation (T, H) with a cyclic
vector v and ¢(g) = (Tyv,v) (a.e. g € G).
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3.5.3 The topology of positive definite functions
Definition 3.7 (The topology of P1). Let G be a Lie group. We denote the minimal topology of Py in which

P13>p— / g)dg, € C is continuous for every f € L'(G) (3.5.3)

by T1-
By Proposition?.é’l, there are {U,}o2, C O(G) such that U, is relative compact and U, C U,y1 (Vn € N) and

- I[f1 = fallLe ()

d(f1, = - !

(fl f2) ;21(1+||f17

By Proposition3.10, d is a metric on Py. We call this topology the pontryagin topology of P1 and denote this by To.

P
Fallim) 02 E Y

The following is clear.

Proposition 3.15. Let G be a Lie group and {¢ntnen C P and ¢ be a complex-value function on G and {py, }nen compact
converges to . Then ¢ € P.

Proposition 3.16. Let G be a Lie group. Then there is {fn}nen C Co(G) such that for every f € C.(G) and € > 0 there
isn € N such that ||f — fulleo <.

Proof. By Proposition2.31, there is a sequence of compact subsets of G { K, },en such that K, C K., (Vn € N) and
G = UpenKy,. Then there is {gn }nen C C.(G) such that

gn|Kyn =1 and supp(gn) C K1 (Vn € N)

Because C(K,,) is separable for every n € N(see [14]), for each n € N there is {hy, m }men which is a dense subset of C'(K,).
We set fn+1,m = gnthrl,m (mvn € N) Clearly {fn,m}n,mGN C CC(G)

Let us fix any f € C.(G) and € > 0. Then there is nN such that supp(f) C K,. Because f € C(K,41), there
is m € N such that ||f|Kn41 — hnt1,m|EKnti1llo < €. Because g|K,, = 1 and supp(f) C Ky, ||f — fati,m|Ent1lloo =
g f1 K1 — ghn+1,m|Kn+1||oo = | fIKns1 — hn+1,m|Kn+1||oo < €. O

Proposition 3.17. Let G be a Lie group. Then 1 satisfies the first countable azxiom.

Proof. Let us assume {f, }nen be in Proposition. Let us fix any ¢q € P;. We set
1 1
V(o Jos ) = (0 € P1ll [ (0= p0)fudgel < 1) (mm € N)
m el m

Let us fix any € > 0 and f € L'(G). Because C.(G) is dense in L*(G)(Proposition5.7), by Proposition, there is n,l € N
1 1
such that [|f — fullz1(q) < i Let us fix m € N such that — < 2 Let us fix any ¢ € V(po, fn, E)

| teta—coan o] < | [ (ola)=eo(a)ulaiar|+ | leto)=eol@)| )~ Fulo)lds: < T+2 [ 1)~ Fulo)ld <o

1
SO) V(wv fna E) C V(@? fa 6)' Because {V(QPO, fv 6)}fELl(G),€>O isa neighborhood basis at ©0, {V(@Ov fnv E)}m,nGN is also
a neighborhood basis at ¢g. O

Proposition 3.18. Let
(i) X1 and X5 are topological spaces.
(i) f: X1 — Xo satisfies

If {xn}nen converges x in Xy then {f(x,)}nen converges f(z) in Xo

(iii) X, satisfies the first countable aziom.
then f is continuous.

Proof. Let us assume f is not continuous. Then there is an open set of Xy O such that f~1(O) is not open set of X;.
Then there is z € f~(O) such that for any neighborhood of z N, N ¢ f~!(0). By (iii), we can take {V, , }nen which
is a countable neighborhood basis at . Then there is {z;, }nen C X1 such that z,, € V., \ f71(O) (Vn € N). Because
{Zn}nen converges z, by (i), {f(2n)}nen converges f(z) € O. Because f(x,) € O¢ (Vn € N), f(z) € O¢ = O°. This is
contradiction. O
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Notation 3.3. Let G be a topological group. We denote the set of all continuous positive definite functions by P. And we
set

Py :={p € Plp(e) =1}
Example 3.2. Let G be a group and (7, V) is a unitary representation of G. Then ®,(v®w) is a positive definite function.

Proof. For any n € C and ¢1, g2, ..., gn € G and ¢y, co, ...,c, € C

chckq) (v®v)(g; ) chck (gr)v, (g;5)v ZCM gk)v ZCJ 7(gj)v

7.k
O
Lemma 3.1. Let
(i) G be a Lie group.
(ii) f € Ce(@).
(111) {Pn}tnen C Po.
(’LU) ¢ € Py.
(v) {Dn}nen converges to ¢ in 1.
Then {¢y, * f}nen compact converges to ¢ * f.
STEP1. Showing that {¢n * f}nen pointwise converges to ¢ * f. Let us fix any g € G. Then
b0 % fg /%m g (1) = | 0u((hg™) 7)1 ((hg )a)dar () = [ 6,01 ) 1) )
= [ ou 0 9)A g (1)
by
a/¢ A, (R)dg, () = 6% £(g) (n = o0)
O

STEP2. Showing that {¢y, * f}nen are equicontinuous. We will show that for each gy € G and € > 0 there is a neighbor-
hood of e V' such that

|n * f(g) — bn * f(g0)| < € (Vg € goV,Vn € N)

Let us fix any go € G and € > 0. Because f € C.(G), fA, is uniformly continuous. So, there is a neighborhood of e V

such that .

Vg, heGstg theV
2(dgr (supp(f)) + 1) (|[1Ar(9| L (supp(s)) + 1) ( :

Fg) — F ()] <
Then, for any g € goV,
60 % F(g) — m*f%«ﬂ/ﬁn )(f(hg) — ﬂ@w@mnséumm—ﬂ@mwmw<e

O

STEPS3. Showing that {¢n * f}nen compact converges to p. Let us fix any K is a compact subset of G and € > 0. Because
 is uniformly continuous on K, there is V which is a neighborhood of e such that

€ _
[p(g1) = ¢(g2)l < 5 (Vo100 € K st g g2 € V)
By STEP2, for each g € K, there is V; C V which is a neighborhood of e such that
€
|90n(g) - @n(h‘” < g (Vh € ng,TL € N)

Because K C UgergV and K is compact, there is g1, g2, ..., gn such that K C Ul ¢;Vj,.
By STEP1, for each i € {1,2,...,n}, there is k; such that

[m(9i) = elg)] < 5 (Ym > ki)
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We set K := max;c(1,2,... n} ki- Let us fix any g € G and m > K. There is i such that g € g;V,.

lom(9) — (9] < lom(9) — em(gi)| + lom(gi) — (gi)] + lp(g:) — p(g)] < €
O

Theorem 3.10 (D.A.Raikov-R.Godement-H.Yoshizawa Theorem). Let G be a Lie group and 11,72 be topologies which
are defined in Definition3.7. Then 71 = To.

Strategy for our proof. Clearly 71 C 72. Let us fix any {¢n tnen C Po and ¢ € Py such that ¢, — ¢ in 7. By Proposi-
tion3.18, it is enough to show ¢, — ¢ in 5.

Let us fix any € > 0 and K which is a compact subset of G. By Proposition3.10, there is V' which is a neighborhood
of e such that

€ _

[P(91) = ¢(92)| < 5 (Vo102 € K 5.t g g2 € V)
Then there is f € C.(G) such that supp(f) C V and f <0 on G and [, fdg, = 1. O
STEP1. Evaluation of o, x f — f. Forany n € Nand g € G

on * £(9) — onl9)] < | /G (on(gh™) = @ul9))f (h)dg,(h)] < /G (on(gh™) — ()| f(R)dgr (h)

By Proposition3.18

1 1 1 1 1 1
S/Gﬂ/c(%@) — Regy(h))? f(h)? f(h)2dg,(h) < \/i(/c(%(e) — Regy(h)) f(h)dg,(h))>
1

= 5! /G (Reg(e) — Rewn () (h)dg, ()}

Because ¢, — ¢ in 71, there is ng € N such that

62

L 1R ()£ (h) = Reo(h) £ ) g 1) <

So,

o0+ 1(6) = on(@)] < § [ Iee) = eI F(h)gy () < § (Vg € G > o)

Similarily,

0% f(9) = p(9)] < 5 (Vg € G, > no)

O
STEP2. Showing this theorem. By Lemmad.1, there is n; € N such that
[ x fla) =@ x J(9) < 5 (Vg € Kin =)
So, by STEP1,
[on(9) = @(9)] < len(g) = on* F(9)| +lon* f(9) —@x f(9)l + o flg) — f9)] <€ (Vg € K,n = maxng,n1)
O

Proposition 3.19. Let G be a Lie group. Then Py is compact.

Proof. Let us fix any {¢n}nen C P;. By Banach-Alaoglu Theorem, there is a cauchy subsequence {¢q(n)}nen in *weak
topology. Because L' (G)* = L>(G) (see [8]), there is a bounded borel function ¢ such that {@q ) }nen converges to ¢ in
weak-* topology. So, ¢ satisfies assumptions in Proposition3.14. By Proposition3.14, we can assume ¢ is continuous. [
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3.5.4 Extreme points

Proposition 3.20. Let
(S1) G is a Lie group.
(S2) 1,2 are continuous functions on G.
(A1) p1x f=pox f (Vf € Cc(G)).

Then o1 = @s.

Proof. Let us fix any g € G. There is a sequence {f,}nen C CF(G) such that [, fudg, = 1 (¥n € N). By the same
argument as the proof of Theorem3.9, ¢1(g) = p2(g). O

Proposition 3.21. We will succeed in notations of Theorem3.9. Let
(S1) G is a Lie group.
(S2) 1,2 are continuous positive definite functions on G.
(A1) (1,72)¢1 = (152) 0
Then p1 = pa.
Proof. By Theorem3.9, 1 x f = o x f (Vf € C.(G)). By Proposition3.20, ¢ = ps. O
Proposition 3.22. Let
(S1) G is a Lie group.
Then Ex(Py) \ 0 = Ex(Py).

Proof of C. Let us fix any ¢ € Ex(Py) \ 0. If p(e) < 1, then ¢ = ¢(e) (&0) + (1 — ¢(e))0. This means ¢ ¢ Ex(Py). So,
ple

ple) = 1. O

Proof of D. Let us fix any ¢ € Fx(P1). Let us fix any ¢1,¢2 € Ex(Pg) and ag, as € [0,1] such that ¢ = a1p1 + asps.

Then 1 = p(e) = ai1pi(e) + azpa(e). Then pi(e) = p2(e) = 1. So, ¢ = p1 = @s. O

Proposition 3.23. Let
(S1) G is a Lie group.
(§2) By GNS construction we set
Q:Pr3>9— (T,H,) € Qe
Then Ex(P) =P, N & 1(Q).

Proof of C. Let us fix any ¢ € Ex(P;). Let us fix any closed G-invariant subspaces of H,, Vi, V5 such that H, = V1 + V3
and Vi # 0. Let us set P; be the orthogonal projection of V; (i = 1,2). Let us fix v € H, such that p(g9) = (Tyv,v)
(Vg € G). Because Vi L V5 and P; is commutative with 7, (Vi,g € G) and 1 = [[v||? = ||Pio||> + || P2v||?, ¢(9) =
T,Pv, P T, Pov, P.
|P1”||2(g||];01;||2w) + ||P2U||2W. Because ¢ € Ex(P1), (Tyv,v) = (T,Piv, Piv) = (TyPiv,v) (Vg € G). So,
1 2
(v, Ty-1v) = (P1v, Ty-1v) (Vg € G). Because (T, H,,) is cyclic, v = Pyv. So, Vi = H,,. O

Proof of D. Let us fix any ¢ € P; N @fl(é). Let us fix ¢1, @2 € Py and a1, a9 € [0,1] such that ¢ = a1p1 + asps. We
set for f+{f € Cc(G)|[|f|l, = 0}) € Ce(G)/{f € C(G)][|f]l, = 0}

mi(f +{f € Ce(O|Ifllo = 0}) := f+{f € Ce(G||Ifll; =0} (i =1,2)
Because {f € Cc(G)||fll, =0} C {f € C(G)|]|f]

Let us fix any w € H,. Because [(m1(u), m1(w))n, | < —|(u,w)| < —|ul|[|w|]. So, by Riez representation theorem,
a a

e, =0} (i =1,2), m,m are well defined and surjective.

there is Aw € H,, such that (71 (u), 71 (w))n,, = (u, Aw) (Vu1 € Hy). Cle;rly A is continuous and linear. If A = 0, then
1 = 0. This is contradiction. So, A # 0. Because (T, H,,) is irreducible, by Shur Lemma(see Proposition3.1), there is
A1 € C such that T = A 1. There is wy € Hy, such that i (wy) # 0. Then 0 < ||my(w1)]|2, = AlJwi][?. So, Ay > 0. And,
(‘1,-2)py = A1(:1,2)p. By Proposition3.21, o1 = M. 1 = p1(e) = Aip(e) = A1. So, 1 = A. O
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By Proposition3.23, Krein Millman Theorem(Theorem3.3), Raikov-Godement-Yoshizawa Theorem(Theorem3.10), the
following hold.

Theorem 3.11 (I.M. Gelfand-D.A. Raikov Theorem). Let

(S1) G is a Lie group.
(S2) K is a compact subset of G.
(S3) € > 0.

(S4) @ is a continuous positive definite function on G.
Then i, ..., > 0 and @1, ..., om € Ex(P1) such that
o= aigill L) <
i=1
Theorem 3.12 (.M. Gelfand-D.A. Raikov Theorem). Let
(S1) G is a Lie group.

(S2) g1,92 € G.
(A1) T, =T,, (Y(T,V)eq).

Then g1 = gs.

Proof. Let us fix g1, g2 € G such that g; # go. We set go := g1g5 *. There is f € CH(G) s.t go ¢ supp(f)~ supp(f) and
[If]le = 1. We set

©(9) == (Ryf, f) (9 € G)

Because the right regular representation R is continuous on L?(G), ¢ is continuous positive definite function on G.

o(g0) = /G F(990) f(9)dgr(g) = 0

Because 1 = p(e) = ¢(e) — ¢(go), by Theorem3.11, Then a1, ..., @, > 0 and ¢, ..., oy € Ex(Py) such that
Zai(%‘(e) — ¢i(g0)) #0
i=1

So, there is i such that o;(go) # 1. Because p; € Py, by Proposition3.23, (T, H,,) € G and there is v € H,, such that
[lv]]o, =1 and ¢i(g0) = (Tgov, v)y,. So, Ty, # I. This implies that Ty, # T,,. O

3.6 Topology of unitary dual
Definition 3.8 (Fell topology). By GNS construction we set
Q:Pr3¢— (T,H,) € Qe
Here, we assume the topology of P1 is the pontryagin topology and §2. is the set of all separable cyclic unitary representation

of G. We set the toplogy of Q. by {O C Q.|®~1(O) is open set}. We call this topology Fell topology of Q..

3.7 Direct Integral of Hilbert spaces
Definition 3.9. Let
(S1) (X,B, ) is a measurable space.
We say X is localizable if there is N C X and {X;}2, C B such that
(i) {X;}2, is disjoint.
(i) NNUR,X; = ¢.
(iii) X = NUUZ, X;.
(iv) u(X;) < oo (Vi €N).
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(0) 1(F) = X35, 1u(F 1 X,) VF € .
Because Lie group is o-compact, the following holds.

Proposition 3.24. Let

(S1) G is a Lie group.

(52) w is a left invariant measure.
Then (G,B, u) is localizable.
Notation 3.4 (Locally almost everywhere). Let

(S1) (X,B, ) is a meaurable space.

(S2) For each x € X, the proposition P(z) is given.
We denote P holds loc. a.e x € X if for any YB such that u(Y) < oo P holds loc. a.e x €Y.
Proposition 3.25 (Direct Integral of Hilbelt spaces). Let

(S1) (X,B,u) is a meaurable space.

(52) {H(z)}yex is a family of Hilbert spaces.

(83) I := My x H (x).

(S4) & C II.

(S5) R:={f €6|f =0 loc-a.e. x € X}
We say & is a Direct Integral of {H (z)}rex if

(i) If vi,v2 € & and a,b € C then avy + bvg == {avy () + bva(z) }ex € &.

(ii) If v € & then X € x = [[v(2)||f(z) € R is measurable.

(iii) If v € & then [ |[v(@)||F () < oo

(iv) Let us fix any f € II such that

(a) There is p € L*(X) such that ||f||g) < (z) (Vo € X)

(b) For any g€ &, X >z~ (f(2),9()) ) € C is measurable.
Then there is h € & such that for any g € &

(f(xz) — h(x),9(x)) =0 for loc-a.e x € X (3.7.1)

(v) Let us fix any f € 11 such that
(&) 1If()lacy € LAH(X)
(b) There is h € & such that f(x) = h(z) for loc-a.e x € X.
Then f € &.

Then & /R is a Hilbert space. We call this Wils Direct Integral of (X, u, {H(x)}zex) with respect to & and denote this by
&
Jx H(x)du()

Proof. Tt is enough to show that any cauchy sequence of & has a convergent subsequence. Let us fix any cauchy sequence
of &, {v,}n2;. Then there is subsequence {v,(;)}i2; such that

D g +1) — Vo) lI* < oo

=1

and -
D Mgt — vl < oo
i=1

So,

/ZH%W 2) = V(i) ()| By i1 (2) Z/H%(m 2) = V(i) ()| By i1 (2) Z||Uw+1)—%<z\|<00
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So,

o0

Z Ve (it1) (2) — v¢(i)(x)||§{(z) < oo locae z € X

i=1

So, {ve)(r)}2, is cauchy sequence for loc-a.e x € X. Because for any v € X H(x) is Hilbert space, {vgq(7)}52;

converges to some v(x) € H(x) for loc-a.e z € X. Because Hv(:z:)||?q(x) = lim (v, (z),vn(z)) for loc-a.e x € X, [[v(:)|a(,
n— oo

is measurable. For loc-a.e x € X,

llon (@] < llon (@) = o1 (@)l + llor(@)]] < D llos(z) = vima(@)]] + [Jor (@)]]
=2

So, for loc-a.e © € X,

(@)l < levi(w) —vima (@)]| + [[or ()]

Here,
/X(Z [lvi(2) = viz1 ()] + |[vr(2)[)*dp() < lim Z [vi(2) = vie1 (@)]] + [Jor ()| *dp(z)
1=2
n
< nli_{go(z vit1 — il + [Jo1|[* + [[on ] Z |[vigr — vil| + (Z Vi1 = wi]])?) < o0
i=1 =1 =1
So,

ZHUz —via ()l + [ Ol € L2(X, )

Let us fix any v €  and n € N.

1 1 1 1 . 1 1,
(vn (), u(@)) = (5llvn(@) + w(@)II* = Slloa@)|* = Sllu@)|*) + i llon@) + w@)]* = S llon@)|* = 5 lliu(@)]*)

So, (vn(+),u(+)) is measurable. This implies that (v(-),u(-)) is measurable. By (iv), there is vy € & such that for u € &

and for loc-a.e v € X
(v(z) —vo(z),u(z)) =0

So, for any n € N, (v(x) — vo(x), v, (x) — vo(x)) = 0. This implies that for loc-a.e z € X (v(z) — vo(z),v(z) — vo(z)) = 0.
So,
v(z) = vo(x) loc-ae xz € X

By (v), v € &.
For loc-a.e z € X and nN,

o0

llo(@) = va(@)I] < 203 i) = via (@)]] + [[oa (@)]])

=2

and Yoo, [|vi(-) — vi—1 ()| + |Jv1(+)|] € L*(X). So, by Lebesgue convergence theorem,

im0 = vl = Jim_ [ ofa) = vn (@)l Pdn(o) =

n—oQ

By Theorem3.6, the following holds.
Proposition 3.26 (Direct Integral of Unitary representations). Let
(S1) (X,B, ) is a meaurable space.
(S2) {H(z)}zex is a family of Hilbert spaces.
(83) I := T ex H(x).
(S4) & C II.
(S5) f;? H(x)du(z) is the direct integral of (X, p, {H(z)}rex) with respects to &.
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(S6) G is a topological group.

(S7) my is a continuous unitary representation on H(z) (z € X).

(A1) For any g € G and v :={v(z)}zex € &, m(g)v := {mx(g)v(x) }rex € &
(A2) For any v :={v(x)}rex € &, G 3 g 7(g)v® is continuous.

Then (m, f)f H(z)dp(z)) is continuous unitary representation. We call this direct integral representation of (X, p, {m(x), H(x)}zex)
. &
and denote this by [ w(x)du(z).

3.8 Decomposition of an affine type function

Definition 3.10 (Baire Set). Let X be a locally compact topological space. We denote the minimal borel family in which
any element of C.(X) is measurable by By. We call the elemant of By Baire set.

Definition 3.11 (Support of measure). Let

(S1) X is a locally compact topological space.
(52) B is the minimal borel set family containing all relative compact open sets.

(S3) w is a nonnegative measure on B.

(S4) F C X.
We say F supports p if for any AB such that ANF = ¢, u(A) = 0.
Definition 3.12 (Regular borel measure). Let

(S1) X is a locally compact hausdorff topological space.

(S2) B is the minimal borel set family containing all relative compact open sets.
(S3) p is a nonnegative measure on B.

(A1) For any compact set A, u(A) < oo.

(A2) p(A) = sup{u(C)|C € B, C C A and C is compact.}.

(A3) p(B) = sup{u(C)|C € B, AC C and C is an open set.}.

Then we say p s regular borel measure on X.
Definition 3.13 (Upper semicontinuous function). Let
(S1) X is a topological space.
We say f € Map(X,R) is upper continuous for any c € R f~1((—o0,c)) is an open set.

Definition 3.14 (Affine type function). Let D be a vector space and X be a convex subset of D and f be a real valued
function on D. We say f is affine type if

fQz+ (1 =Ny) =Af(2) + (L= A)f(y) (VA €0,1],Va,y € X)
We denote the set of all continuous affine type function on D by A(X).
Notation 3.5. Let

(S1) (D{|| - |ln}tnen is a seminormed vector space.

(52) X is a compact convex subset of D.

We set
B(X) :={f € Map(X,R|f is an upper semicontinuous and convexr on X }
and
CB(X) := B(X)nC(X)
and

CB()(X) = CB()(X) - CBo(X)
Definition 3.15 (Vector lattice). Let

(S1) (V,<) is a partialy ordered vector space.
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(S2) V is a binary operation on V.
We say (V,<,V) is vector lattice if for any x,y,z € V

(i) If x <y thenx+2z<y+z.
(i1) If x <y then ax < ay (Va > 0).
(i5i) xVy is a least upper bound.

Proposition 3.27. Let

(S1) (D,{|| - lln}nen is a seminormed vector space.

(52) X is a compact convex subset of D.
Then
(i) If f,g € CB(X) then max(f,g) € CB(X).

(i) CBy(X) is a vector lattice with the pointwise order and pointwise mazimum.
(i1i) CBy(X) is dense in C(X).
Proof of (i). Let us fix any z,y € X and A € [0,1]. Then
max(f(Az + (1 = A)y), g(Az + (1 = N)y)) < max(Af(z) + (1 = A)f(y), Ag(z) + (1 = N)g(y))
< Amax(f(x), g(x)) + (1 = Nymaz(f(x), g(x))
So, max(f,g) € CB(X) O
Proof of (ii). Let us fix any f1, f2, 91,92 € CB(X). For each x € X

fi(@) —g1(z) < f2(2) = go(2) = fi(z) + g2(x) < fa(@) + g1 ()

So,

max(f1 — g1, fo — g2) = max(f1 + g2, f2 + 91) — (91 + g2)
So, by (i), max(f1 — g1, fa — g2) € CBy(X). O
Proof of (i4i). By Hahn-Banach Theorem, for any x,y € X such that x # y, there is h € CBy(X) such tat h(z) # h(y).
So, by Stone-Weierstrass Theorem in Vector Lattice(Theorem3.2), (iii) holds. O

Definition 3.16 (Order of Regular Borel measures). Let

(S1) X is a locally compact hausdorff topological space.
(S52) B is the minimal borel set family containing all relative compact open sets.

(S8) w1, pe are regular borel measures on X.

We denote 1 < pg if
pi(f) < p2(f) (Vf € CB(X))

Proposition 3.28. Let

(S1) (D, {|| - lln}nen is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) w1, pe are reqular borel measure on X.

(A1) py < po and po < p.
Then py = po.
Proof. This is from Proposition3.27. O
Proposition 3.29. Let

(S1) (D{|| - ||n}tnen is a seminormed vector space.
(52) X is a compact convex subset of D.

(S3) w1, pe are regular borel measure on X.
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(A1) p1 =< pa.
(84) f € A(X).
Then pi(f) = pa(f)-
Proof. Because f € CB(X)N (—CB(X)), u1(f) = pa(f). O

Definition 3.17 (Upper envelope function). Let

(S1) (D{|| - ||n}tnen is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) f e C(X,R).
We set ~

f(z) == inf{h(x)|h € A(X),h > f} (x € X)

Proof of {h € A(X)|h > f} # ¢. Because X is compact and f € C(X,R), ||f[|r~(x) < oo. Constant function with
|| f||e(x) is continuous affine type function. So, {h € A(X)|h > f} # ¢. O

Proposition 3.30. Let

(S1) (D{|| - ||n}tnen is a seminormed vector space.
(52) X is a compact convez subset of D.
Then
(i) For any f € C(X,R), f is
(i) For any f € C(X,R), f <
(i1i) For any f € CB(X), f =
(iv) For any f,g € CB(X), f <f+
(v) For any f,g € CB(X), |f - §| < Hf g||L°°
(vi) For any f € CB(X) and r € (0,00), rf :rf.
Proof of (i). Because f < [ f]] o (x5 f is bounded. Let us fix any ¢ € R and « € f~'((—o0,¢)). Then there is h € A(X)

such that h(x) < c. Because h is continuous, there is V' which is a neighborhood of 0 such that h(z+y) < ¢ (Yy € VN X).
So, f(x+y) <c (Yy € VN X). This means that z +V C f~1((—o0,c)). So, f is upper semicontinuous. O

ounded and upper semicontinuous.

f
+

Proof of (#). (ii) is clear from the definition of upper envelope functions. O

Proof of (iii). We set K := {(z,r) € X xR0 <7 < f(z)}. Because X is compact and f is continuous concave, K is
compact convex subset of X x R. Aiming contradiction, let us assume f(xo) < f(zo) for some zq € X. (z0, f(z )) ¢ K.
By Theorem3.1, there is L which is a continuous R-linear functional on D x R such that

L(wo, f(20)) > 1> L(w, f(x)) (Vo € X)
This implies (f(z0) — f(x0))L(0,1) > 0. So,
L(0,1)>0

We set
1— L(x,0)

h(z) == 70,1 (re®)

Then h € A(X) and
L(z,h(z)) =1 (Vz € D)

So, 3
L(zo, f(z0)) > L(x, h(x)) > L(z, f(x)) (Vo € X)

This implies
0 < L(z, h(z)) — L(z, f(z)) = L(0, h(z) — f(z)) = (h(x) — f(2))L(0,1) (Vz € X)

So,
f(z) < h(z) (Vx € X)
Similarly,
h(zo) < f(z0)
These two equation contradict with each other. O
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Proof of (iv). Let us fix any x € X and € > 0. Then there is hi,he € A(X) such that f < hy; and g < he and
hi(x) < f(x) + € and hy(z) < §(x) + €. Because hy + hy € A(X) and f +g < hy + ha. f+ g(x) < hi(z) + ha(z). So,
f+g(x) < flz)+g(x) + 26 O

Proof of (v). By (iv), for any x € X.

—~— —_—

f(x) =g(x) < f =g +g(z) = glz) < [ — g(x)
Because ||f — g]| € A(X), F-g< [lf — gl|- So, (v) holds.
Proof of (vi). This is clear from the definition of upper envelope functions.
Definition 3.18 (Convex cone). Let

(S1) D is a R-vector space.
(52) V1,V2y ...y Um S D.

Then
cc(V1, V9, .oy Upy) 1= {Z a;vila; >0 (Vi)}

i=1
Proposition 3.31. Let

(S1) D is a R-vector space.
(52) V1,V2, .oy Uy, € D.
(A1) 0 € ex(cc(vy,va, ..., Um))-

Then there is wy, ..., w, €€ D such that w1, ..., w, are linear independent and
cc(V1, 02, .oy Uy ) C cc(wr, Wa, ..., wy)

Proof. We set ng := dim{vy, ..., s, }. Using mathematical induction on m — ng, we prove this proposition. Let us fix any
d € N. Let us assume this proposition holds for m —ny < d and m —ng = d + 1. Then we can assume

vm:—Zaivi+2ijk+j7k+l:m—l

If kK = 0 or vy, # 0, then cc(vy,va, ..., V) = cc(v1, V2, ..., Vm—1). By the assumption of mathematical induction, this
1
proposition holds. So, we can assume k # 0 and v, # 0. If [ = 0,0 = i(vaer:l a;v;). This means 0 ¢ ex(cc(vy, ..., Um))-

So, we can assume [ % 0. Furthermore, we can assume

k:=min{K € N|Jo : {1,...,m} — {1, ...,m}:bijective, ey, ...,cx >0, Idy,....,dr, > 0(L :=m — K) s.t.

K L
= co(Datiy + D bo(iyVotirsy =0} — 1
i=1 j=1

We set
1 &
’U]/f+j = T Zaivi + bj’l)k+j (] = 17 ceny l)
i=1
1
Because of the minimalism of k, 0 € ex(cc(vi, ..Uk, Vjyqs -, Vsyy)). Because vgy; = b—(Zle aivi + vy ;) (V) and
j
!
Zj:l ”;Hj = Um,
cc(v1,02, ..y V) C (1, .., Vgyy), k+1=m—1
By the assumption of mathematical induction, this proposition holds. O

Proposition 3.32. Let

(S1) (D {|| - ||n}tnen is a seminormed vector space.
(52) X is a compact convez subset of D.
(S3) z € X.
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(A1) f(x) = f(z) (Vf € C(X,R)).
Then x € ex(X).
y+=z

Proof. Aiming contradiction, let us assume x ¢ ex(X). Then there is y,z € X such that y # z and = = 5 We set
f():=d(z,-). By Proposition3.30,
. 1 - . 1
0= f(z) = fz) 2 S(fy) + [(2)) = 5(f(y) + f(2)) > 0
This is contradiction. O

Proposition 3.33. Let
(S1) X is a locally compact hausdorff topological space.
(S52) B is the minimal borel set family containing all relative compact open sets.
(S3) M is the set of all reqular borel measures on X .
(S4) 1 Mm.
Then M, :={v € M|p > 0, < v} has a mazimal element.

STEP1. We set
® := {T C M,|T is totally ordered with <}

Let us fix any 91 which is totally ordered subset of M, with inclusion relationship. Clearly UremT' is totally ordered
with <. So, by Zorn Lemma, ¢ has a maximal element F'. Because F' is totally ordered with <, for any finite elements
Tly ey T € F, N2 M, # 0. O

STEP2. We set
S = (i € Mpu(1) = (1))

Because S C {F € C(X)*|||F|| < |v(1)|} and S is closed subset in *-weak topology, by Banach-Alaogrou Theorem, S is
compact subset in *-weak topology. For any 7 € F,

M; = Nrecpx){n € Slu(f) 2 v(/)} N0 ecr o {m € Slu(f) = 0}
So, M, C S is closed subset in *-weak topology, O
STEPS. By STEP1 and STEP2, N,cp M, # ¢. Let us take a pg € NyepM,. For aiming contradiction, let us assume there
is u € M, such that pg < p and p # pg. By Proposition, u ¢ F. But F N {u} is totally ordered. This is contradiction.
So, g is a maximal element of M,,. O
Proposition 3.34. Let

(51) (D,{|| - lln}nen is a seminormed vector space.
(S2) X is a compact convex subset of D.
(S3) p is a mazimal element in M.
Then B
p(f) = pw(f) (vf € C(X,R))
Proof. We set
p(9) = p(9) (9 € C(X,R))
Clearly p is a seminorm on C(X,R). Let us fix any f € C(X,R).

L(rf) = ru(f) (r € R)

By Hahn Banach Theorem, L has an extension L’ which is a R-linear functional on C'(X,R) such that L' < p. Let us fix
any g € C(X,R)". Because —g < 0, —g < 0. So,

L(—g) < p(—g) = u(—g) < u(0) <0

This implies 0 < L(g). So, by Riez representation theorem, L is a regular borel measure.
Let us fix any h € CB(X). Because —h is continuous and concave, by Proposition,

L(=h) < p(=h) = u(<h) = u(h)
So, < L. This implies p = L. So,
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Proposition 3.35. Let

(S1) (D{|| - ||n}tnen is a seminormed vector space.
(52) X is a compact convex subset of D.

(S8) f is continuous strictly convez function on X.
(84) z & ex(X).
Then f(z) < f(2)

1
Proof. By there are z,y € X such that « # y and z = 5(;10 +y) Let us fix any h € A(X) such that f < h. Then

1(2) < 5(F(@) + FW) < Sh(z) +hiy)) = h(z)

So, )
fz) < 5(f(2) + £(y) = f(2)

Theorem 3.13 (Choquet Theorem). Let

(51) (D,{|| - lln}nen is a seminormed vector space.
(52) X is a compact convex subset of D.
(Sg) zg € X.

Then there are K is a borel set and p which is a reqular borel probability measure on X such that K supports u and
X\ K Cex(X) and

o(ao) = /K p(@)du(z) (v € ACX))

STEP1. Construction of continuous strictly convex function. We set U := {h € A(X)|||h||>® = 1}. Because X is compact
metrizable, there is a countable set {h, }neny C U which is dense in U. We set

=Yg
n=1

We will show f is strictly convex. Let us fix any z,y € X such that  # y and A € (0,1). By Hahn-Banach Theorem, there is
- fx)+ f(y)

2 cvU,
IIf -

%

[N)

f which is a real-valued continuous linear functional onD and satisfies f(x) > f(y). Because

f(x) + 1Y)
9 HLOO (D)
there is n € N such that h,(z) > 0 > h,(y).

Bz + (1= N)y)? = Nhy(2)2 + (1= 2N)2hn (1) + A1 = Nho (2)ha (y) < Ny () 4+ (1 = N)2ha(y)?
< /\hn(x)Z +(1- )‘)hn(y)Q
This implies that f(Az + (1 —N)y) < Af(z) + (1 — A)f(y). So, f is strictly convex. O

STEP2. Construction of a reqular borel measure. Because X is locally compact hausdorff space, by Riez-Markov-Kakutani
Theorem, § : C(X) 3 g — g(x) € C defines a regular borel measure. So, by Proposition3.33, there is a maximal element
w1 € M such that § < p. By Proposition3.29, u(g) = d(g) for any g € A(X). Because 1 € A(X), u(X) = 1. O

STEPS3. Construction of K. We set

K = Unen K, Kn = {o € X|f(2) = f(z) > %}

- 11 -
Because K,, = (Mmen{z € X|f(x) — f(z) < — 4+ —})° and f — f is upper continuous, K, is measurable for any n € N.
nom

So, K is borel measurable. By Proposition3.35, X \ K C ex(X). By Proposition3.34, u(f) = u(f). So u(K) = 0. This
implies X \ K supports p. O
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3.9 Mautner-Teleman’s theorem
Proposition 3.36. Let
(S1) G is a Lie group.

(52) (m,V) is a continuous unitary cyclic representation of G with a cyclic vector w.

Then there is o finite mesurable space (X, M,u) and a direct integral fg w(z)du(x) which is isomorphic to (m,V) as
continuous unitary representation.

STEP1. Decomposition of a matriz coefficient. We can assume
|l =1

We set
o(g) == (m(g)w,w) (9 € G)

Because Py is a compact convex subset of C'(G) with compact convergence topology which is metrizable by countable
seminorms. By Theorem3.13, there are p which is a probability measure on P; and X which is a borel mesurable set such
that X C ex(Py)

F(p) = /X F(pa)du(z) (VF € A(Py))

Here, p, = x. For any g € G, P; € ¢ — Rey(g) € R and P; € ¢ — Imw(g) € R are continuous affine by Raikov-
Godement-Yoshizawa Theorem(Theorem3.10). So,

o(g) = /X o2 (9)du(z) (Vg € G)

STEP2. Construction of a family of irreducible representations. We set

(T'(z), H(x)) : The representation generated by the GNS construction (z € X)

and
Il := ILcx H(z)
and
v(f,z) : The projection of f in H(x) (f € C.(G),z € X)
and

Dy : The vector space generated by {A(-)v(f, )|f € C.(G),A € L=(X, u)}

We set © by the completion of D¢ with the inner product (-,-) := [(-,-)g()dp(z). As we showed in the process of
proving Proposition3.25, any cauchy sequence of ®( has a subsequence which converges pointwise some element of II.
So, we can embedded © in II. Clearly © is C-linear subspace of II. And, for each A € L>®(X,u) and f € C.(G),
X 32— [|A@)v(f,2)||n() is measurable and L?-integrable. So, forany F € ©, X 3 x — ||F ()| (s) is measurable and
L2-integrable. Clearly D satisfies (v) in Proposition3.25. So, it is enough to show (iv) in Proposition3.25. Hereafter, let
us fix any u € II which satisfies (iv)(a) and (iv)(b) in Proposition3.25. There exists {v, tnen C Dg such that

lim ||v, —u|| = inf |Jv—ul
n—o0o vEDo

For each u,v € 1II,
(u(z),v(x))
P ={ e (970 e

We will show
[lu(z) = P(u, v)(@)]] < |lu(z) —v(@)]| (Vo € V,Vz € X) (3.9.1)
Let us fix any v € V and z € X. If v(z) =0, (3.9.1) holds. So, we can assume v(x) # 0. Then

|(u(z), v())|?

lu(@) = Plu, )@ = [lu(@)IP = "=
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and
lu(@) = v(@)[]* = [Ju(2)]]* = 2Re(u(z), v(x)) + [[o(z)|[?

So,
lo(@)|*([lu(z) — v(@)I]* = [Ju(@) = P(u,v)(@)]]*) = |(u(z), v(2)) = [[v()[[** = 0
This implies (3.9.1). So, by (3.9.1) and Propositionl.14, {P(u,v,) }nen is a cauchy sequence. So, ug := lim P(u,v,) € D
n— oo
exists. We will show ug u € II which satisfies (iv)(3.7.1) in Proposition3.25. Aiming contradiction, let us assume that
there are v/ € © and a borel measurable set E such that p(E) > 0 and
(u(z) — uo(z),u (x)) #0 (a.ex € X)

As we showed in the process of proving Proposition3.25, any cauchy sequence of ®g has a subsequence which converges
pointwise some element of II. So, we can assume u’ € Djy. We set

vi=u — P(u,ug)

For any = € X, we will show
(v(x), uo(x)) =0 (3.9.2)

and
(u(z) —uo(z),up(z)) =0 (3.9.3)

If ug(x) = 0, the both clearly holds. So, we can assume ug(z) # 0. Then,

(u' (), uo(x))

2 _
Tao@P | (Ho@) wol@)I* =0

(v(x),uo()) = (u'(x), uo(x)) —
This means (3.9.2) holds. Furthermore,

(u(2), voo (1)) |(u(z), voo (2)) 2

(ufa) o)) = (), ST e 1)) = R = (), o)

This means (3.9.3) holds. For any = € E,

(u(z) = uo(z), v (2)) = (u(x),u'(x)) = (uo(x),u'(x)) = (u(z),v(x)) + (u(z), P(u', u0) () — (uo(x), v’ (x))

by (3.9.2)
= (u(@),v(x)) + (u(x), P(u', uo)(x)) — (uo(x), P(u', uo)(x))
by (3.9.3)
= (u(x),v(z))
So,
(u(z),v(z)) #0 (Vz € E) (3.9.4)
We will show
P/ ug) €D (3.9.5)

Clearly,
AeLX(X),weD = IweD

For n € N, we set

7(1/(@’%(3:)) v(x 1 and ||u/(z n
ieyi= | e (12 Lt W<

(otherwise)
Because A, € L (X, 1), Apug € D. Let us fix any ng € N. If m,n > ny,

H>\mUO - >\nU0|| < / ||U/({E)||2du(m)

lluo (@) 1< 75 [1w/ (2) ]| =m0

The right side of this equation converges to 0 when n — oco. So, {Amuo}men is a cauchy sequence. So, P(u’,ug) =
lim A, up(pointwise convergence) is in ©. We set
—00

m

ug := ug + P(u,v)

91



By the way which is similar to the proof of (3.9.5), P(u,v) € ®. This implies u; € D.

2
U, v
lJu —uy||* = ||u — ugl|? — 2Re(u — ug, P(u,v)) + |(|v||2
by Proposition3.9.2
|(u, v)[? o (u,0)? . 2
= ||u — uo||* = 2Re(u, P(u,v)) + =2~ = ||u — ugl||* — < inf |jv —ul|
[lv]I? l[[> veDo
This is a contradiction. So, (X, B(X), u, II,®) is a direct integral of Hilbert spaces. O

STEPS. Construction of continuous unitary representation. We set
Tov(f,x) :==v(Ryf,z) (f € Co(G),z € X)

Because
(v(Ryf,2),v(Reg,2)) = (v(f,2),v(g,2)) (Vf, g € Ce(G),Vz € X)

T, is a unitary operator on ©y. Because ®g is dense in ©, T, has the unique extension on ©. For any f € C.(G) and
91,92 € Ga |‘T91v(f7 ) - ng’U(f, )H < H(X)HR!hf - Rng||L°°- SO,

Gog—Ty(f,)eD

is continuous. Because T is unitary and g is dense in ®, T is weak continuous. So, T is strong continuous. Let us take
1
{fn}tnen C CH(G) such that fG fndg, = 1 and supp(f,) C exp({X € M(n,C| || X]| < ﬁ}) (Yn € N). Then {v(fn,)}nen

has a subsequence which converges some v € ©. By the same way as the proof of Theorem3.9, we can show the following.

(0(f,),0(9,7)) = (o(f, ), / oy )T 09, ) A (v)dg, (v)) (V1.9 € Co(G))

G

o(g.) = /G oy~ I)T;  0(g, ) A ()dga () (Vg € Co(G))

By the same way as the proof of Theorem3.9, ¢ is in the closed subspace generated by T'(G)v. Because @ is dense in D,
T is cyclic with cyclic vector v. Clearly the following holds.

(Tyv)(z) =T v(x) (Vz € X)

Here, T is the representation by GNS construction for x € X. So,
o(0) = [ erlauta) = [ (To@o@)inte) = [ (T0(@).0e)dnte) = (T0.0) (g € 6)

By Proposition3.6, (, V) and (T, [ ? H(z)du(z)) are isomorphic as continuous unitary representations. O
By Proposition3.7 and Proposition3.36, the following holds.
Theorem 3.14 (mautner-Teleman’s theorem). Let
(S1) G is a Lie group.
(S2) (m,V) is a continuous unitary representation of G.

Then there is a a family of direct integral of continuous unitary representations {f)?: w(z)dpx(z)}ren such that

(1) (X, pn) is o finite measurable space (YA € A).
.\ Da ) ) . . ,
(i) fX; wx(z)dp(x) is a continuous cyclic unitary representation of G.

(iii) (7, V) and @, p f)?; wx(z)dpx(z) are isomorphic as continuous unitary representations of G.
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3.10 Review

Please note that the statements in this subsection are generally inaccurate. In this chapter, the following mautner-Teleman
theorem is the main theorem(Theorem3.14).

Theorem (mautner-Teleman theorem). Let

(S1) G is a Lie group.

(S2) (m,V) is a continuous unitary representation of G.
Then there is a a family of direct integral of continuous unitary representations {f}:; w(x)dpx(z)}ren such that

(i) (X, pa) is a finite measurable space (VA € A).
(i) f)?f wx(x)dp(z) is a continuous cyclic unitary representation of G.
(iii) (7, V) and @, p f)?; wx(x)dpyx(xz) are isomorphic as continuous unitary representations of G.

This theorem states that any continuous unitary representation of Lie group is decomposed into irreducible continuous
unitary representations. The direct integral of continuous unitary representations {X, D, u,T,, H(x)} is a subset of
IT :=II,cx H(x) which satisfies the following main conditions.

(i) For any u,v € ®, (u(-),v(:)) is measurable and integrable.
(ii) {Ty}sex defines T which is a continuous and unitary action on D.

(iii) If v € IT and [|v(+)|| is measurable and bounded by a L? function and (v(-),u(-)) is measurable, v can be
seen as the element of © in a sense.

In special, (T,D) is a continuous unitary representation of G.

I also think that the following Gelfand-Raikov Theorem(Theorem3.12) obtained in the process of showing mautner-
Teleman theorem is also a very significant theorem. This theorem states that we can distinguish any two element of Lie
group G by the unitary dual G of G. The definition of a unitary dual is the set of all continuous irreducible unitary
representation of G.

Theorem (I.M.Gelfand-D.A.Raikov Theorem). Let
(S1) G is a Lie group.

(S2) g1,92 € G.
(A1) T, =T,, (V(T,V)eq).

Then g1 = go.

Below, I would like to review the process of obtaining these two theorems with my personal opinions and impressions.
We begin by examining the cyclic representation rather than directly examining the irreducible representation. The
definition of the cyclic representation (m,V’) with a cyclic vector v is the representation space is spanned by 7(G)v.
The definition of the cyclic representation is the representation whose any vector is a cyclic vector. One of the reasons
for focusing on cyclic representations is to investigate the Jordan normal form with respect to matrices that cannot be
diagonalized in matrix decomposition theory. Supposing (7, V') is a representation of Z, (1) is similar a jordan block if
and only if (7, V) is cyclic[15].

By Zorn lemma and the same argument as the diagonalization of unitary matrices, we can show that any continuous
unitary representation of Lie group is decomposed into cyclic continuous unitary representations (Proposition3.7). So, the
proof of mautner-Teleman theorem is attributed to the case for cyclic representations.

We focus on matrix coefficients whose form is ¢ := (7(-)v,v) from a continuous cyclic representation (m, V') with a
cyclic vector v. ¢ satisfies the following condition.

N
Y am(g)v =0 <= Y aip(ge:) =0 (Vg € G)

i=1 i=1

This implies if (71(-)vy,v1) = (m2(-)ve,v2) then 71 and 7o are isomorphic as continuous unitary representations (Proposi-
tion3.6). So, this is the kicker to investigate ¢ := (w(-)v,v). This function satisfies the following conditions.
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(iv) Ip(g1) — ple2)]? < 5o(e)lo(e) — Replor ' 02)

V) I (f,9)p = [oe(zy™) f(y)g(2)dg (2)dg, (y) (f,g € Cc(G)), then (-, ), satisfies a nonnegative Hermitian
semibilinear form.

We call functions which satisfies these conditions positive definite functions even if they don’t have a form (7 (-)v,v). The
right regular action R preserves this nonnegative Hermitian semibilinear form and continuos. So, we construct continuous
unitary representation (7', H,). Taking a sequence of Cf (G) { fn}nen such that || f,||r1 () = 1 (Vn), by Banach-Alaogrou
Theorem (Theorem3.7), {f,}nen has a convergent subsequence which converges to some v € H, in *weak topology.
Banach-Alaoglu Theorem states the unit sphere on of dual of a separable normed space is sequencial compact in *-weak
topology. v likes a dirac delta function whose support {e}. For any g € G, Tyv likes a dirac delta function whose support
{g7'}. So, v is a cyclic vector of H,. Assigning f = Tyv and g = v in (v), we see ¢ = (T'v,v). In special  can been seen
as a continuous positive definite function. This method of obtaining a continuous and cyclic unitary representation from
a positive definite function is the GNS construction.

The GNS construction is a powerful technique that will be used with great success throughout this chapter. For
example, if g; # go in G, there is f € CF(G) such that g1g5 ' ¢ supp(f) and f(e) = 1. So, the continuous cyclic unitary
representation by GNS construction for (R.f, f) separates e and g195 1. So, by GNS construction, the claim is established
with the ‘irreducible‘ part in Gelfand-Raikov replaced by ‘cyclic’.

We see GNS construction gives a map from the space of continuous positive definite functions to the set of all cyclic
continuous unitary representations. So, we focus on P; which is the set of all normalised continuous positive definite
functions whose value at e is 1. There are two possible ways to set a topology in P;. One is the topology from compact
convergence(Pontryagin topology). Another one is the x-weak topology. By the strong continuity (iv), these topology is
the same. This is Raikov-Godement-Yoshizawa Theorem(Theorem3.10). A sketch of the proof of this theorem is shown
below. Let us assume {¢p}tnen C Py converges to ¢ € Py in #-weak topology. Then for any f € C.(G), {f * ¢n}nen
converges to f x ¢ € Py pointwise. Because of (iv), {f * ¢n }nen is equicontinuous on any compact subset. By the same
argument of the proof of AscoliArzel theorem, {f * ¢, },en converges to f*p. Because of (iv), taking f such that supp(f)
is sufficient small, ||¢, — {f *©nloo fnen and ||¢ —{ f *¢©||co }nen are uniformly small. So, {¢, }neny C P1 compact converges
to ¢ € Py.

By this powerfull theorem, we can show important properties of the topology of P;. x-weak convergence preserves (iii)
and (iv) and boundedness of positive definite functions. By GNS construnction, *-weak convergence preserves continuity of
positive definite functions. So, Py is closed subset of *-weak topology. By Banach-Alaoglu theorem and L'(G)* = L>°(G),
P; is compact. Because P; is convex, by Krein-Millman theorem, any ¢ € P; can be uniformly approximated by some
convex combination of {¢,})_; C ex(P;) on any compact subset.

We see

ex(Py) =P, N® Q)

Here, ® is the map defined by GNS construction. Because by orthogonal projections we can get a convex combination
decomposition of positive definite function from a decomposition of a representation space of GNS construction, the C
part is shown. By Shur Lemma, we can obtain a decomposition of a representation space of GNS construction from a
decomposition of a element of P;. The above discussion show Gelfand-Raikov theorem.

Next step, we elaborate Krein-Millman theorem. I mean for each ¢ € Py, there is a probability measure p € P(Py)
such that there is Y C ex(P;) which supports p and

= /Y Pudp(r)

This is from Choquet Theorem(Theorem3.13).
I think our first step is to interpret the value ¢(g) in terms of inverted space and function. I mean for each g € G, we
interpret g as
fq P12 0 o(g)

By Raikov-Godement-Yoshizawa Theorem, f, is continuous. Because f, is convex and concave, if we define
p1 < p2 <= pi(f) < p2(f) (for any f which is a continuous convex function on Py)
then

p= /Pl Pudp()

for any 4 such that 6, < p. As shown below, we find a mesurable subset of IP; which is defined by continuous strictly
convex functions. If f € C(Py,R) is strictly convex, for any affine(convex and concave) function h which satisfies f < h,

{z € P1|f(z) < h(z)} C ex(Py)
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It is rational to obtain the minimam function. So, we define the following upper envelope function f.
f(x) == inf{h(z)|f < h,h € A(P})} (z € Py)

Here, A(PP;) is the set of all continuous affine functions on P;. Becuase f(z) is upper semicontinuous, {z € P;|f(z) < f(x)}
is measurable. Because convex combination of countable dense subset of {h € A(P1)|||h||lcc = 1} is continuous strictly
convex by Hahn-Banach theorem, there is a continuous strictly convex function on P;. So, we find p such that 6, < p
and u(f) = u(f). ]

If h € C(Py,R) is convex, then —h = —h by applying Hahn-Banach theorem to a convex set {(x,r) € P|||0 < r < h(z)}.
This can be inferred by drawing a graph of h in the 1-dimensional case. By this fact and Hahn-Banach extension theorem
and Riez-Markov-Kakutani theorem, for any 4 such that 6, < pu, there is a regular borel measure L such that 4 < L and
L(f) = u(f). So, if we take p which is a maximal element of {pldy < p} by Zorn Lemma, u(f) = u(f).

We set X := {z € P,|f(x) = f(z)}. By Theorem3.14, we can construct fX (z)dp(z) which is a direct integral unitary
representations from {®()},ceq(x). By the same Way as GNS construction, we show ff H(z)dp(z) is a continuous cyclic

unitary with some cyclic vector v and ¢ = (T'v,v). So, f « H(z)du(z) and 7 are isomorphic as continuous unitary
repesentations.
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4 Irreducible decomposition of unitary representation of compact group

4.1 Some facts admitted without proof
Theorem 4.1 (Stone Wierstrass Theorem). Let
(S1) X be a compact metric space.
(52) A cC C(G).
(A1) A is a C-vector subspace of C(QG).
(A2) 1€ A.
(A3) If f € A, then f € A.
(A4) If f,g € A, then fg € A.
(A5) If x £y € X, there is f € C(Q) such that f(z) # f(y).

Then A is dense subset of C(G) in uniformly convergence topology.

4.2 General topics on Bochner Integral
Definition 4.1 (Bochner Integral). Let

(S1) (X, B, u) is a measurable space.

(S2) Y is a Banach space.
Then

(i) We say F: X =Y is finite-value if there is S € B such that F(S) is a finite set and F(X \ S) = {0} and
w(S) < oco. We set

[ F@dut@) = ¥ anr (@)

a€F(S)

(ii) We say F : X =Y is a strong measurable if there are {F,}52, such that for each n € N F,, is a finite
valued and {F,}52 1 almost everywhere pointwise converges to F.

(i1i) We say F : X — 'Y is Bochner integrable if F is strong measurable and there are {F,}2, such that for
each n € N F,, is a finite valued and {F,}22; almost everywhere pointwise converges to F and

/ F(z)du(x) := lim F,(z)du(x)
X

n—oo Jx
exists.
Because of the definition of Bochner integral, the following clearly holds.
Proposition 4.1. Let

(S1) (X, B, u) is a measurable space.
(S2) Y,Z is a Banach space.

(83) F: X —Y is Bochner integrable.
(S8) T:Y — Z is bounded linear.

Then T o F' is Bochner integrable and
T/ F(z)du(x) :/ T o F(x)du(x)
X X

Proposition 4.2. Let

(S1) X is a compact space.

(S2) B is a banach space.

(S3) F € C(X,B).

(S4) w is a finite borel measure on X.
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Then F' is bochner integrable and
| [ Pl < [ IF@)lduto)
X X

Proof. By (S1) and (S3), F(X) is compact. So, for each n € N, there is a finite open covering of F(X) O(F(zp,;)
1

(n=1,2,..a(n)) such that O(F(z, ;) is an open neighborhood of F(z, ;) and O(F(zy ;) C B(F(zn,), —). We can assume
n

that for each n € N and each i € {1,...,a(n+ 1)} there is j € {1,...,a(n)} such that O(F(2,41,)) C O(F(2n,;)).

1
F(xn.1) xEF(X)ﬂB(F(a:nJ),Q—n)
Flanin) @€ F(X) 0 (BF@ni1), 50) \ Um BE(n ), 51)
Clearly, for any n € N, F}, is finite valued and
1
1En(z) = F2)ll < 57
and )
| [ Fa@aut@) - [ Fra@da@ll < oux)
b'e b'e 2
So,
lim F,(z) = F(z) (Vo € X)
n—oo
and by (S2)
Jim . Fo(@)dp(x)
exists. O

4.3 General topics on Compact self-adjoint Operator
Definition 4.2 (Compact operator). Let

(S1) W is a normed linear space.
(52) V is a Banach space.

We say T : W — V is a compact operator if T is linear and T(B(0,1)) is a relative compact. We denote the set of all
compact operator on V' by Bo(W,V).

Proposition 4.3. Let
(S1) W and V and U are normed linear space.
Then

(i) If V is a Banach space, then Bo(W, V) is a closed subspace of B(W,V).
(ii) If T € Bo(W,V) and Wy which is a linear subspace of W, then Ty, is a compact operator.
(i) If T € B(W,V) and dim(ImT) < oo, T is a compact operator.
(i) If T € Bo(W,V) and S € B(V,U), then SoT is a compact operator.
(v) If T € BW,V) and S € Bo(V,U), then SoT is a compact operator.
Proof of (i). Let us fix any {F,}22; C Bo(W,V) such that F := nh_}rr;o F,, exists. Let us fix any {x,}52; C B(0,1). It is
enough to show there is a subsequence { F'(z, () }nZ; such that nlgrgo F(2,(n) exists. Because {Fy,}72, C Bo(W, V), there

are subsequence {z,, (1) }re, (n =1,2,...) such that fo reach n € N {z, . (x)}3Z; is a subsequence of {x, . &)}, and

1
1En(@gn ) = Fu(ze,m)ll < — (Vh, 1 2 1)

We set
¥(n) :=¢@n(n) (n €N)
Let us fix any € > 0. There is ng € N such that

€
||[Fr — F|| < 1 (Vk > ng)
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1
and — < g Let us fix any k,I > ng. Then ¢(k) = @i (k) and ¢(I) = ¢;(1) and ko > ng and Iy > no and (k) = @n, (ko)

ng
and ¥ (1) = ¢n,(lo)- So,

€ €
1E @) = F@pm)ll < [1Fng@p) = Fao @pm)ll + 5 = 1Fno (T (h0) = Fro (T )l + 5 < €

So, {F(zyk))}32, is a cauchy sequence. Because V' is Hilbert space, klim F(xyr)) exists.
— 00

Proposition 4.4. Let

(S1) V is an inner product space.
(A1) T € By(V,V).

(A2) There is o which is a nonzero eigenvalue of T'.

Any W which is eigenspace of « is finite dimensional.

1 1
Proof. Then there is a orthonormality {v;}5°; C W. Because —T is a compact operator, —TW = {w € W|||w|| = 1} is
a a

compact. By Proposition1.10, W has finite dimension.
Lemma 4.1. Let

(S1) V is a Hilbert space.
(A1) T is a self adjoint operator from V to V.
(A2) (Ku,u) =0 Vu V).

Then K =0

Proof. Let us fix any v € V. We set w := v+ Kv.

0= (Kw,w) = (Kv+ K*v,v+ Kv) = 2||Kv||?
So, ||Kv|| = 0. This implies Kv = 0.
Lemma 4.2. Let

(S1) V is a Hilbert space.
(A1) T is a self adjoint compact operator from V to V.
(AQ) )\+ = SqueV,HvH:l(K'Uv'U) > 0.
Then there is a ug € V such that
)\+ = (KUO,U()),KUO = >\+U0
Proof. Then there is {v;}32,{v € V| ||v|| = 1} such that

hm (KU;’, ’Ui) = )\+
71— 00
By Propositionl.19, we can assume there is vy, ug € V such that

w— lim v; = vy
i—00

and

lim Kv; = ug
1—00

We will show (Kwvg,v9) = At.

(Kvo,v9) = (Kvj,v;) + (Kv; — ug,vo — v;) + (ug,vo — v;) + (Kvg,vo) — (Kv;,vo)
= (K’Uo,’Uo) = (K’Ui,’l)i) + (Kvi — U, Vg — Ui) + (UO,’UO — Ui) + (UQ,K’U()) — (’Ui,KUo)

= Ay (i = 00)
Let us fix v € V such that ||v|| = 1. We set

(0= (Kolt),o(0), o) = 2 (4 <)
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then
(Kvg,vg) + 2tRe(Kvo, v) + t2(Kv,v)

[lvol[? + 2t Re(vo, v) + 2| [v][?

f(t) =
So,
f(t)(||?)0”2 + 2tRe(vg, v) + t2||v|\2) = (Kwvo,v0) + 2tRe(Kvg,v) + t2(Kv, v)

Because f(0) = Ay and f/(0) =0,
Ay Re(vg,v) = Re(Kwvg,v)

And
At Re(vg, iv) = Re(Kwy,iv)

These imply
At (vg,v) = (Kvg,v)

This means
K Vo = >\+U0

The following Proposition clealy holds.
Proposition 4.5. Let
(S1) T is a self-adjoint continuous linear operator of Hilbert space V.
Then
(i) Any eigenvalue of P is a real number.

(ii) If a1, a0 € R are different eigenvalues of P, V,,, 1L V,,. Here V,, is the eigenvalue space of o; (i =1,2).

(iii) If (w,V) is a continuous representation of a topological group G and W is a G-invariant subspace of V,
then W+ is a G-invariant.

Lemma 4.3. Let
(S1) V is a Hilbert space.

(A1) T is a compact self adjoint operator from V to V.
(S2) o (T) is the set of all positive eigenvalues of G.

Any assumulation point of o (T) is zero.

Proof. It #04(T) = oo, then there is no accumulation points of o4 (7). So, hereafter, we assume #o(T) = co. By
Proposition4.2 and Propositiond.4, there is a sequence of positive eigenvalue Ay > Ao > .... > 0 and {v;}$2; C V such that
v; is an eigenvector of A; (1 = 1,2,...) and lim Kwv; exists.

1—> 00

A <N 4+ AL = ||[Kv — Kviga||? = 0 (i — 00)

Lemma 4.4. Let

(S1) V is a Hilbert space.
(A1) T is a compact self adjoint operator from V to V.

(52) V. is the minimum closed subspace of V' such that V. contains all eigenspaces whose eigenvalue is positive.
V_ is the minimum closed subspace of V' such that V. contains all eigenspaces whose eigenvalue is negative.

Then
V=VieKer(T)pV_

Proof. We set V. := (V, @ Ker(T) @ V_)*. Because (Vy @ Ker(T) ® V_) is T-invariant and T is self-adjoint, Vi is
T-invariant. By Proposition4.2, (Tw,v) =0 (Vv € Vi). By Propositiond.1, T|V, = 0. So, Vi = {0}. O
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4.4 Matrix coefficient and Character of representation

Definition 4.3 (Character). Let G be a topological group and (7,V') be a finite dimensional continuous representation of

G. Then
X (g) := Tracer(g) (g9 € G)

We call x» a character of m.

Definition 4.4 (Matrix Coefficient). Let G be a topological group and (w, V') be a finite dimensional irreducible continuous

representation of G and let v €V and f € V*.

@ (v, f)(9) := f(r(g)~ )
Because m is a continuous representation, @, (v, f) is a continuous function on G.
The following clearly holds.
Proposition 4.6. We succeed notations in Definition4.4. Then ®, is a bilinear form on C.
Proposition 4.7. Let

(S1) G is a topological group.
(52) (w,V) is a finite dimensional unitary representation of G.

(83) {v1,va,...,um} is an orthonomal basis of V.
(54) ﬂ—i,j(g) = (ﬂ—(g)vjavi) (g € G7i7j S {1727>m})
then

(i) X = 22320 Wi
(ii) mi;(gh) = > ey Tik(9)mr;(h) (Vg,h € G,Vi,j € {1,2,...,m}).
(iii) 7;;(g7 ") = 7.4(9) (Vg € G,Vi,j € {1,2,....,m}).
Proof of (i). It is clear.

Proof of (ii).

mi,j(gh) = (x(gh)vj, vi) = (w(g)m(R)vs, vi) = (w(g)(D_(w(h)vj, vk)vr), vi) = Y (m(g)or, vi)(

k=1 k=1
m
E 9, j(h

Proof of (iii).

mig(g7") = (m(g™ v, vi) = (vg, w(g)ve) = (m(g)vi, vj) = mji(g)

4.5 Schur orthogonality relations
Proposition 4.8. Let
(S1) G is a compact Lie group.
(52) (m;,V;) is a continous unitary representation of G on C (i = 1,2).
(S3) f € Home(Vq, V).
(54) We set f by

F(o) = /G ma(g) 0 f om(g) " (v)dg (v € VA)

Then fe Homg(V1, V3).

100

m(h)vj, vi)



Proof. By Proposition4.2, f(v) exists and

1F@) < /G ma(g) fra (g~ Yolldg

Because m; and 7o are unitary representation,
[ Ima@)smita™eld < |l o™ iolida < [ 1£1lollds < 17111

So f is continuous linear map. Becuase dg is a Haar measure on G, clearly, f is G-invariant. O
Proposition 4.9 (Shur orthogonality relations). Let

(S1) G is a compact Lie group.

(52) (m;,V;) is a continous irreducible representation of G on C (i = 1,2).

(A1) Either Vi or Vs is finite dimensional.

(Sf))) (ui,vi) eV (Z = 1,2).

Then (o 52)
_J o  \mFEm
(¥, 20 820120 = { iy 1T (o)

Here T is a unitary G-isomorphism from Vi to Vs.

STEP1. Case when m % ma. We set f € Home(V7, Va) by
f(v):= (v,v1)vg (v € V)

Propositiond.8, f € Homg(Vy, V3) exists. In this case, by Shur Lemma, f=o.

0= (flun)us) = [

o 71(9) " ur, ug = 71(9) tur, ma(g) " tug = va, T2(g) " ug
[ (ma(a)fmi(0) )dg /G (fmi(9) (9) "u2)dg /G (v3,72(9) " uz)dg

= /(Wl(g)_lulvvl)(v%7T2(g)_1u2)dg:/(771(9)_1U17'Ul)(7r2(g)71U2702)d9
fe! fe!
O

STEP2. Case when T, ~ m,. In this case, by Shur Lemma, there is A € C such that T—! o f = Aidy,. By the argument
in STEP1,
(<I>(u1, ’Ul), (I)(UQ, v2))L2(G) = A(T’U,l, UQ)

And ~
Trace(T™' o f) = AdimWy

By Proposition4.1 and T—! is G-invariant, } }
T lof=T-1f

So,
U1

o]

Trace(T~ o f) = Trace(T™ f) = T~ (=) = (T~ (2, 01 )va, ——) = [Jon ||(T~ vz, —2-)
lJor]] lJor]] lJor]]
= (Tﬁlvg,vl) = (UQ,TUl) = (T’Ul,’UQ)

So,
(®(ur,v1), P(ug,v2))12(q) = (Tur, u2)(Tvi,va)

By Shur orthogonality Relations, the following three holds.
Proposition 4.10. Let

(S1) G is a compact Lie group.
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(52) R(G) := <{<I>7T(u,v)| (m, V) € Gy u,v € V}> Here, G is the set of all finite dimensional irreducible
continous unitary representations of G.

Then
(i) Let {u;}%"V is a orthonormality base of V. For any (m,V) € Gy,

1
dimV

{

O, (ui,uj)] 4,5 =1,2,..,dimV}

is a basis of ®(V,V*).
(i) The following is well-defined.
O, (u®v) = Pr(u,v)

(iiii) The following holds.
R(G) = &(; yyeq, (VR VT)

Proposition 4.11. Let

(S1) G is a compact Lie group.

(S2) (m,V) is a finite irreducible continuos representation of G and x is the character of .

Then
(XTH XTr) =1

Proposition 4.12. Let
(S1) G is a compact Lie group.
(S2) (m;, Vi) are two finite irreducible continuos representation of G and X, is the character of m; (i =1,2).
(Al) Xmy = Xma-
Then
T XX T
4.6 Orthogonal projection by character
Proposition 4.13. We succeed notations in Definition4.3.

(i) Xx 18 continuous.
(ii) If Ty ~ 72 then Xx, = Xuo-
(iii) Xx(92g~") = Xx(z) (Vg,z € G).
(iv) X=(97") = x=+(9) (Vg € G).
Proof of (i). (i) is from Proposition4.13. O

Proof of (ii). Let us take T : (w1, V1) — (w2, Vo) be a G-isomorphism. Then T'om; = mooT. This means TomoT ™! = .
So, Xm1 = Xma- O

Proof of (iii). For any g,z € G,

Xw(gxg_l) = Trace(ﬂ(gxg_l) = TTGC@(’]T(Q)’/T(LC)’/T(Q)_l) = Trace(m(z)) = xx»(2)

Proof of (iv). For any g € G,

Xx(g™") = Trace(w(g~")) = Trace(*r(g~")) = xx-(9)

Definition 4.5 (7-component). Let

(S1) G is a topological group.

(S52) (m,V) is a continous representation of G.
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(53) (1,W) is a continous irreducible representation of G.

Vo= ) ImA

A€eHomg(W,V)

We set

We call this T-component of V.

Proposition 4.14. We succeed settings in Definition.5. And if dimW < oo, for any A € Homg(W, V), ImA = {0} or
A: (1, W) = (w|ImA, ImA) is G-isomorphism.

Proof. Let us assume ImA # {0}. Because W is irreducible, Ker(A4) = {0}. And, because A is G-linear, Im(A) is
G-invariant. So, A is bijective and A is G-linear and A~! is G-linear. Because Im(A) is finite dimensional, A™1 is
continuous. So, A : (7,W) — (w|ImA, ImA) is G-isomorphism. O

Definition 4.6 (Projection by character). Let

(S1) G is a compact Lie group.

(S2) (1,V) is a continuous finite dimensional unitary representation of G.
We set
P - (v) :=Pr(v) = dimT/GmT(g)vdg
We call P, the projection by 7.
Lemma 4.5. Let

(S1) G is a compact Lie group.
(52) (r,W) is a continuous finite dimensional irreducible unitary representation of G.

(52) (m,V) is a continuous finite dimensional unitary representation of G.
then ImP, C V.
Proof. By Propositionl.28, there is my, ..., m, € éf such that
™=@
This implies that

P, T:ZPm,T

Let us fix any ¢ € {1,2,...,n}. By Shur orthogonality relation, if 7 % m;, Py, ; = 0. If there is T : (7, W) — (m;, V;) which
is an unitary map and G 1bomorphlsm Let us take wy, ..., wy,, which is a orthonomality basis of W. By Shur orthogonality
relation, for any j,

P, -(Tw;) = dimT/GXTi(gﬁm(g)ijdg =dimr Z/ (T(9)wk, wi) (mi(9)Tw;, Twy) Twidg

= dimr Z/ (mi(g)Twg, Twg) (m:(g)Tw;, Tw) Twidg = Tw;

So, Py, » = idy,. By this, Py, -(V;) =ImT C V,. O
Lemma 4.6. Let

(S1) G is a compact Lie group.

(52) (r,W) is a continuous finite dimensional irreducible unitary representation of G.

(S3) (', W) is a continuous finite dimensional irreducible unitary representation of G.

(S4) (w,V) is a continuous finite dimensional unitary representation of G.
(7,

(A1) (1, W) % (7', W).
then P;|V]! =0.
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4.7 Peter-Weyl theorem
4.7.1 Irreducible decomposition
Theorem 4.2. Let

(S1) G is a compact Lie group.

(52) (w,V) is a continous finite dimensional representation of G.
(S3) (-,-) is an inner product of V.

Then

(i) (w,V) is a unitary representation with respect to the following inner product

(u,0)x 1= /G (n(g)u, (g)v)dg

Here, dg is a Haar measure on G. By Proposition2.53, this Haar measure on G.
(i) (mw, V) is irreducible <= (m,V,(-,")z).

(it) If ™ is a continuous representation of G such that m and 7' are equivalent as continuous representations,

(m,V, (-, )r) and (x', V', (-,-)a) are equivalent as unitary representations.
Proof. Because G is unimodular and C(G) C L*(G), (i) holds. Because (-,-) and (-,-)r) are equivalent, (ii) holds.
The following Proposition clealy holds.
Proposition 4.15. Let
(S1) G is a topological group.
(52) (mw,V) is a continous finite dimensional representation of G.
(S3) P € Homg(V,V).
Then
(i) Any eigenvalue space of P is G-invariant.
(i) ImP is G-invariant.
Proposition 4.16. Let
(S1) G is a compact Lie group.
(52) (m,V,(-,-)) is a unitary representation of G.
(S3) vo €V and ||| =1
(S4) P:V 3v— (v,ug)vg €V
(S5) ®:G>g— 7w(g)Pr(g)* € Bo(V).
Then
(i) ® is a continuous. And for any g € G, ®(g) is self adjoint.

(i) ® is Bochner integrable with respact to a Haar measre on G.
(iii) P := Jo ®(9)dg is G-invariant.

(i) P is a self-adjoint compact operator.
(v) P is a nonzero map.

(vi) There is X\ # 0 such that eigenspace of P with respect to \ is not zero.
Proof of (i). For any v € V and g,h € G

|lw(g)Pr(g) v — m(h)Pr(h)™v|| = [|7(g)(m(9) v, v0)vo — m(h)(m(h)" v, vo)vol|

(v, (g™ )vo)m(g)vo — (v, w(h ™ Yvo)m(R)vol|
= v, m(g™ vo)m(g)vo — (v, (™ )vo)m(g)wol| + [[(v, (™ vo)m(g)vo — (v, m (R~ )vo)m (h)vol|
< llllr(g™ w0 — m(h ™ olllw(g)vol| + [[olll[m (R~ )volll[m(g)vo — m(h)voll

111l (g™ Yvo = (A~ v + [[m(g)vo — m(R)vol])

O

So @ is continuous. By Proposition, for any g € G, ®(g) is compact. Because P is self-adjoint and 7(g) is unitary operator,

®(g) is self adjoint.
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Proof of (ii). This is from Proposition4.2 and (i). O

Proof of (iii). Let us fix any h € G and v,u € V. By Propositiond4.1,
(x(h) /G 7(g) Pr(g)*dgv, u) = /G (n(h)n(g) Pr(g)"v, u)dg = /G (n(hg) Pr(hg) m(h)v, w)dg
- / (w(g) Pr(g) (R}, w)dg = ( / r(g)Pr(g) " dgr(h)o, u)
G G

So, w(h)P = Px(h) O
Proof of (iv). By the simila argument to the proof of (iii), P is self-adjoint. By the argument of proof of Proposition4.2,
P € By(V). By Proposition4.7.1, P € By(V). O
Proof of (v).

( /G 7(9)Pr(g)* dgvo, vo) = /G (7(9)Pr(g)" v, v0)dg = /G (Pr(g)*vo, 7(g)"v0)dg
- / (P* Pr(g) vo, 7(9)"v0)dg = / (P*Pr(g)*vo, 7(g)"v0)dg = / (Pr(9)*v0, Pr(g)*v0)dg = / 1Pr(g)*volPdg
G G G G

Because || Pr(e)*vo||> = 1, [ [|Pm(g)*vol|*dg > 0. O
Proof of (vi). By (v) and Lemmad4.4, (vi) holds. O

In the following proposition, we give a proof for the general case as well as for the finite group case. The proof of
the finite group case shown here follows the same policy as the proof of the general case, but uses only knowledge of
linear algebra. Therefore, this proof has the advantage that the essence of the proof of the general case can be easily
understood. Note that the finite group case can be easily shown from the fact that < 7(G)v > is finite dimensional
G-invariant subspace for any vector v, apart from the proof given below.

Proposition 4.17. Let

(S1) G is a compact Lie group.
(S2) (m,V,(-,-)) is a unitary representation of G.

Then there is a finie irreducible G-subspace of V.
Proof in general case. By (v) of Proposition4.16, this Proposition holds. O

We will show a proof that does not knowledge of bochner integrals and self-adjoint compact operators in the case when
G is a finite group.

Proof in the case when G is a finite group. We will succeed notations the proof of Proposition4.16 . Then

P=3 w(g ")oPon(g)

geG

For any h € G,

Por(h) = n(g~\)o Por(gh) = 3" n(h) om(gh™) o Pon(gh) = n(h) o P
geG geG
So, P is G linear.

For each g € G, 7r~(g*1) o P o7(g) is finite rank operator. So, P is G finite rank operator. Then {v1,..,v,,} such that
S CP(v;) = Im(P). Let us fix {wy, ..., wn} which is an orthonormal basis of Im(P) + S w;. Because P| ", w;
is not zero, P| >, w; has nonzero eiggenvalue X # 0.

For any u € Ker(P — \I),

1 1 —
- - P
u = )\ =3 ; w, U )u
So,
5 n
Ker(P—M\) C Z(Cui
i=1
These imply that K er(P — Al) is finite dimensional G-invariant subspace. O
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By Proposition4.17 and the same argument as the proof of Proposition3.7, the following holds.

Theorem 4.3 (Peter-weyl theorem I). Let (7, V') be a continuous unitary representation of a compact Lie group G. Then
there is YW which is a subset of G-invariant finite dimensional irreducible subspaces such that

V= @ w
WwWew

In specail, if 7 is irreducible, dim(m) < co.

4.7.2 Orthonormal basis of L?(G)
Proposition 4.18. Let

(S1) G is a compact Lie group.
(52) (w,V,(-,)) is a finite dimensional unitary representation of G.

Then
(@ (u,0)lu,0 € V)

is G x G-invariant subspace of L*(G).

Proof. For any x,y,9 € G,
Ly X Ry®r(u,v)(g) = (m(zgy ™) u,0) = (n(9) "' (2) " tu,m(y) "Ho) = @x(n(@) " u, m(y) " to)(g)

So,
{®,(u,v)|u,v eV}

is G x G-invariant subspace of L%(G). O
By Proposition4.10, the following two holds.
Proposition 4.19. Let

(S1) G is a compact Lie group.
(S2) (w,V) is a finite dimensional G-invariant space of L*(G).

Then V. C & (V@ V™).

Proof. Let us fix {f1, ..., fm} which is an orthonormal basis of V. Let us fix any 4. Then for any g € G

m

Lig ") fi =Y (L(g™") i )1
j=1

So,
fz(g) = _1 fz ZCI) fzaf] ( )
Jj=1

This means

ij o(fi, f;)

So, VC o, (VeV. O
Proposition 4.20. Let

(S1) G is a compact Lie group.
(52) g(G) = Oy ®r (V@ V™). Here G is the set of all equivalent classes of irreducible representation of

Then R(G) is dense in L*(G).
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Proof. Be Proposition4.18, R(G)* is G-invariant. Let us assume R(G)* # {0}. By Proposition4.17 and Proposition4.19,
there are {fi,..., fm} C L*(G) such that {f1,..., fm} is an orthonormality and (fi,..., i) is a irreducible G-invariant
subspace and (fi, ..., fm) C R(G). So,

L=(fi,fi)=0

This is contradiction. ]

Theorem 4.4 (Peter-Weyl Theorem II). Let
(S1) G is a compact Lie group.
Then
O: (L@ VoV — (L LYG))
is an isomorphism as continuous unitary representaions. And (L,V & V*) is isomorphic to a direct sum of dimt of V.
Proof. The first part is directly followed from Proposition4.20. Let us take an orthonormal basis {vy, ..., v, } of V. Then
VeV"=ae2, Ve (v)*since Ve (v;)" LV ®  (v;)" for any ¢ # j. Clearly V ® (v;)* is isomorphic to V' as continuous

unitarly representations for any i. The latter half part holds. O

Notation 4.1. Let
(S1) G is a compact Lie group.
(S2) (t,W) is an irreducible unitary representation of G.
then we define ®,, ., P,
(i) o, - WRW*30v@w— (G3g— (t(9)v,w) € C) € C(G).
(ii) @ = dimWo.,.
(iii) ®, = dimW®,.
Proposition 4.21. Let
(S1) G is a compact Lie group.
(S2) (r,W) € Gy.
Then
1

0; 40
dimr PRl

(Tirj> Thyt) =
Proof. Because for any i,j € {1,...,dim7} and g € G
75,3 (9) = @ (vi,05)(g7)

by Proposition2.54 and Shur orthognality relation,

1
1,7 = (DT iy Vg 7®T ) = 761 6
(Tigs ) = (Br (Vi 0), Do (vk, 01)) = 2 — 03Ok

By Proposition4.20 and Shur orthogonality relations and Proposition4.21, the following holds.
Theorem 4.5 (Peter Weyl Theorem II, matrix coefficient version). Let
(S1) G is a compact Lie group.
(S2) (1,W) € Gy.
Then
(i) The following is a completely orthonomal system of L?(G).

{(Vdim 77 j]i,j = 1,2,...dimT, (1, W) € G;}
(ii) G is at most countable.
(iii) For any f € L*(G),
f=dimr Z (f,7i.5)7i; (L?-convergence)

Proof of (i). This is followed by Proposition4.20 and Shur orthogonality relations and Proposition4.21.

Proof of (ii). Because L%(G) is separable, L?(() has a countable complete orhonormal basis. So, this is followed by (i
and Peter-Weyl I and Propositionl.12(iii).

O Oz O

Proof of (#i). This is followed by (i) and (ii) and Propositionl.12(ii).
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4.7.3 Uniform approximate of continuous function

Theorem 4.6 (Peter-Weyl Theorem III). Let G be a compact Lie group. Then the C-vector space generated by the
following set is dense subset of C(G) in uniformly convergence topology.

{(r()v,v)|(1, V) is a continuous finite dimensional irreducible unitary representation of G, v € V' such that ||[v|| = 1}
Proof. By Peter-Weyl I and Proposition3.23,
ex(P1) = {(7(-)v,v)|(7,V) is a continuous finite dimensional irreducible unitary representation of G, v € V such that ||v|| = 1}

Because the trivial representation of G is finite dimensional irreducible, ex(IP) contains 1 which is (A2) in Theorem4.1.
Because ¢ € ex(P1) = ¢ € ex(Py), ex(P;) satisfies (A3) in Theorem4.1. By Proposition3.12, ex(PP;) satisfies (A4) in
Theorem4.1. By Gelfand-Raikov Theorem, ex(IP;) satisfies (A5) in Theorem4.1. So, by Theorem4.1, the C-vector space
generated by ex(P;) is dense subset of C(G) in uniformly convergence topology. O

Definition 4.7 (Class function). Let G be a group and f be a function on G. We say f is a class function if

fa™ gz) = f(g9) (Va,9 € G)

We denote the set of all squared integrable class functions by L?>(G)A1. We denote the set of all continuous class functions
by C(G)A9

Clearly the following holds.
Proposition 4.22. Any character of compact Lie group is a class function.

Proposition 4.23. Let G be a compact group. Then L?(G)A¢ is closed subset of L?(G) and C(G)A? is closed subset of
C(G).

Proof. Because f(z~'gz) = L,oR.f (Vx,g € G,Vf € C(G)) and L, o R, is continuous operator of L?(G) and C(G). So,
this Proposition holds. O

Proposition 4.24. Let G be a compact Lie group. We set

Hﬁ@wzlym*mmww@e®

then

(i) P is the orthogonal projection of L*(G)A.

(ii) P(C(G)) = C(G)A".

(iii) P : C(G) — C(G)A4 is surjective continuous in uniform convergence topology.

Proof of (i). Clearly P(L?(G)) C L?*(G)4%, and Po P = P and P is linear. For any g, f € L?(G),

0. PO =1 [ o) | FoTemdatds(o)] = | | [ o) FaTendote)dsto)

/wmmwoRﬂm@ /Mmmmmwm—wm&mm

and
@) = [ o) | ToTemdsaste) = [ [ o) T mdstadata)
::/Ql[;g<yzy*4>f<z>dg<z>dg<y>::L[;j{;g(yxy*4>dg<y>f<x>dg<x>::]Q([;g(yflxy>dg<y>?255dg<x>
= (P(9), /)
So, P is continuous and self adjoint. Because of these result, (i) holds. O
Proof of (ii). Clearly P(C(G)) C C(G)A4 and and P|C(G)A? = id|C(G)A. O

Proof of (ii). For any f € C(G), f is uniformly continuous. So, P|C(G) is continuous in uniformy convergence topology.
By (ii), P|C(G) is surjective. So (iii) holds. O
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Proposition 4.25. We will succeed notations in Proposition4.24. And let (1,V) € éf. then for any i,j € {1,2,...,dim7}
5173

P(ri ) = dimTt

T

Proof. For any g € G,

P(ri;)(0) = /G 725 (2 L) dg ()

by Proposition4.7
== Z/ Ti, a 7—a b g)Tb,j(x)dg(x)

by Proposition4.7

*Z/m 2)7ap(9) 7.5 (x)dg(x zm /TM( 2)7y,(x)dg(x)

by Shur orthogonality relations

1 dimT 1

:51' i . PR = 51‘ i . X7
7 dimT Z ii(9) J dzmTX

Theorem 4.7. Let
(S1) G is a compact Lie group.
(S2) (r,W) € Gy.
Then
(i) Zre(;f Cx, is dense in C(G)A4
(i) {x-|T € G’f} is an orthonomal basis of L*(G)A?

Proof of (i). Let us fix any f € C(G)4?, ¢ > 0. Because P is continuous, there is § > 0 such that
g€ C(G) and [|lg = fllc <6 = [|P(9) = P(f)lloc <e.

Because f € C(G)A4, P(f) = f. By Theorem4.6, there is g € Zreéf 2ije{1.2,. dimry CTi,j such that |[g — flloc <. By
Proposition4.25, P(g) € Zreéf Cxr- O

Proof of (ii). Let us fix any f € L*(G)A%\ {0}. By Theorem4.5, there is 7 € G and 4,j € {1,2,...,dim7} such that
(f,7i;) # 0. Because P is the orthogonal projection of L?(G)44, there is g € (L?(G)A4)* such that 7; ; = P(7; ;) + g. So,

i j

dzmT

0 7é (f7 Ti,j) = (fvP(Ti,j)) (f?XT)

This implies (f, x,) # 0. O

4.7.4 Component of irreducible decomposition
Proposition 4.26. Let
(S1) G is a compact Lie group.
(S2) (m,V) is an continuous unitary representation of G.
(S3) (1, W) € Gy.
(S4) A€ Homg(W,V).

Then
P |[ImA =id|[ImA
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Proof. By Proposition4.21

Po(dw,) = dim [ X Tair(e) widy = dime | 3@ Ar(g >wzdg—dzm72 / (o

= dzer/xT 9)7i (g dgij—dzmTZZ/Tkk 9)7i.5(9)dgAw; = Aw;

k=1 j=1

Proposition 4.27. Let

(S1) G is a compact Lie group.
(52) (T, W1>,(7T,W2) S Gf.

then

Proof. For any h € G,
/er(g)xﬂ(g‘lh)dg - Z/Gn,i(g)wj,j(g‘lh)dg
2

For any 7,

VA(7(g)wi, wj)w;dg

5.3(97 h) = (n(g™ h)vj, v5) = (m(h)vs, 7( ka (vk, Zﬂjk )75k (g

So, by Shur orthogonality relations,

—_ 1
> | ritarms o™ g = S mah) [ i mataidy = m w3 m(h) = o ()

1,5,k i=1

Proposition 4.28. Let

(S1) G is a compact Lie group.
(82) (r,W),(x,V) € G.

Then

. [ P (t=m)
Fr Pﬂ‘{o (r % m)

Proof. Let us fix an orthonormal basis of V. For any v; € V', by Shur orthogonality relations,

Pr(Pr(v;)) = Z?in;ﬂ(dimT)(dimﬂ fG X+ (g)7( )fG X (h)(m(h)vi, vj)v;dhdg

= ZJ w(dimT)(dimm) [, x+(g fG Xr (R) (7 (h)vi, v;)(T(9)v;, vi )vpdhdg
= >, x(dimT)(dimm) [ x-(g x+(9) [ Xx(h)mji(h) Tk, (9)vidhdg
=2 kap(dimT)(dimT) Jo Ta.a(9) o ™o (h)7j,i(h) Tk 5 (9)dhdguy
= (dimT)(dimm) Zjvkyavb(TkaTa’a)(’]'(k’j,’l'rma) = 0r.n0;

Theorem 4.8. Let

(S1) G is a compact Lie group.
(S2) (m,V) is an continuous unitary representation of G.

(53) (r,W) € G.
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then P is the orthogonal projection of V.

Proof. By Proposition4.26,
P, |V, =idy,

Let us fix any v € V. We will show there is V’ which is a finite dimensional G-invariant subspace of V' such that
P.(v) € V'. Let us fix {v1,..., v} which is a orthogonality basis of (r, W). For any = € G,

P = | XT””(”“")”‘@:/ X(a= ) ”dg‘z/ il o) ”dg:Z/GWw(g)vdg
Z/ T)v;, T vdg—ZTm / v;,7(g)v vdgeZ(C/ vi, 7(g)vi)m(g)vdg =: V'

By Proposition4.28 and Proposition4.5, P (v) = P;(Pr(v)) € P.(V') C V! C V.
Lastly, we will show P* = P;. Let us fix any u,v € V. By Proposition2.54 and Proposition4.13,

(Pr(u),v) = ( /G X @)n(g)udg, v) = /G - (@) (n(g)u, v)dg = / (u X+ (g)7(g~ 1 Y0)dg

G
" /G @ Dr(g Yudg) = (u, Po(v))

So, P = P;. O
Proposition 4.29. Let

(S1) G is a compact Lie group.
(52) (mw,V) is an continuous unitary representation of G.

(588) (7,V) is an continuous finite dimensional unitary representation of G.
then Py . is G-linear.

Proof. For any x € G and v € V,

() Prr(v) = [ xX- (W) (@) (y)vdg(y) = [ xr(xa yzz=)m(zye ™" ) (z)vdg(y)
= [o X+ (zyz=H)7m(y)m(z)vdg(y) = fG Xr(y)m(y)m(z)vdg(y) = Pr . (n(z)v)

Theorem 4.9. Let
(S1) G is a compact Lie group.
(S52) (m,V) is a continuous unitary representation of G.

then

V=& V:

TEéf
Proof. By Propositiond.28, V, L V; (1 # 7). So, it is enough tho show Mg, Vi = = {0}. Let us fix any v € N
Then for any z € G and 7 € éf, by Proposition4.29,

N 1
TEGfVT :

0= / (P, (r(a (), w)dg(z) = / (n(a )Py (n(z)uw), w)dg () == /G (P, (r(a)w), m(x)w)dg(x)

G

/ / @) (r(g)m()w, 7 (w)w)dg(g)dg(x) = (£, x+)

Here,
@)= [ (=@l wloo)ds (< G)
For any z,y € G,

f(y‘lmy):/(W(y‘lwy)ﬁ(g)v,ﬂ(g)v)dg=/(W(x)ﬂ(yg)vm(yg)v)dg=f(x)
G G

So, f € C(G)A. By Theorem4.7, f = 0. So, ||w||? = f(e) = 0. O
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4.7.5 Expansion formula of L? functions
Proposition 4.30. Let
(S1) G is a compact Lie group.
(S2) (1,W) is an irreducible unitary representation of G.

Then
o (W W*) = L*(G),

Proof. Firstly, we will show that
o (W W*) C L*(G),

For each f € W*, we set ®, s : W — L*(G) by
O p(w) = Qw, f) (we W)

Let us fix any f € W*. Clearly @ ; is linear. By shur orthogonality relations, ®, s is continous. And for any h € G

O p(r(h)w) = f(r() " r(hw) = f(r(h") " w) = Lp®q s (1(h)w)

This means that ®, ; is G-linear. So, ®,(W ® W*) C L*(G),.
Lastly, we will show that
L*(G), C &, (W o W™)

Let us fix wy, ..., w,, € W which is a basis of W and A € Homg(W,V). For any ¢ and = € G,

m m

(Aw;)(z) = (Ly-1 Aw;i)(e) = (AT(z™ " )w;) ZT Dwi, wi)w;)(e) = (A(Z ®; j(v)w;)(e)
(Aw;)(e)®; ;(x)

j=1
So, L3(G),; C & (W @ W*).
Proposition 4.31. Let

(S1) G is a compact Lie group.
(52) T € G.

for any f € L*(G)
Pr - (f)(z) = dim7x; * f(z) (a.e. x € G)

Proof. For any f € L?(G) and a.e x € G,

Py (f)() = /G (@) (g~ a)dg = /G oo~ (g2)dg = /G X D/ (9)dg = X5 * /()

Proposition 4.32 (Operator Valued Fourier Transform). Let
(S1) G is a compact Lie group.
(S2) (t,W) is a continuous unitary representation of G.
(S3) f € L*(G).

Then

(i) For each w € W, there is the unique element I(T, f)w such that
(w1 fyw) = [ (e fla)r(a)wddala) (vu € W)

(ii) I(T, f) is bounded and ||I(7, f)|| < [|fllz2(qc)-
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Without fear of misinterpretation, we denote I(t,f) by 7(f). We call G>ormw— I(m, f) the operator valued fourier
transform of f.

Proof of (i).
| [ r@r(ye)dat)] < llluz ] -l (v € W)
So, by Riez representation theorem, (i) holds.
Proof of (ii). (ii) is followed by the above equation.
Proposition 4.33. Let
(S1) G is a compact Lie group.
(52) (mw,V) is a continuous unitary representation of G.
(S3) f e L*(Q).
Then
(i) w(f*g)=n(f)m(g) is a compact Lie group.
(i) 7(Re f) = m(f)m*(x) (Vo € G).
(i) w(Lyf) = n(z)w(f) (Vo € G).

Proof of (i).
(f*g):Lf*g(z)ﬂ(I)d x :/ / flay™ g //f g(yz)dg(y)m(y~")m(yz)dg(z)
_ 1y (1 . ey 7(x)dg(z) = (y Hm(y Hm x
f/Gf(y)(y)/G()ydg /f /() dg(x)dg(y) /ny)(y)(g)dg()
- /G F)m()n(9)dg(x) = () (g)
O
Proof of (ii).
7(Rof) = /G F(g)m(g)dg(g) = /G F(ga)m(gw)n(z")dg(g) = /G F(g2)(gz)dg(g)* (2) = 7(f)n* ()
O
Proof of (iii).
s = 1’71 x Tr s
(L.1) /Gf( g /f Lg)m(exg)dg(g /f r(@)n(f)
O

(i)(ii) in Proposition4.33 characterize the operator valued fourier transformation. See Theorem3.1 in [18].

Proposition 4.34. Let

(S1) G is a compact Lie group.

(S52) (t,W) is a continuous finite dimensional unitary representation of G.

Then
Pr - (f) = dimWoy . (r(f)) (Vf € L*(Q))
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Proof. For any y € G,

y>:2q>7<<7< vy 1)) = 3 |- r@r 0@ v)ds@))
/Zf 2)0;,0:)®, (v © v,)dg(a /Zf )72, (@) (r (g™ Yoy, v5)dg )
—Z/f g (@)dg @) (r(y~ Yoy, v; Z/f 75 (@)dg()73.4 (™)
:Eij/gﬂx)n—,i(wy 1 Z/ F(oy)7ss(2)dg(w /fxy e (T)dg ()

1

— [ s @) = [ L @de@m) = o P ()
G G mnmT
O

Theorem 4.10 (Plancherel formula for compact Lie group). Let

(S1) G is a compact Lie group.

(S2) f € L*(G).
then

f= Z @ (1(f)) (L? convergence)
TGéf
We set p by the counting measure of Gf. Then
f=[ @u(r(f)dp(r)
Gy

The right side is a bochner integral on the L*(G) valued function. We call u the Plancherel measure on G.
Proof by Peter-Weyl Theorem III.. This is followed by Theorem4.8 and Proposition4.9 and Proposition. O

Proof by Peter-Weyl Theorem II.. By Proposition4.30 and Theorem4.8, P,(L2(G)) = ®,(V ® V*) for any (r,V) € G. By
Propositiond.7.5, P, (f) = ®.(f) (Vf € L?*(G)). By Peter Weyl Theorem II and Proposition1.17,

f=> ®(r(f) (Vf € L*(G))

s
O
Proposition 4.35. Let
(S1) G is a compact Lie group.
(S2) (m,V) and (1,W) are continuous unitary representations of G.
(§3) T :V — W is an isomorphism as continuous unitary representations of G.
(84) f e L*G).
Then
n(f)=T7'7(f)T
Proof. For any u,v € V,
(wr(£)0) = CuTr(f)0) = [ (T f@)m(a0)d = [ (Pu. f@)r@Teds = [ (T~ f(a)r(a)To)dg
= (u, T 7 (f)Tw)
O
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4.7.6 Example:Fourier series expansion
By Lemma2.10, the following holds.
Proposition 4.36. The following i is a Haar measure on S*.
1 g2
pf) = o ; fexp(i6))do (f € C(S"))
Proposition 4.37. Let
(S1) (1,W) is a unitary representation of T*.
Then (1,W) is irreducible <= dimt =1 and there is n € Z such that
T(exp(i02m))v = exp(ind2m)v (V0 € R,Yv € W)
We denote this irreducible representation by T,

Proofl of = . By Shur Lemma, dim7 = 1. Since 7 is unitary, 7(S!) can been seen as elements of S*. By Theorem?2.2,
T is C¥-class. We set f(6) := 7(i027) (0 € R). Because f(6 + h) = f(0)f(h) (V0,h € R),

f1(0) = f/(0)£(8) (V0 € R)
So, taylor series of f converges on R. This implies that there is o € C such that
f(0) = exp(iah2r) (VO € R)
Because Im(f) C S, a € R. Because f(1) =1, a € Z. O

Proof2 of = without Theorem2.2. By Shur Lemma, dimt = 1. Since 7 is unitary, 7(S') can been seen as elements of
St We set
f(0) :=1(i627) (6 € R)

and
P(0) := exp(if) (0 € (—m, 7))

There is § > 0 such that f((—6,0)) C ¥((—m, 7)) We can assume f|(—0,0) # 1. So, there is to € (—6,0) \ 0 such that
f(to) # 1. There is a € (—m, ) such that f(ty) = exp(ia). Because ¥ is injective,

k K k
f(2—mt0) = emp(zQ—ma) (Ym € Z4,Vk € Z such that |2—m\ <1
Because the both sides are continuous,

(67

£(0) = eapliz5

027m) (VO € (—ltol, [tol))

@
We set 3 := o Becuase f is homomorphism,
04T

f(0) = exp(iff27) (VO € R)
Because f(1) =1, 8 € Z.
Proof of <= . It is clear.
By Proposition4.37, the following holds.
Proposition 4.38. Let

(S1) 7, is an irreducible unitary representation of T' for n € 7Z.
(52) xn is the character of T,.

(83) 1y is the matriz coefficient of T,.

Then
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(i)
11(2) = xn(2) = 2" = exp(i-n-arg(2)) (Vz € S*)

(ii)
1 2T

by flexpif)exp(—inBdf = f(n) (Vf € L*(S'),VnN)

(f7 7-ln,l) =

By Peter-Weyl II and Proposition4.38 and Propositionl.12, the following holds.
Theorem 4.11 (Fourier expansion formula). For any f € L?([0,27])

N

By Peter-Weyl I1I and Proposition4.38 and Propositionl.12, the following holds.

Theorem 4.12 (Wierstrass Theorem). For any f € C(S') and € > 0, there is a finite subset N C N anda_n,a_ni1,-..,aN
such that

N
IIf - Z anXnlloo < €

n=—N

4.7.7 Characterization of compact Lie group

Theorem 4.13. Let us G be a compact topological group. Then G is a Lie group <= G has a continuous finite
dimensional faithful unitary representation. In special, if G is a compact Lie group, then there is a C*-class diffeomorphism
from G to some closed subgroup of U(n) for some n € N.

Proof of = . By Proposition2.33, there is an open neighborhood U which does not contain subgroups without {e}. By
Peter-Weyl Theorem I, for any 7 € G, Ker(7) is closed subset of Gi. By Gelfand-Raikov theorem, G = U__asKer(r)°UU.

Because G is compact, there are finite 1q,..., 7, € Gf such that G = U, Ker(r;)© U U. Because U does not contain
subgroups without {e}, N7, Ker(r;) = {e}. Then & ,7; is a continuous finite dimensional faithful unitary representation
of G. N

Proof of <= . Then G is isomorphic to closed subgroup of U(n) C GL(n,C) as toplogical groups for some n € N. So, G
is Lie group. O

4.8 Review

The main theorems of this chapter are Peter-Weyl’s Theorem I-III, embedding any compact Lie group into U(n), Plancherel
formula for compact Lie groups. In this section, we review these theorems, noting their relationship to the Mautner-
Teleman theorem. We also explain how this is a generalization of the theory of Fourier series expansions. The key facts in
this chapter are various capabilities of ‘averaging‘ by Haar measure in compact Lie groups, Shur Lemma, Gelfand-Raikov
Theorem.

The Mautner-Teleman theorem guarantees that any unitary representation of a Lie group can be decomposed into
a direct integral of irreducible unitary representations. The following Peter-Weyl Theorem I guarantees that this direct
integral is a discrete direct sum of finite-dimensional irreducible unitary representations if the Lie group G is compact. In
partlcular the irreducible unitary representation of a compact Lie group is always finite-dimensional. This means G=3G 2
Here G is the set of all equivalent classes of continuous irreducible unitary representation of G, and G ¢ is the set of all
equivalent classes of continuous finite dimensional irreducible unitary representation of G.

Theorem 4.14 (Peter-weyl theorem I). Let (7,V) be a continuous unitary representation of a compact Lie group G.
Then there is D which is a subset of G-invariant finite dimensional irreducible subspaces such that

V-

weD

The proof of Peter-Weyl’s Theorem I, by using Zorn’s Lemma, boils down to the proof of the claim that any unitary
representation of a compact Lie group has a finite dimensional G-invariant subspace. Such an invariant subspace can be
realized as the eigenspace of a G-linear map composed by acting on all group elements in their projection onto a suitable
1-dimensional space and averaging them. If the group is a finite group, this operator is a finite-dimensional matrix, its
eigenspace will be one-dimensional. In the general case, this sum is the Bochner integral, and the operator formed by the
sum is compact operator, so its eigenspace is finite-dimensional.
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The irreducible unitary representation of S! is, by Shur’s lemma and the real analyticity of finite dimensional represen-
tations of Lie groups(Theorem2.2), we find that it is exhausted by homomorphisms of the following form(Proposition4.37).

Tn: St 3 2z 2" =exp(i-n-arg(z)) € S* (n € Z)

Thus, any unitary representation of S can be decomposed into a direct sum of these representations.
Peter-Weyl’s Theorem II gives the irreducible decomposition of L?(G) using Peter-Weyl’s Theorem L.

Theorem 4.15 (Peter-weyl theorem II).
O (L@, e, VoV = (L, L*G)
Here, for each (1,V) € Gf andv® fe VeV,

(v f)(g):=flr(g™")v) (g€ G)
L:(v® f)=71(z)v® f (z € G)
Lzh(g) = h(z™"g) (h € L*(G), 9,2 € G)
We set

A := {Vdimr7, j|(,V) is an representative of Gy and {v1, ..., Ugim-} is an orthonormal basis of V and 1 < i,j < dim7}

Here, 7; ; is defined as bellow for each i, j.

7i,5(9) == (T(9)vj,v:) (9 € G)

The Peter-Weyl Theorem III guarantees that any continuous function f on G can be uniformly approximated by elements
of a vector space B generated from the above set A.

Theorem 4.16 (Peter-Weyl Theorem III). For any € > 0, there is a a1, ...,an € C and 7, j,, ..., Tj, .jn € A

flo)— Y. a9l <e(Vgeq)

i,k=1,...,n

The proof of this theorem uses Stone Wierestrass’s theorem(Theorem4.1) on uniform approximation of continuous
functions on compact metric spaces. By Gelfand Raikov’s theorem and the theory of positive definite functions, B contains
constants and is closed by products and complex conjugates. Stone wierestrass theorem, such a space is , guarantees a
uniform approximation of continuous functions on G. By applying Peter-Weyl’s Theorem III to the case G = S*, we
obtain the following approximate theorem.

Theorem 4.17 (Wierstrass Theorem). For any f € C(S') and ¢ > 0, there is a finite subset N C N anda_y,a_pn41, ..
such that

y AN

N

|f(z) = Z anz"| < e (Vz € Sh)

n=—N
By Peter-Weyl Theorem I and Gelfand-Raikov Theorem, the following is shown(Theorem4.13).
Theorem 4.18. Any compact Lie group is isomophic to a closed subgroup of U(n) for some n € N

By Peter-Weyl Theorem II and Shur’s Lemma, the above set A of matrix coefficients corresponding to all irreducible
unitary representations is guaranteed to be an orthonormal basis of L?(G). Since L?(G) is separable, by Peter-Weyl’s
Theorem 11, G ¢ is at most countable set. Due to the real analyticity of finite-dimensional representations of Lie groups,
each 7; ; is real analytic. From the above, we can say that this family of functions is an easy-to-handle family of functions.
By the theory on orthonormal bases of Hilbert spaces, The square integrable function on G can be expanded by such a
tractable function as by such an easy-to-handle function.

f= Z dimT(f,7i ;)7 (L*-convergence)
7€Gy,1<0,j<dimr

This equation has two other expression. The one is the expression by characters(Proposition4.31 and Theorem4.7).

f= Z dim 77 * f (L*-convergence)
TGG‘f

The another one is the expression by operator valued fourier transform.
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Theorem 4.19 (Plancherel formula for compact Lie group). Let
(S1) G is a compact Lie group.
(S2) f e L*(Q).

then
f= Z @' (7(f)) (L? convergence)

TeGy
Here,
()= [ War(ordy (1 € L'(G)
G
o (v @ f)(g) = dimf(r(9~")v)
We set u by the counting measure of éf. Then

f= @(r()du(r)

Gy
The left side is a bochner integral on the L(G) valued function. We call p the Plancherel measure on G.

The mapping G > 7 — 7(f) is called the operator valued fourier transform of f. Operator valued fourier transform
have the following properties.

(i) w(f *g) =(f)m(g) (Vf.g € L*(G)).
(il) m(Raf) = 7(f)7*(z) (Vo € G).

It is known operator valued fourier transform is characterized by these properties[18]. In the case when G = S, 7,,(f) =

f(n) = (f,m) and Py, (£)(8) = f(n)ewp(ind).

By applying Peter-Weyl’s Theorem II to the case G = S', we obtain the following Fourier series expansion formula.

Theorem 4.20 (Fourier series expansion formula). For any f € L?([0,27])

N
— 1 ¢ 2_
f= ngnoo n_z_:N f(n)xn (L=-convergence)
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5 Homogeneous space

5.1 (C¥-class structure

Theorem 5.1. Let

(S1) Gy is a Le group which is locally isomorphic to a Lie subgroup of GL(n,C) Gs.
(A1) H is a closed subgroup of G1 such that dimLie(H) > 0.

(S2) b := Lie(H).

(53) g1 is a complementary space of b in g := Lie(G1).

(S4) k := dimgy and 1 := dimb.

Then there is a C¥-class manifold structure of G/H such that

(i) p: Gy 29— gH € G1/H is a continuous map and an open map.
(ii) G1 x G1/H 3 (g1,92H) — g1g2H is C¥-class.
(iii) For any g € G and h € H, there is € > 0 such that
Bi(O,€) x Bi(O,¢) 3 (X,Y) = gExp(X)hExzp(Y) € G

and
Bi(0,¢) > X — n(gExp(X)) € G/H

are C¥-class diffeomorphism.
We call G/H homogeneous space or homogeneous manifold.

STEP1. Definition of the topology of G/H. We set
p:G>9—gHe€G/H

and

O(G/H) = {AC G/H|p"'(4) € O(G)}
Clearly, p is continuous. Also, for each O € O(G),
P~ (p(0)) = UpenOh
So, p is an open map. Because p is surjective, for any O1 € O(G/H), there is Oy € O(G) such that
p(02) = Oy

And clearly, for any O € O(G) and g € G,
Ly op(0) = po Ly(0)

So, Ly is a homeomorphism of G/H.
We will show G/H is a Hausdorff space. Let us fix g1,¢92 € G such that g1 H # g2 H. So, gg_lgl ¢ H. Because H is a
closed set, there is U which is an open neighborhood of e such that

Ulg'qiUNH = ¢

This implies that
@nUHNgUH = ¢

So, G/H is a Hausdorff space. O

STEP2. Construction of a local coordinate system of G/H. Thereis ey > 0 and € > 0 such that Fxp|B(O0, €) is a C¥-class
homeomorphism to an open set of G and

Exzp(B(O,€))Exp(B(0,¢€)) C Exp(B(0,¢€p))

and
p:(g.NB(0,€&)) @ (hNB(0,€)) > X +Y — Eaxp(X)Exp(Y)
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is a C*-class homeomorphism. We set for each g € G
pg (8. NB(0,€)) > X — gExp(X)H € gEzp(B(0, €0))H

Clearly, gExp(B(0,€))H € O(G/H) and p, is surjective. We will show p, is injective. Let us fix any X1, X> € g, such
that py(X1) = pg(X2). Then, becaluse Exp(B(O,€))Exp(B(0,¢€)) C Exp(B(O,¢€)),

Exzp(—X2)Exzp(X1) € HN Exp(B(0, €))
By von-Neumann-Cartan’s theorem, we can assume
H N Exp(B(0,€)) = Exp(B(0, ) Nh)

So,
Exp(X1) = Exp(X2)Exp(B(O,€e) Nb)

Because p is injective, X; = Xo.
We can assume for any X € B(O, ¢)g;, there is C*¥-class 71 and 7o such that for any Z € B(O, ¢)gy

E(Ep(Xg + Z) = El’p(XQ + Wl(Z))Exp(Wg(Z)),m(Z) S gl,WQ(Z) € [’)
Let us fix any g1, g2 € G such that
91Exp(g1 N B(O,€))H Ng2Exp(g1 N B(O,€))H # ¢
Let us fix any X1 € p;.' (g1 Exp(g1 N B(O,€))H N g2 Exp(g1 NB(O,€))H). There is X5 € g1 N B(O,€) and h € H such that
95 g1 Exp(X1)h = Exp(X2)

So, there is § > 0 such that
g5 ' Exp(X1 + B(0,6))h C Exp(B(O, €))

We set,
Y(Y) == log(1(gy 'g1 Exp(X1 + Y)h)) — Xo (Y € B(O,8) Ng)

Then ¢ is C*-class and
G Exp(X1 +Y)h = gaExp(Xz +9(Y))

So,
g2Exp(Xa + (V) = g2 Exp(Xa + m (Y (Y))) Exp(ma(4(Y)))
This implies that
P, © g (V) = m(4(Y))
Consequently, {pg}secc defines the C“-class structure of G/H. O

STEP3. Showing G x G/H > (g1,92H) — g192H is C¥-class. For any Y € Lie(G) N B(O,¢) and X; € g1 N B(O,¢)
Porgs (G ExpY g2 Exp(X1)H) = py,g, (9192 Exp(Ad(g~'Y) Exp(X1)H) = pg, g, (9192 Exp(§(Ad(g71Y, X1))) = £(Ad(g™'Y, X1)
Here, ¢ is C¥-class mapping such that Exp(Y')Exzp(X]) = &Y', X1) (VY € Lie(G) N B(O,¢€),¥X1 € g1 N B(O,¢)). O
STEP. Proof of (#i). By STEP2., there is § > 0 such that

o:91NBr(0,0) x hbN B;(0,0) 3 (X,Y) — Exp(X)Ezp(Y) € G

is C¥-class diffeomorphism and
91 N Bx(0,0) > X — w(FExp(X)) € G/H

is C%“-class diffeomorphism. So,
Br(0,0) > X — w(gExp(X)) € G/H

is C%-class diffeomorphism. There is € > 0 such that
Ad(h)B;(0,€) C B;(0,9)
Let us fix any g € G and h € H. We set
p: Br(0,¢) x Bi(O,¢) 3 (X,Y) — gExp(X)hExp(Y) € G
Then p is clearly C¥-class and Imp is an open set. Because gExzp(X)hExp(Y) = gExp(X)Exp(Ad(h)Y)h,
Imp>xe (pi(o g zh™)), Ad(h " )pa(o (g 2h ™)) € g1 N B(0,6) x h N B(0,6)

is the inverse of o and C“-class diffeomorphism. O
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Definition 5.1 (Involutive automorphism). Let G be a Lie group. We call 0 € Auto(G) a involutive or involution if
ogoo =idg. We set G :={g € Glo(g) = g}. And we denote the connected component of G® which contains the unit
element by G§.

Clealy the following hold.
Proposition 5.1. G? and G§ a closed subgroup of G.

Definition 5.2 (Symmetric space). Let G be a Lie group and o be a involution of G. If H is a closed subgroup of G such
that G§ C H C G°. Then we call (G, H) be a symmetric pair and G/H be a symmetric space.

5.2 Invariant measure

5.2.1 Existence of Invariant measure

Definition 5.3 (Invariant measure). Here are the settings and assumptions.
(S1) G is a Lie group and m := Lie(G).
(S2) H is a closed subgroup of G.
(S3) p is a Baire measure on G/H.

We say p is a invariant measure on G/H if for any f € C.(G/H) and any go € G

/G f(go - )du(x) = /G f(@)du(z)

We say p is a right invariant measure on G
Notation 5.1. Let G be a Lie group and go € G. For each x € G/H, 14)(x) := go - x.
Lemma 5.1. Here are the settings and assumptions.
(S1) G is a Lie group and g := Lie(G) and m := dimg.
(S2) H is a closed subgroup of G and b := Lie(H) and k := dimb.
(S3) m:G>gw—gH € G/H.
(S4) 7¢ : G/H > zH — gzH € G/H (g € G).
(S5) q is a complement space of § in g and | := dimyq.
(S6) z € G.
(S7) 6 > 0 such that @, : Bi(0,0)Nq > X — zexp(X)H € G/H is a local coordinate around n(z) in G/H.
We set U := Bi;(0,d)Nq.
(S8) wa(ey is a m-th antisymmetric tensor field on Tr.)(G/H).
(S9) For each X € U,
Wi, (x) (W1, 0, 01) 1= We((dTaBap(x))r(e) 01 o (@ToBap(x))n(e) " 01) (V1,01 € To, (x)(G/H))

Then w® is C¥-class I-form on @, (U).

Proof. Tt is enough to show a representation matrix (deExp(X))w(e) is C¥-class. For each y € G/H, we denote the local
coordinate around y defined in the proof of 5.1 by %,. So, it is enough to show

UxU> (Xv Y) = 'l/);(lz) (TxE;cp(X)ww(e)(Y)) € q
is C¥-class. By the proof of 5.1, there is € € (0, ) such that
©:qNBr(0,e) x hN Bi(0,¢) 3 (X,Y) — exp(X)exp(Y) € G

is a C*-class homeomorphism to an open neighborhood of e. We can assume Exp(U)Exzp(U) € Im®. For each (X,Y) €
U x U, there is the unique (a(X),8(Y)) € N Bx(O0,¢€) x h N B (O, €) such that

TmErp(X)w'rr(e) (Y) = Emp(a(X, Y))Emp(ﬁ(X, Y))
and « and 8 are C*-class. And for any X,Y € U,
1/];({1;) (T’I:EI[)(X),I/)TF(E) (Y)) = a(Xv Y)

So,
UxU> (Xv Y) = q/};(lx) (TwEwp(X)wﬂ'(e) (Y)) €q
is C¥“-class. O
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Lemma 5.2. We will succeed notations in 5.2. And here are the settings and assumptions.
(A1) For any x,y € G, there is o € {—1,1} such that
w? =ow? in @, (U) NP, (V)
(S1) For any x € G, there is ¢, € C¥(D,(U)) such that for any q € ®,(U),
wy = a(@)d(V3)g A Ad(Ty)q

Here W, := &1

(52) We set
@q = ¢ (@)|d(V5)g A Ad(TF), (2 € G, q € 24(V))

and define p: G/H — {-1,1} by
wg = p(q)we(z € G,q € 2,(U))
Then & is C*-class form on G/H and for any ¢ € G/H and g € G there is 044 € {—1,1}
(d1g)0g = 04,q004
and G/H is orientable.
Proof. Let us fix any g,z € G. We set ¢ := w(z) and p := 7w(e). Then for any v, ...,vx € T,(G/H),

((dTg)@)q(’Ul» e Vk) = Wgq((dTg)qua, ..., (dTg)qUk) = P(QQ)We((dTgr)gl(dTg)qvl» - (dng)gl(dTg)qvk)
= we((dTw)e_ s (d7) v k) = p(99)p(@)q(v1, .., vk)
O
Lemma 5.3. We will succeed notations in 5.2. Then
wiEmp(X)H = det(deEwp(X))71(d\P}c)zEwp(X)H JANRAN (d\IJI;)»LELp(X)H (VX S U)
Proof. Let us fix any X € U. We set g := zExp(X) and ¢ := 7(g).
9 k
= det(w; (e Vg @), A 1 (02,
We d he i se of jacobi ix of (d ith res 9 d 0 b k Th
e denote the inverse of jacobi matrix of (dr,), with respect to {(8—%),1}]- an {(a—qjg)p}j y {a;jr}5 1. Then
k
dr,)
(d75) 8\113 Z
So,
0
x — ..
i (g o) =
Consequently,
w;fExp(X)H = det(dTmEzp(X))_l(d\lli)mE:cp(X)H A A (d\IJ’;)zExp(X)H
O
Lemma 5.4. We will succeed notations in 5.2. And here are the settings and assumptions.
(A1) For any h € H,
|det((drn)p)| =1
Then for any x,y € G, there is 0 € {—1,1} such that
w® =ow? in &,(U)N@,(U) (5.2.1)
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Proof. Let us fix any ¢ € ®,(U) N ®,(U). Then there are X,Y € U such that
m(xExp(X)) = ¢ = w(yExp(Y))
We set g := 2Exp(X) and yo := yExp(Y) and h := y; 'zo. Then by Lemma5.3,

(5.2.1)
< |det((d7z,)p)| = |det((dTy,)p)|
= |det((dm)p)| = |det((dry,), ) det((drz,)p)| = 1

Lemma 5.5. We will succeed notations in 5.2. Then
(dTh)p = Adg/h(h) (Vh S H)

and
_ det(Adg(h))

 det(Adg (h))
Proof. Let us fix any h € H. For any t € R and X € g,
mpm(exp(tX)) = hExp(tX)H = hExp(tX)h *H = Exp(tAd(h)X)

det((dmh)p) (Vhe H)

So,
(dTh)p = Adg/h (h)

Let A, B,C be the representation matrices corresponding to Adg(h), Adgsy, and Ady(h) with respect to g, respectively.
Let us fix any X € g. There are Y € g and Z € b such that X =Y + Z. Adg(h)X — Adg,s(h)X € b and Adg(h)Z € b.

So,
=29
This implies det(A) = det(B)det(C). O
Lemma 5.6. We will succeed notations in 5.2. And here are the settings and assumptions.
(A1) For any x,y € G, there is o € {—1,1} such that
w® =ow? in &, (U)N &, (U)
(S1) g € G.

(52) (Ua,%a) and (Ug, ) are local coordinates on G/H and gUs N U, # ¢.
(S5) For any v € Uy and y € Ug

wy = Po(z)dpa A .. ANddam, wy = Pa(y)ddg1 A ... ANddg,m

Then, for any x € UgN Lg_an,
Dp(x) = |det(J (Yo 07y © $)(Y5(2)))[Palgr)

Proof. Let us fix any x € Ug N Tg_an. Then
Wy = @5($)(d¢571 A A d¢57m)x

and
Wye = a(gx)(d¢a,1 ARTA d¢o¢,m)gz
So,
? 0] 0 9] 0
(oo G )e) = n AL () o ()
and 5 5
wgm(dLg((awﬁ X )a)s oy dLg((m)m)) = |detJ (o © 7g 0 ¢p)(Vp(2))|(ddp,1 A .. Addgm)a

These implies that
Dp(x) = Pa(gr)|det] (o 0 79 0 P3)(¢s(x))]
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Theorem 5.2. Here are the settings and assumptions.
(S1) G be a Lie group.
(S2) H be a closed subgroup of G.

(A1) For any h € H,
(detAda ()| = \det(Ady ()

Then
(1) There is C*®-class form @ on G such that for any g € G there is o, € C(G/H,{—1,1})
drgw = ogw
(i) G/H is orientable by &.
(iii) The measure induced from @ is G invariant. Specially, G/H has a invariant measure.

Proof. (i) is from Lemmab.2. (ii) is from Lemmab.4. We will show (iii). We set k := dim(G/H). Let us fix f € C°(G/H)
and go € G. For x € G/H,

(7o) () := f(gox)
By (ii) and the second contable axiom, there is {U;, 15, Vi, ®;, p;i 12, such that {U;,1;}$2, is a local coordinate system of
G/H and {U;,;}32, is local finite and for each i V; € O(R¥)

i Ui =V
is an homeomorphism and {U;, 1;}32, preserves a orientation of G and for each ¢ and = € U;
wy = i(x)(ds1 Ao ANdig)a
and ®; > 0 and {p;}2, is a partition of unity subordinating {U,;}32,. We set for each i, f; := fp;. By Lebesgue’s

convergence theorem,
oo

fw= fiw»/ Tgo fW = / Tgo Jiw
G/H ; G/H G/H 7 ; G/H 7

So, it is enough to show for each 4

fiw = / Tg()fiw
G/H G/H

By Lemma 2.12, we can assume that for each ¢, there is j such that supp(ry, f;) C U;. Because supp(f;) is compact, there
is an open set U] such that
supp(f;) C U] C U
and
supp(Tq, fi) = Tg_olsupp(fi) C Tg_olUZ-' cU;
We set ¢; := 1/);1 and V; := ¢;(U;) and ¢; == 1/1;1 and V; := ¢;(U;). By change-of-variables formula for integral and
Lemmab.6,

[rtio=[ oty (), (0)ds

G ¥i(7g0 U;)

= [ et @)@ o)
111_7‘(7'90 U;)

:/ B fi(@i(i 0740 0 $5(2)))
’Pj(TgoUé)

X |det(J (1h; © T4, 0 6)) (10 © T Pi 0 9y © T4y 0 ()|
XD (1hj 0 Ty Li 0 1 © Ty, 0 95(x))))

|| 56 etT w07 0 6,)) 0 075 0 )
<, (1 0 7301 01(0)

/ F(:()) @1 (y)dy
g

- /Gfiw
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Proposition 5.2. Here are the settings and assumptions.

(S1) G be a Lie group.

(5§2) H be a closed subgroup of G such that dimLie(H) > 0.

(S3) € > 0.

(S4) g := Lie(G), b := Lie(H).

(S5) q is a complement subspace of b in g.
Then there are {g;}32, C G and {U;}32, such that U; is a open neighborhood of 0y (Vi) and U; C By(O,€) Nq (Vi) and
{m(g:iExp(U;)) }ien is an open covering of G/H and for any i € N #{j € N|n(g; Exp(U;)) N n(g9; Exp(U;)) # ¢} < 0.

Proof. There is V' which an open neighborhood of e in G such that V4 C Exp(B(O,¢)) and V is compact. There are
{g0.:}o, and {eg;}N°, C (0, 00) such that 7(V*) C UN°, w(go s Exp(B(O, €,:))) and go i Exp(Bi (0, €0.i) € Exp(Br(O, €)go.i
(V).

And for each s € N there are {g, ; 1, and {e,;}7*, C (0, 00) such that 7(V*5)\m(V3+5) € UNs 7(gs i Exp(Bi (0, €s.4)))
and gs,iExp(Bk:(Oa es,i) - Exp(Bk:(O7 e)gs,i (VZ)

We set {g:}21 = {gs,ils,7 € N,1 <@ < N} and {U;}52, := {Usls,i € N;1 <4 < Ng}. We will show for any ¢ € N
and s € N,

7(ges) & 7(V*2)

For aiming contradiction, let us assume s € N and i € N such that 7(gs;) € T(V**2). So,
(95 Bap(Br(0, €5,4))) C m(Exp(Bi(0,¢€))gs) C n(V*F?)
This contradicts with
(95 Brp(Bi(0, €,4)) N m(V2)" 3£ ¢
Nextly, we will show for any ¢ € N and s € N,

(gs,i) (Vo) = ¢

For aiming contradiction, let us assume s € N and ¢ € N such that 7(gs ;Fzp(Bi(O,€0;)) N w(VT) £ ¢. Then there
is X € By(O,¢€) and u € V2 such that m(Exzp(X)gs;) = m(u). So, 7(gs;) = 7w(Exzp(X)u) € w(V+?). This is a
contradiction. So,

(gs,iE‘rp(Bk(Ov 6871'))) n 7T(Vvs) =¢

By the same argument as the proof of Proposition5.2, the following holds.

Proposition 5.3. Here are the settings and assumptions.

(S1) G be a Lie group such that dimLie(G) > 0.

(S2) € > 0.

(S3) g := Lie(G) and m := dimg.
Then there are {g;}32, C G and {U;}$2, such that U; is a open neighborhood of 0., (Vi) and U; C By (O,€) Ng (Vi) and
{9:Exp(U;)}ien is an open covering of G and for any i € N #{j € N|g;Exp(U;) N gjExp(U;) # ¢} < oc.
Proposition 5.4. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G such that dimLie(H) > 0.

(53) € > 0.

(S4) g := Lie(G), b := Lie(H).

(S5) q is a complement subspace of b in g.
Then there are {g;}2, C G and {U;}32, and {h;}52, C H and {V;}52, such that U; is a open neighborhood of Oy (Vi) and

U; C Bx(0O,¢)Nq (Vi) and V; is a open neighborhood of 0; (Vj) and V; C Bi(O,€) N (Vj) and V; is a open neighborhood
of 0; (V§) and g;Exp(U;)hjExp(V;) € O(G) (Vi,7) and for any i,j € N

Ui xV; 3(X,Y)— giExp(X)h;jExp(Y) € g;Exp(U;)hjExp(V;)
is a C¥-class diffeomorphism and {g; Exp(U;)h; Exp(V;)}i jen is a local finite open covering of G and {m(g;Exp(U;)) }ien
is a local finite open covering of G/H and {h; Exp(V;))}jen is a local finite open covering of H.
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Proof. Let {g:}72, and {U;}$2, be the one in Proposition5.2. Let {h;}32, and {V;}32, be the one in Proposition5.3. By
Theomrem5.1, we can assume for each i,j € N

Ui xV;>(X,)Y)— giExp(X)h;Exp(Y) € G

is a C*-class diffeomorphism to an open neighborhood of g;h;. So, it is enough to show {g;U;h;V;}i jen is local finite.
Let us fix any 7, j € N. For each 7/, j’ € N,

giUih;V; N guUphj Vi # ¢ = w(q:Us) Nw(guUs) # ¢

So,
#{i/ S NB]/ s.t gzUth‘/J mgi’Ui’hj’ij' #* ¢} < 00

We denote this set by I. Let us fix any 4o € I. Because (g;,U;,) 1g:U;h;V; N H is compact, there are j1, ..., jar such that
(9i0Uio) "' 9:Uih3 Vi 0 H C Uglyhy, Vs,
This implies
{7'19:Uih; Vi 0 gigUighiVir # ¢} € UZL {5 Ry, Vi, N hyi Ve # 6}

So,
#{5'19:Ush; Vi 0 g3y Uiy h Vi # ¢} < 00

Theorem 5.3. Here are the settings and assumptions.

(S1) G be a Lie group.
(S2) H be a closed subgroup of G such that dimLie(H) > 0.

(A1) For any h € H,
|detAdg(h)| = |det(Adg (h))]

(S8) wg is a left invariant meausre induced by a left invariant form on H.
(S4) payu is a invariant measure induced by Theorems.2.

(S5) pe is a left invariant meausre induced by a left invariant form woy on G.

Then there is ¢ € R such that for any f € C.(Q)

/G F@duce) =c [ Fo)dugm()

G/H

Here
FloH) = /H F(gh)dpur(h) (gH € G/H)

f is well-defined and f is continuous.

STEP1. f is well-defined and f is continuous. If gy H = go H, because gz_lgl € H,

/Hf(glh)d:uH<h):/I{f(9295191h>dﬂH(h):/Hf(QQh)dﬂH(h)

So, f is well-defined. Because f is uniformly continuous and gFExp(U)H is an open neighborhood of gH for any open

neighborhood of e U, f is continuous. O

STEP2. Construction of a left invariant measure p from invariant measures on G/H and H. We set

1:CH(©)3 1 [ F@ydngyu(o) € R
G

By Riez-Markov-Kakutani Theorem, I induces the baire measure p on G. O
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STEP3. Construction of a local coordinates system. We set g := Lie(G) and b := Lie(H). We fix q which is the comple-
ment of h. k := dimq and m := g and [ := q. There is §; > 0 such that

Bi(0,61)Ng x Bi(0,61) N> (Y, Z) — exp(Y)exp(Z) € G
is a C%-class diffeomorphism to an open neighborhood of e. For each ¢ € G and h € H,
9(Bzp(Br(0,61) Na)h(Bi(0,61) Nh) = gh(Bxp(Adg(h™")Br(0,61) N a)(Bi(0,61) Nh)
So, there is d; > 0 such that
B (0,62) Ng x Bi(0,62) N> (Y, Z) — gexp(Y)hexp(Z) € G

is a C%-class diffeomorphism to an open neighborhood of gh. There are {¢;}32; € G\ H U{e} and {h;}2; C H and
{U;}s2, and {V;}$2, such that s U; is an open neighborhood of 0j (Vi) and V- is an open neighborhood of 05 (Vi) and
{m(9:Us)}32, is a local finite covering of G/H and {h;V;}$2, is a local finite covering of H and {g;U;h;V;}$5_, is a local
finite covering of G. We denote a partition of unlty correspoinding to {m(g;U;)}52; by {a;}$2; and denote a partition
of unity correspoinding to {h;V;)}32; by {$;}32;. Then clearly {a;3;}75_; is a partition of unity correspoinding to
{9iUih;V;}i5-1 .
STEP). Construction of a C*°-form w. We set for each ¢,5 € N,

W, Bap(X)h, Bap(v) = P1,i(g:Exp(X)) @2 (b Exp(Y))dp] ;AddT A AdSF ;Addy ;AdD5 i A..NdDY ; (X € Uy, Y € Vj,i,j €N)

We will show w is well-defined. Let us fix any 41, ji1,92,j2 € N, X; € U, Y1 € Vj,, Xo € Uy, Yo € Vj, such
9i, Exp(X;,)hj, Exp(Y;,) = gi, Exp(X;,)hj, Exp(Y;,). We set

g1 = 9, Exp(Xi,), 92 = i, Exp(Xi, ), hy := hj, Exp(Y},), he == h;, Exp(Yj,)

Because ho := g5 'g1 € H, n(g1) = 7(g2). So, by Lemma5.2,
@iy (91)dd1,5, N dBL, A A GG, = Prilg2)ddr s, A DT, A N dOY,

So, hohi = hy. Because py is left invariant, by Lemma2.9,

Dy j, (ho)dy ;, Nd@3 5, A .. ANy, = Do g, (hoha)ddy ;, Ade3 5, A ... Adh ;.

= det(J(é1 0 Ly,-1 0 ¥2)(¢2(h1))) 1,y (1) ddy j, NdGS 5, Ao A depy

=&y, (h1)dot ;, AdT ;Ao Addh
So, w is well-defined. O
STEPS. The measure induced by w is equal to . Let us fix any f € C.(G).

o0

fw= / faiasw

*/G iJZZI g:Uih; Vi e

= / f(giExp(X)h;Ezp(Y))ai (g Exp(X))oz(h; Exp(Y))®1,i(9i Exp(X))®2,i(h; Exp(Y))dXdY
ij=1" ¥1,i(Us)x¥2,5(V5)

= / ®1,i(gi Exp(X))ar(giExp(X Z/ f(giBxp(X)h; Exp(Y))as(h; Exp(Y))®s,i(h; Exp(Y))dY dX
Y1 L(UL) 2 J(‘/J

= Zal(giExp(X))/ D1, (gi Exp(X / f(giExp(X)h)dpm (h)dX
i "Z"l z(Uz)

o0

= / a1(giBxp(X))®1,:(9: Bap(X)) f(9: Bap(X))dX = f@)dugyu(x) = I(f)
¥1,:(Us) G/H
So, w introduces p. By Proposition2.52, w is left invariant form. Consequently, there is ¢ € R such that w = cwy. This
implies p = cug. O
In speciality, the following holds.

Proposition 5.5. Here are the settings and assumptions.

(S1) G be a compact Lie group.
(S2) H be a closed subgroup of G.

Then G/H has a invariant measure induced by a C*> form.
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5.2.2 LP(G/H)
By the same argument as the proof of Proposition2.56, the following holds.
Proposition 5.6. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G.

(A1) For any h € H,

|det Adg(h)| = |det(Adg (h))]
Then LP(G/H) is separable for any p € NN[1,00).
By the proof of Proposition5.6, the following holds.

Proposition 5.7. Here are the settings and assumptions.

(S1) G be a Lie group.
(S2) H be a closed subgroup of G.

(A1) For any h € H,
|detAdg ()| = |det(Adp (h))|

Then there is at most countable subset of Co.(G/H) which is dense in LP(G/H) for any p € NN[1,00).

5.3 Homogeneous Vector Bundle

Definition 5.4 (local cross-section). Let G be a Lie group and H be a closed subgroup of G and w : G — G/H be the
projection and U be an open neighborhood of ww(e). We say s : U — G is a local cross-section if s is C*°-class and

pos=1idU.

Theorem 5.4. Let G be a Lie group and H be a closed subgroup of G and w : G — G/H be the projection. Then the
followings hold.

(1) There is an open neighborhood of w(e) U such that B :={G,G/H, H,{gU }4cc, H} is a principal bundle.

(i) B has a local cross-section.

Proof of (i). We set b := Lie(H) and denote a complement of h by .
By the proof of Theoremb.1, there exists r > € > 0 such that

¥ :B(O,r)Ngx B(O,r)Nh 3 (X,Y) — exp(X)exp(Y) € G

is a C“-class diffeomorphism to an open neighborhood of p := 7 (e) and exp(B(O,¢€))exp(B(0,¢€)) C exp(B(O,r).
We set U := w(exp(B(0,¢€) Nq)).
We set
¢p U x H> (m(exp(X)),h) = exp(X)h € G

Since 9 is a diffeomorphism, X is identified uniquely. So, ¢, is well-defined and C*-class. And clearly 7 o ¢, = id|U and
Im¢, C 7= 1(U). Let us fixany g € 71 (U). Then 3X € B(0O,e)Ngand h € H such that g = exp(X)h = ¢, (m(exp(X)), h).
So, ¢, is surjective. Let uf fix any X1,X2 € qN B(O,¢€) and hi,hy € H such that exp(X1)hi = exp(X2)he. Then
exp(X1) = exp(Xa)hohyt and hoh! = exp(—Xo)exp(X1) € exp(B(O,r). Since 1 is injective, hohy ' = e. That implies
X1 = X,. For each h € H, by von-Neuman Cartan Theorem, ¢,|U x exp(h N B(O, €))h is a C¥-class diffeomorphism to
an open neighborhood of h. So, ¢, itself is C¥-class diffeomorphism to 7= (U).
For each g € G, we set
br(g) : 9U x H 3 (m(gexp(X)), h) — gexp(X)h € G

As same as the above argument, ¢ (4) is a C*-class diffeomorphism from gU x H to an open subset 7 (gU).
Nextly, let us fix any « € g1UNgaU. Then wy € grexp(B(0, €)Nq) and wy € geexp(B(0, €)Nq) such that m(wy) = 7(w2).
Then hg = wy 'w; € H. So,
¢7‘r(gl)(w17 h) = wih = wahoh = ¢7‘r(gg)(w27 hOh)

This means that
dj;(l_q?)ﬂc © (bﬂ—(gl)@(h) = (w2_11U1)h
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and d)ﬂ(gQ © Pr(gy)r = L(wz—lwl). Since
7(g1 Ep(B(0,¢) Na)) 3 m(wn) = wy € g1 Exp(B(O, ) M)
and
(g2 Exp(B(0O,€) Nq)) 3 m(wa) — wa € goExp(B(0,€) Nq)
are C% class,
gUNgU>z— qbﬂ(g o qﬁﬂ(gl)w = Lw;lw1 cH

is C¥ class. Consequently, 7 : G — G/H is a C¥ class principal bundle whose structure group is H. O

Proof of (ii). We succeed notations in the proof of (i). We set
s:m(exp(B(0,€e)Nq)) 3 wlexp(X)) — exp(X) € G
Then s is clearly a local cross-section. O
Theorem 5.5 (Homogeneous vector bundle). The followings are settings and assumptions.
(i) G is a Lie group.
(i) H is a closed subgroup of G.
(iii) (w,V) is a continuous representation of H.
(iv) (g1,v1) ~ (g2,v2) : < 3Jh € H s.t g1 = goh and v1 = 7(h) vs.
(v) p: GxV 3(g,v)—[g,v] € G/ ~. Let us define O(G/ ~) by p. We set G xgV =G/ ~.
(vi) ¢: GxgV 3|[g,v]—gH € G/H.
Then

(i) ~ is an equivalent relation on G x V.
(i) q is a vector bundle whose fibre is V and whose structure group is H.
(i) G acts on G xgV by g-[x,v] := [gx,v] g, € G,v € V.
(iv) For each g € G,v €V, {p(gU X (v+ B))}U:nei. of e, Benei. of0 1S @ basis of neiborhoods of [g,v].
Proof of (i). Tt is clear from the def. of ~. O

Proof of (ii):q is well-defined and continuous. We set h := Lie(H). Let q denote a complement of fj. Firstly, from the
def. of ~, g is well-defined. By the proof of Theoremb5.1, there is € > 0 such that for each g € G ¢4 : qN B(0,¢) 3 X
gexp(X)H € G/H is a homeomorphism from ¢, := qN B(O,€) to an open neighborhood of gH.

For each g € G, ¢ (¢,4(qc)) = p(B(O,¢€) x V). Because p~!(p(B(O,€) x V)) = B(O,e)H x V and B(O,e)H x V is an
open set, ¢~ (¢4(qc)) is an open set. So, ¢ is a continuous. O

Proof of (ii):Local trivializations. For each g € G, we set 9, : gexp(q.)H x V 5 (gexp(X)H,v) — [gexp(X),v] € Gxug V.
Clearly, 1, is well-defined and continuous and Imi, C ¢~ (¢4(q)) and q o ¥, (gexp(X)H,v) = gexp(X)H (VX € q.).
Let us fix any [2,v] € ¢ (¢4(qc)). Then 3k € H and X € g, such that zh = gexp(X). So, [z,v] = [gexp(X), m(h~1)v] =
ty(gexp(X), m(h~')v). Consequently, 1), is a local trivialization. O

Proof of (ii):A system of coordinate transformation. Let us fix any

w.‘]l (glexp(Xl)H7 ’01) = wgz (g2emp(L(Xl))Ha U2) € q_1(¢91 (qé)) N q_1(¢92 (q€))

Then ve = 7((g2exp(X2)) Lgrexp(X1))vi. So, {1, }4ec defines a system of coordinate transformation with the Lie group

H. O
Proof of (iii). It is clear from the def. of action. O
Proof of (iv). Tt is clear from the def. of topology of G x g V. O

Theorem 5.6. The followings are settings and assumptions.

(i) G is a Lie group.
(i) H is a closed subgroup of G.

(i1i) (m, V) is a continuous representation of H.
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(iv) T(G/H,G xpg V) is the set of all cross sections of q.
(v) t: H>hw (1,h,h) € Gx H x H.
(vi) : H>hw (1,hh) € Gx Hx H.
(vii) (g,h1,ha) - f(z) := w(ha)f(g txh1) (g9,h1,h2) EGx Hx H,x € G, f € C(G,V).
(vii) C(G,V)'H) .= {f € C(G,V)|u(h)f = f (Yh € H)}. In this note, we sometimes may denote C(G,V)*(H)
by C(G,V)H.
Then

(i) G x H x H acts on C(G, V) based on the def. of (vi).

(ii) C(G, V)" ~T(G/H,V) as purely algebraic representation of G. Remark that here we don’t care about
any topology of them and G acts on T'(G/H,V) by g-s(xH) := gs(¢g~'aH) for g,x € G,s € T(G/H,V).

Proof of (i). Tt is clear from the def. of action. O

Proof of (ii). Let us fix any ¢ € C(G, V). And let us ®(¢)(g) := [g, #(g)]. We will show ®(¢) is well-defined. Let us fix
any gi,gs € G such that g; ~ go. Then there is h € H such that g = g2h. So,

() (g1 H) = [g1, 0(91)] = [g2h, d(g2h)] = [g2h, w(h) "' b(g2)] = [g92, d(g2)] = ®($)(g2H)

We set h := Lie(H). Let q denote a complement of . Because @(¢)(gexp(X)H) = [gexp(X), d(gexp(X))] g € G, X € q
such that [|X|| < 1, ®(¢) € C(G/H,G xgz V). Clearly qo ®(¢) = idg/p, therefore &(¢) € I'(G/H,G xg V).

Let us fix any s € I'(G/H,G xg V). Let us fix any g € G. Then there 3lv € V such that s(¢H) = [g,v]. We
set U(s)(g) := v. U(s)(g) := v. Let us fix any € > 0. By (iv) of Theorem5.5, there is 6§ > 0 such that for any
X € qs5:=qNB(0,9), s(gexp(qs)) C p(gexp(ge x (v+ B(O,¢€))). So, there is Y € q. and u € v+ B(O,¢) such that

s(gexp(X)) = [gexp(Y), u]

Because s(gexp(X)) = [gexp(X), ¥(s)(gexp(X))], there is h € H such that gexp(X)h = gexp(Y) and m(h) tu
U(s)(gexp(X)). Because of the proof of Theorem5.1, if we take 0 to be sufficient small, then h = e. So, ¥(s)(gexp(X)) €
(v 4 B(O,€)). Therefore, ¥(s) is continuous. And clearly ¥(s) € C(G, V)",

Clearly, ® o V = idr(g/m,v) and ¥V o ® = id¢ g vyuom . And

D(g-¢)(x) = [1,9- ¢(x)] = [z, (¢ ")) = [997 '@, p(g7'2)| = g [97 " x, ¢(g~ )]
= g®(¢)(g " z) = (9 ®(¢))(z) (Vg.z € G,Y¢ € C(G, V)" 1))

5.4 Induced representation

Theorem 5.7 (Induced Representation). The followings are settings and assumptions.
(i) G is a compact Lie group.
(ii) H is a closed subgroup of G.

(iii) (w,V) is a continuous unitary representation of H.

() For each f1, fa € C(G,W), (f1, f2) :== [5(f1(9), f2(9))wdn(g). Here, p is the normalized Haar measre
on G.

Then
(i) C(G/H,W)"H) is a pre-Hilbert space and is an unitary representation space of G with the inner product.
We call the completion of it the induced representation from w and denote the completion by L*(G, W)
and denote the representation by L*-Ind(H 1 G)(w) or L?-Ind$,.
(ii) For any f1, fo € C(G/H, W)*(H),
(hde) = [ (flo). Falo))dto)
G/H
Proof of (i). Tt is clear. O
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Proof of (ii). It is clear from Theoremb.3.
Induced Representation can be defined with homogeneous bundle as below.
Theorem 5.8. The followings are settings and assumptions.
(i) G is a compact Lie group.
(i) H is a closed subgroup of G.
(iii) (w,V) is a continuous unitary representation of H.
(iv) For each g € G and [¢',v1],[g",v2] € ¢ 1 (gH), we set ([¢',v1],[g',v2]) := (v1,v2).
(v) Forsy,s2 € T(G/H,GXxgV), (s1,82) := fg/H(sl(gH), s2(gH))du(gH). Here u is the normalized invari-
ant measure on G/H.

Then

(i) The inner product defined in (iv) is well-defined.

(ii) T(G/H,G xg V) is a pre-Hilbert space and is an unitary representation space of G with the inner product
defined in (v).

(iii) The completion is isomorphic to L?(G, W) as continuous unitary representations.
Proof of (i). For each [¢',v1] = [¢",v3],[d',v2] = [¢",v4] € ¢~ (gH),

=1 _n =1 _n

(lg', 01l 9", v2]) = (v1,02) = (w(g' " g") " tvs, w(g" " g")  oa) = (vs,04) = ([g", v, [g", v4])

Therefore, the inner product is well-defined.

O

Proof of (ii). Clearly TI'(G/H,G xg V) is a C-linear space and G acts on I'(G/H,G xg V). Since G is compact, the
inner product converges in any case. Since p is G-invariant, G acts I'(G/H,G x g V') as unitary operator. Let denote the

isomophism from C(G, V)" to I'(G/H,G x g V) by ®. Clearly, for each s € I'(G/H,G xg V),
Is]| =0 <= @7(s) =0
Consequently, (ii) holds.
Proof of (ii). Tt is clear from (i).
Clearly the following holds.
Example 5.1. The followings are settings and assumptions.

(i) G is a compact Lie group.
(i) H is a closed subgroup of G.

Then L?-Ind(H 1 G)(1) ~ L*(G/H). Here, 1 is the trivial representation of H.

5.4.1 Frobenius Reciprocity
Proposition 5.8. The followings are settings and assumptions.
(i) G is a compact Lie group.
(i) H is a closed subgroup of G.
(i1i) (m,V) is a finite dimensional continuous representation of H.
Then
(i) C(G,V)~C(G)®V as representation of G x G x H.
(ii) C(G,V)"H) ~ (C(G) @ V)" as representation of G.
(iii) If 7 is an unitary representation, L*(G/H, W)*H) ~ (L*(G) @ V)*H) as representation of G.
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Proof of (i). Let {v;}*; denote a basis of V. Let us fix f € C(G,V). Then for each g € G, there are 3lfi(g), ..., fm(9)

such that f(g) = 22:1 fi(g)vi. We set ®(f) :=>"1", fi ® v;.
Let us fix ¢ € C(G) ® V. By Propositionl.2, there exists {f;}72, C C(G) such that ¢ = >.7" | ¢; @ v;. We set

\I/(QS) = (f17 eeey fm)-
Clearly @, ¥ are C-linear and ® o ¥ = idg(g)eyv and ¥ o @ = idg(q,v)-

ZZ 91R92fl 1)“1)] ZZLglezfl (m(h )vi,vj)vj

j=1i=1

( )L91R92f ZLglRQsz

=1

So,

‘b((glvg%h)'f):q)( ( Lg1Rg2f :ZZL91R92fZ )UZ’UJ ®vj = ZLglezfz®Z ’U“U]

j=1i=1

= ZLglezfi ® m(h)vi = (91,92, h Zfl ®v; = (g1, 92, W)@ ()
i=1
Consequently, ® is G-invariant.
Proof of (#). (ii) is clearly from (i).
Proof of (iii). (iii) is clearly from (i).
Proposition 5.9. The followings are settings and assumptions.
(i) G is a compact Lie group.
(i) H is a closed subgroup of G.
(i1i) (m,W) is a finite dimensional continuous representation of H.

() (7,V;) is an irreducible continuous representation of G.
Then, for each m € é’,

0 TET
Homeg(Vy, Ve @ Homy (Vi |H,W)) ~ { Homu (Vo H,W) 7=
as vector spaces.

STEP1: When T 2 w: By Peter-Weyl theorem, Hom g (V|H, W) is finite dimensional. Let us fix a basis of Hompy (V|H, W)
{;},. Let us fix any ¢ € Homa(Vz, Ve @ Homy (Vz|H,W)). We define ¢4, ..., ¢, by

Z@ )@ i (v € Va).

Clearly, ¢1, ..., om € Homg(Vy,V;). By Shur Lemma, ¢ = ... = ¢, = 0. O

STEP2: When ™ = 7: I continue to use the notations from STEP1. In the case, by Shur Lemma, there exist ¢y, ..., ¢, € C
such that ¢; = ¢;idy, (Vi). Therefore,

¢ =1idy, ® Z ci;.
=1

This means
Homg(Vy, Ve @ Homyg (Vi |H,W)) ~ Hompg (V,|H, W)

Proposition 5.10. The followings are settings and assumptions.

(i) H is a topological group.
(iii) (mw,W) is a finite dimensional continuous representation of H.

(iv) (1,V) is a continuous representation of H.
(v) n(H) :={(h, h)|h € H}.
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Then,
(V* x W)Y ~ Hompy (V, W)

Proof. That can be proved from the same thought as the proof of Proposition5.8. O
Theorem 5.9 (Frobenius Reciprocity Theorem.). The followings are settings and assumptions.

(i) G is a compact Lie group.
(ii) H is a closed subgroup of G.
(i1i) (m, W) is an irreducible continuous representation of H.

() (1,V;) is an irreducible continuous representation of G.
Then,
()

Hompy (n|H,7) ~ Homg(m, Ind$T)

(it)
[ValH : W] = [Ind§GT : W]

(iii)
IndSr = O eelrH 7]

Proof of (i). By Peter-Weyl Theorem,
LXG) =&, VeV

Then

L?(G/H,W)
by Proposition5.8
=LXG) oW = (@,.eVe@VieaW) MW~ V,e VW) ~ao _V,®Homy(V, W)
So, by Proposition5.9,
Homg(m, L*(G/H,W)) ~ Hompy (7|H, )
O

Memo 5.1. Frobenius Reciprocity Theorem can be purely algebraicly proved. The proof needs only Peter-Weyl Theorem
and Shur Lemma and Ezpressing induced representation as tensor space.
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6 Classification of irreducible representations of compact classical groups

6.1 Facts without proof

Proposition 6.1. Here are settings and assumptions.

(S]) A = {ai’j}i’j S M(’I’L,(C)

Re(a11) —Im(a11) ... Re(arn) —Im(ain)
Im(a11) Re(arq) ... Im(ar,) Re(ain)
(52) A=
Re(an1) —Im(an1) ... Re(ann) —Im(ann)
Im(an1) Re(an1) ... Im(ann) Re(ann)
Then

detA = |detA'|?

6.2 Complex Analysis

Proposition 6.2. Here are settings and assumptions.

(51) {aa}taczn C C such that #{ajas # 0} < 0.
(52) P(t) =3, aat™ (t € C™).
(A1) P=01inT".

Then P =0 in C™.

Proof. For aiming contradiction, le us assume a,, # 0 for some «. Let 3 the biggest index of {«a]a, # 0}. with respect to
lexicographic order. We can assume 1 # 0. For any r > 0,

|P(r,1,...,1)| = [*»1P(1,...,1)| = 0

By increasing r — oo, we get oo = 0. This is contradiction. O

6.3 Complexification

From the definition and property of C, the following holds.

Proposition 6.3 (Complexification). Here are settings and assumptions.
(S1) g C M(n,C) is a Lie algebra.

Then
ger C:={X +iY|X,Y € g}

is a C vector space with respect to
(a+ i) (X +14Y) := (aX — bY)

We call g @g C the complezification of g.
From the definition and property of C and the definition of complexification, the following holds.
Proposition 6.4. Here are settings and assumptions.

(S1) g C M(n,C) is a Lie algebra.
(S2) f:g— gisaR linear map.

If we define F : g g C by
gRr C:={X +iY|X,Y € g}

then F is a C linear map.
Clearly the following holds by Proposition6.1.
Proposition 6.5. Here are settings and assumptions.

(S1) g C M(n,C) is a Lie algebra.
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(S2) f:g— gisaR linear map.

(A1) There is a basis of g which is {X;}_, U{iX;}?, for some {X;}", C g.
(A2) {X;}*, is a basis of the complezification of g.

(§3) F is the complexification of f.

(A3) All eigenvalues of F are distinct.

Then

det(f) = |det(F)|2
6.4 A, ; type case
6.4.1 Main theorem

The propositions shown in this section will not be presented with proofs in this subsection, but will be presented with
proofs in the subsections that follow.

Definition 6.1 (Torus, Maximal Torus). Here are settings and assumptions.
(S1) G is a compact Lie group.
Then

(i) We say T C G is a torus of G if T is a connected commutative closed subgroup of G.

(i) We say T C G is a maximal torus of G if T is a torus and there is no torus which contains T as a proper
subset.

Notation 6.1 (Diagonal Matrix). We set

tt 0 0
diag(ty, ty, ..., ty) == 0t 0
0 0 tn

Notation 6.2 (Lexicographical order on Z™). We denote the lexicographical order on Z™ by <.

Proposition 6.6 (Maximal torus of U(n)).
T = {diag(t1,ta,....,tn)| [t1| = ... = |ta] =1}
is a maximal trus of U(n).

The following is clear.
Proposition 6.7 (Irreducible representation of maximal torus of U(n)). Let us o € Zn.
Xo : T 2 diag(ty,ta, ..., ty) — t5 .10 € St
18 a continuous homomoriphism.
Proposition 6.8 (Weight, Weight vector). We will succeed notations in Proposition6.7. Let

(S1) G is a compact Lie group.
(52) (w,V) is a finite dimensional continuous representation of G.

(88) For each X\ € Z, we denote xx component of ©|T by V.
Then

(i) We say A € Z is a weight of V' with respect to T if V\ # {0}. We call an element of V) a weight vector
for each weight X.

(ii) We say A € Z is the highest weight of V' with respect to T if X is the mazimum weight with <. We define
the highest weight vector in the same way.

(iii) We call the multiplicity of xx in Vi the multiplicity of the weight \.
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Notation 6.3 ((Z")y). We set
(Z") 4 :={X € Z™|\ is monotone decreasing.}

The following is the main theorem in this section. In the last part of this section, we give a proof of this theorem.
Theorem 6.1 (Cartan-Weyl theorem of the highest weight). The followings hold.

(i) Let us assume (w,V) be a continuous irreducible unitary representation of U(n) and X be the highest
weight of w. Then X\ € (Z™)4 and the multiplicity of X\ is 1.

(i) Let us fiz any X\ € (Z"™)4. Then there is the unique continuous irreducible unitary representation (mw, V')
whose highest weight is X\, ignoring isomorphism as continous unitary representation.
6.4.2 General topics on compact Lie group

By Zorn’s Lemma, the following holds.

Proposition 6.9 (Maximal torus of a compact Lie group). For any compact Lie group G, there is a mazximal torus of G.

Proof. We set
T :={T C G|T is an abelian subgroup of G}

For any 2 is any totally ordered subset of T, U € T. So, T has a maximal element 7. Because T is an abelian subgroup
of G, T =T. So T is a maximal torus of G. O

Proposition 6.10 (Weyl group). Let
(S1) G is a compact Lie group.
(52) T is a mazimal torus of G.

(S3) We set
Ng(T):={g€Glgtg €T (Vt€T)}

(S4) We set
Zg(T):={g € Glgt =tg (Vt € T)}

Then

(i) Ng(T) is a compact subgroup of G.
(i) Za(T)="T.
(i) Za(T) is a compact normal subgroup of Ng(T).

We call the quotient compact group Ng(T)/Za(T) the weyl group of G. We define the action of the weyl group on T by
w-t:=wtw ! (we Na(T)/Za(T),t € T)

Proof of (i). Let us fix any g1,92 € Ng(T) and t € T. Because g; ‘tg1 = (g1t~ 'g;y ')~ and t, g1t 'g;* € T, gy 'tg1 € T.

So, g7 € Ne(T). Because (g192) " 't(g192) = g7 (95 'tga)gy * and g5 'tgs € T, (9192) " 't(9192) € T. So, g1g2 € Na(T).
Consequently, N¢(T) is a subgroup of G.

For each t € T, we set 0,(g) = gtg~" (g € G). oy is continuous for any t € T. Because Ng(T) = Niero; (T), Na(T)
is closed subset of G.

0
Proof of (ii). Clearly Zg(T) is abelian compact subgroup of T and T' C Zg(T). So, T = Zg(T). O
Proof of (iii). For any g € Ng(T), gZc(T)g~! = Zg(T). So, Zg(T) is a normal subgroup of Ng(T). O

Definition 6.2 (Flag variety). Let G be a compact Lie group and T be a mazimal torus of G. We call G/T the flag
variety.
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6.4.3 The maximal torus and Weyl group of U(n)
Proposition 6.11 (Maximal torus of U(n)).
Zyw)(T) :={g € U(n)|gt =tg (vt € T)}
is equal to T. In special, T is the mazimal torus of U(n).
Proof. Let us fix any g € U(n). We take t € T such that ¢; # t; (Vi # Vj).Then
gijtj = gijti (Vi,])
So, gi,j = 0i,j9i,: (Vi,7). Then g = diag(g1,1, ..., gnn). Because g € U(n), g € T. So, Zy ) (T) =T. O
By the proof of Proposition6.11, the following holds.

Proposition 6.12. We set
Treg = {t S Tlti 75 tj (Vl 75 Vj)}

Then for every t € Tyeq, Za(t) =T.
Proposition 6.13 (Weyl group of U(n)). Let

(S1) For compact group G and the maximal torus T, we set
Ng(T):={g€Glgtg €T (Vt € T)}

(52) We set
Tro(w)(t) = (tw—1(1)7 ~-~7tw*1(n)) (’LU €6, te (Cn)

Here, 6,, is the symmetric group of degree n. We set W := mo(,,).

(53)
oW xT> (w,t)— wt € GL(nC)

Then the followings hold.

(i) For any w € &, andt €T,
W()(w)tﬂ—(](w)_l = diag(tw_l(l)u "'7tw_1(n))

So, mo(w) € Ng(T).
(i) ®: W xT > (0,t) = ot € Ng(T) is a bijection.
(i5i) W and Ng(T')/T are isomorphic as groups.
Proof of (i). It is clear. O

Proof of (ii). Let us fix any 0 € W and t € T. For any s € T, ots(ot)"t = oso~! € T by (i). So, ®(W x T) C Ng(T).
Let us fix any g € Ng(T). Let us fix t € T,.,. We set s := gtg~ .
Because s and t have the same set of eigenvalues. So, there is w € &,, such that

s = (tw—l(l)a ...,tw—l(n))

By (i), this means that s = mg(w)tmo(w™!). So, t = mo(w™)gtg~mo(w). We set t; := mo(w™!)g. By Proposition6.12,
t1 € Zg(T). t = ®(mp(w),t1). So, @ is surjective.

Let us fix any 01,002 € W and any t1,ts € T such that o1t; = oats. Then 0;101 = tgtfl € WNT = {e}. This implies
01 = 02 and t1:t2. O

Proof of (iii). Weset U :=® Land P: WxT > (w,t) = w e W and ¢ := PoWV. Clearly ¢ is surjective and ¢~ !(e) = T.
So it is enough to show ¢ is homomorphism. For any 01,00 € W and any t1,t2 € T,

O'lt10'2t2 = 0102051t102t2 = @(0’10’2, 051t102t2)
So, ¢ is homomorphism. O

By Shur Lemma, the following clearly holds.

137



Proposition 6.14. Let
(S1) G is an abelian Lie group.
(S2) C :={p € C(G,SY)|p is a continuous homomorphism between groups.}
(S3) mo(g)v :=¢(g9)z (9 € G,z € C,p e C).
Then
(i) For any T e @G, x, € C.
(it) @ : C 3 ¢ 7, € G is bijective whose inverse is V: G 3w xr € C.
Hereafter, we equate ¢ € G and O(p).
Proposition 6.15. Let T' be the mazimal torus of U(n). Then
T ={x:rez"}
Hereafter, we equate A € Z™ and x € G.
Proof. This proof is similar to the proof of Proposition4.37. We set

f(b1,...,0,) = T(exp(ib127), ..., exp(i0,27)) (01,...,0, € R)

Then
f(O+ he;) = f(0)f(he;) (VO € R",Vh € R, Vi)
So,
of . _ Of n .
(’991'(9) = 89i(0)f(0) (V0 € R",Vh € R, Vi)

Because f(0) =1 and Im(f) C S*, there are a,...,a,, € R such that
f(0) = exp(if10127)...exp(ibyan2m) (VO € R™)
Because f(e;) =1 (Vi), ai,...,ap, € Z. Consequently,
T ={x\lxez"}
We denote the inverse of
Z" > A= xreC
by W. O
The following clearly holds.
Proposition 6.16. We succeed in notations of Proposition6.14 and Proposition6.15.
(S1) W C U(n) is the weyl group of U(n).
(S2) (w-o)(t) =pw™-t) (weW,peC,teT).
Then W continuously acts on C' and
w-p=wU(p) (Yw e W,V € O)
Proposition 6.17. Here are the settings and assumptions.

(S1) T is the mazimal torus of U(n).
(S2) (m,V) is a continuous unitary representation of U(n).

(S3) X e U(n).
Then
Vi ={w e Vir(g)w = xx(9)w (Vg € T)}
Proof. We denote the right side of the above equation by W. Let us fix any w € Homa(
Ay, ...y Ay € Home(xa, ™) and v1, ..., vy, € V such that w = Y""" | A;v;. So, for any g € G,

) ImA. Then there are

XX

m(g)w = ZW(!J)AiUz‘ = ZAiX)\(g)'Ui =xx(9) ZAiUi = xa(g)w

i=1

So, ZAeHomG(XA,w) ImA C W. Because W is closed, V), C W.
Let us fix any w € W. We set Py := P,,. By Proposition6.14 ,

P,\wz/GX,\i@ﬂ(g)wdgz/GX/\i@XA(g)wdg:/Gwdg:w

By Theorem4.8, w € V). O
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6.4.4 Weyl Integral Formula
Notation 6.4 (Gyeg, Trey). Here are the settings and assumptions.
(S1) T is the mazimal torus of G := U(n).
Then Greq = {g € G|g has no duplicate eigenvalues.} and Treg := T N Grey.
Proposition 6.18. Here are the settings and assumptions.

(S1) G :=U(n).
(S2) T be the mazimal torus of G.
(53) € > 0.
(S4) ¢ := Lie(G), b := Lie(T).
(S5) q is a complement subspace of b in g.
Then there are {g;}32, C G and {U;}32, such that U; is a open neighborhood of 0y, (Vi) and U; C By(O,€) Nq (Vi) and

{m(g: Exp(U;)w) }ienwew is an open covering of G/H and for any i € N, wo € W #{(j,w) € N x W|n(g; Exp(U;)wo) N
m(g;Exp(Us)w) # ¢} < oo.

Proof. There is V which an open neighborhood of e in G such that V* c Exp(B(O,¢)) and V is compact. There
are {90,1}?21 and {6071,}?7:01 C (0,00) such that w(V* .- W) C Uf\i’lﬂ(go,iEmp(Bk(O,eoyi))) and go;Exp(Br(0,€;) C
Exp(Br(0,€)go.i (¥i).

And for each s € N there are {g, ; 1, and {e,;} 12, C (0, 00) such that 7(V*HsW)\7(V3+sW) C UY: 7(gs i Exp(Br(0, €5.4)))
and gs,iExp(Bk(Oa es,i) C Exp(Bk(Oa E)gs,i (VZ)

We set {g:}52, = {gsl8,9 € N,1 < i < N} and {U;}52, := {Usls,i € N;1 <4 < Ng}. We will show for any i € N
and s € N,

7(ges) & T(VHW)

For aiming contradiction, let us assume s € N and i € N such that 7(gs;) € T(V*F2W). So,
7(9s.i Bxp(Bi(0, €5,0))) C m(EBap(Bi (0, €))gs;i) € m(V=TW)

This contradicts with
(g5, Exp(Bi(0, €54))) Nw(VSTEPW) # ¢

Nextly, we will show for any i € N and s € N,
7(9s,iBxp(By(0, €0,))W) N (VW) = ¢

For aiming contradiction, let us assume s € N and i € N such that (g5 ;Exp(Bk(0,€0,))W) N w(VSTIW) #£ ¢. Then
there is X € By(O,¢€) and u € V2 and wy, wy € W such that m(Exp(X)gsiw1) = 7(uws). So,

7(gs.i) = gsiT = gs.sunTwy ' = Brp(—X)uwowy *wi Twy ' = Bxp(—X)uwaw; *T € 7(V2W)
This is a contradiction. O
Notation 6.5 (A(t) (t € Treq), T (0 € 8,,)). Here are the settings and assumptions.
(S1) G :=U(n).
(52) T is the mazimal torus of G.
Then
(1) A(t) = min{|arg(t;) —arg(t;)| |i # j}. Here, let us assume arg(z) € [0,2).

(ii) For o € ®,,, we set
Ty = {t € Treglarg(tony) < arg(toitry) (Vi)}

Theorem 6.2. Here are the settings and assumptions.

(S1) T is the mazimal torus of G :=U(n).
(S2) A:G/T xT > (gT,t) — gtg~ ' € G.
(58) W is the weyl group of G.
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Then
(i) A is well-defined and surjective C*-class map.
(1) A|G/T X Teq is a surjective map onto Treq.
(i1i) For each g,9' € G and t,t' € T,
A(gT,t) = A(§'T,t") <= JweW stgdT=guw 'T andt' =w-t

Here, w - ty 1= wtow L.

Proof of (i). Because T is commutative, if g1,92 € G and t1,t3 € T and (17, t1) = (927, t2) then

git197 " = 9205 "t1(g295 191) Tt = 9205 Lortigr tgags b = gotags L9197 9205 " = gatags t

So A is well-defined. And clearly A is surjective.
We take {n(g; Exp(U;))}; and {h; Exp(V;)}; as the coverings in Proposition5.4. For each ¢,j and X € U; and Y € Vj,

A(giExp(X), hjExp(Y)) := g;Exp(X)h; Exp(Y)Exp(—X)g; "

So, A is C¥-class. O

Proof of (ii). Because for any g € G and t € T' gtg~"' has no duplicate eigenvalues <= t has no duplicate eigenvalues,
(ii) holds. O

Proof of (iii). The <= part is clear. We will show the = part. Let us fix any g¢1,92 € G and t1,t3 € T}y such that
gltlgl_l = ggtgg;l. We set g3 := gz_lgl. Then
t1 = gatag; "

Because t1,ty € Tp¢q, there is w € W such that
ty = w 'gsta(wlgs) !

So, w™tgs € Zg(t2). By Proposition6.10, t3 := w=lg3 € T. So, g3 = wt3. Then

1

g2 T = glgng = glw_lwtglw_lT = glw_lT,tl = wtgtgtglw_l =wlyw™ =1 w -ty

By Theorem6.2 and Proposition4.12 and Proposition4.13, the following holds.
Proposition 6.19. Here are the settings and assumptions.

(S1) G :=U(n).
(S2) T is the mazimal torus of G.

(588) (m;, V;) (i=1,2) are two continuous finite dimensional representation of G.
(A1) Xm T = X, | T
Then m ~ mo.
Proposition 6.20. Here are the settings and assumptions.
(S1) G:=U(n).
(S2) T is the mazimal torus of G.
(83) t:= Lie(T), g := Lie(G).
(54) g1 = {X S g‘Xz,z =0 (Vl)}

Then
g=g1+t
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Proof. Clearly, gy Nt = ¢ and g D g1 + t Let us fix any X € g. Then
X=Y+ diag(XLl, ceey Xn,n)
Here,
Yij=00-06i;)Xi; (i,j=12,....,n)
Then Y € g1. Because X is skew-Hermitian, X ; € iR (Vj). So, diag(X11,..., Xnn) € t. So,

gCgr+t

Proposition 6.21. Here are the settings and assumptions.

(S1) G :=U(n).
(52) T is the mazimal torus of G.

Then there is {V;}2, such that {w - V;}jenwew is a local finite open covering of Treq and for any i,j sup{larg(t;) —
1 1
arg(t;)||t € V;} < 3 inf{A(t)|t € V;} and for any s € N #{j|A(t) > 3 (Bt elU;)} <oo and V; C T, (Vi).

Proof. We set
1
TS = {t = TT’Eg'A(t) S ;}7TS,O’ = TS ng (S S N,U S Q5n)

Because T . is compact, there are {Ulﬂ-}fill which is a open covering of 7} . and N; is the minimum numver of open
covering of Ty .. Let us fix s € NN [2,00). Because T, \ Ts_; . is compact, there are {U,}X:, which is a open
covering of Ts . \ T¢_; . and N; is the minimum numver of cardinalities of all open coverings of T, . \ Ty, .. Clearly,
Uwew U2 {w- Us,i}f-\f;l is a local finite open covering of T;.., and satisfies the condition in the claim of this Proposition. [

Proposition 6.22. Here are the settings and assumptions.

(S1) G :=U(n).
(S2) T is the mazimal torus of G.
(S3) g := Lie(G), b := Lie(T).
(S4) q is a complement subspace of b in g.
(55) We set
A:G/TxT > (gT,t)—gtg ' €T

Then there are {g;}2, C G and {U;}$2, such that U; is a open neighborhood of 0i (Vi) and U; C By(O,€) Nq (Vi)
and {7 (g:Exp(U;)w™1) x w - V; }ienwew,jen is a local finite open covering of G/H X Tyeq and {Am(g; Exp(U;)w™!) x w -
Vi}ieNwew,jen is a local finite open covering of Greg.

Proof of the first part. We will succeed in notations of Propositions6.22 and Proposition6.18. Let us fix any (¢7,t) €
G/H % Tyey. There is w € W such that (gwT,w™! -t) € G/H x T,. Then there are i,j such that (gwT,w™!-t) €
w(giExp(U;)) x V;. Then t € w-V;. And there is u € Ezp(U;) such that gwT = g;uT. Because gwT = gTw and
giuvw  Tw,

gT = giuw™ T

So, (¢T,t) € n(giExp(U;)w™*) x w - V;. Consequently, {m(g;Exp(U;)w™") x w - V;}ienwew,jen is an open covering of
G/H X Tpeq.
Let us fix any 4o, jo € N and wg = mp(0p) € W. Let us fix any 4,5 € N and w = mg(0) € W such that
(930 Bap(Usy Jwg ™) X wo - Vi N(giBap(Unw™") x w - V; # ¢

Because Vj,,V; C Te, wo = w. So, Vjy N'V; # ¢. Because giouwalT = giouTwal and gow T = gwTw™! for any
u € Exp(Ui,) and v € Exp(U;), 7(gi, Exp(Ui,)) N7(g: Exp(Us)) # ¢. So,

(i7j7w) € B:= {(iaja w)|7r(glU’L) N 7T(gioUio) 7é (baw = wOa‘/j N I/jo 7é ¢}

Because B is finite, {7(g; Exp(U;)w™") x w - V; }ienwew,jen is a local finite open covering of T}.,. O
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Proof of the last part. By the first part, clearly {Am(g; Exp(U;)w™") x w- V;}ienwew,jen is an open covering of T.,. We
set X; := g;Exp(U;) (i € N).
Let us fix any i, jo € N and wy € W. We set
Wo = {w € W|3i,3j s.t Ar(Xiqwg ') x wo - Vjy N An(X;w ™) x w-V; # ¢}

Clearly, Wy is a finite set.

We set
Jo = {j € N|Fi, 3w s.t An(X;wy ') x wo - Vi, N An(X;w™t) x w - V; # ¢}
and
e == inf{A(t)|t € V), }
Then

€ .
A(t) > 55 (v € V;,Vj € Jo)

So, from the definition of {V;};en, Jo is a finite set.
We set
Iy == {i € N|3j, Jw s.t Ar(Xiywg') x wo - Vj, N An(X;w ™) x w-V; # ¢}

From the definition of {X;};en, Io is a finite set. Consequently, {Am(g; Exp(U;)w ™) x w-V; }ien wew,jen is local finite. [
Proposition 6.23. Here are the settings and assumptions.

(S1) T is the mazimal torus of G := U(n).
Then

(i) T\ Treq is a zero set with respect to a Haar measure on T

(1) G\ Greg is a zero set with respect to a Haar measure on G.

Proof of (i). Clearly, T\ Treq C U; ;T ;. Here, T; ; := {t € T|t; = t;}. So, it is enough to show T; ; is a zero set for any
1,7. We can assume 1 =n — 1,57 = n. We set

0: T3t (t1, .y tn1,tn—1) € T,C :={t € T|rank(Jo(t)) < n}
Clearly C =T and T,,_1,, C »(C). By Sard’s Theorem(See [10]), ¢(C) is a zero set. So, T},—_1 5 is a zero set. O

Proof of (ii). By (i), G/T x T \ Tyeq is a zero set. And A: G/T x T — G is a C¥-class surjective and G,y = A(G/T x
T\ Treg). So, by a Lemma for Sard’s Theorem(See [10]), Gyeq is a zero set. O

Proposition 6.24. Here are the settings and assumptions.
(S1) T is the mazimal torus of G := U(n).

Then for any f € C(G)

/G f(g)dg = ks /G i /T flgtg™")|det(dAyr )| dtd(gT)

n!

Here,
det(dAgr,y)) = det(dLg-14-1 0 dA(gr4) 0 j 0 drg X dLy 01)

i:Te(9) = g1 ®t — g1 x t is the natural isomorphism and j : Ter(G/T) x Ty(T) — Tigr)(G/T x T) is the natural
isomorphism.

STEP1. Construction of a partition of unity. By Proposition6.23, it is enough to show

1 _
/ flg)dg = — / / flgtg™")det(dAyr,p))dtd(gT)
Greg - Ja/T JTyey
Let {m(g:U;w™"') x w-V;}i jenwew be the open covering of G/T X Ty.eq and { f; jw}ijenwew be a partition of unity with
respect to {W(giUﬂU*l) X w - Vj}i,jeN,weW~
We set )
9i,jw(A(9T, 1)) == ﬁfi,j,w(gwflT,w -t) ((¢T.1) € m(g: Exp(U;)) x Vj,i,j € Nyw € W)
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We will show g; ;.. is well-defined. Let us fix any g1, g2 € m(g;Exp(U;)) and t1,t2 € V; and w € W and ¢, j € N. such that
A(g1T,t1) = A(g2T, t2). This means that gltlgfl = ggtzg;l. Because t1,ts € T, by Theorem6.2, t; =t and g1T = goT.
So, w-t; = w-ty. And

glwflT = nguFl = ggwal = ggwflT

S0, Gs,j,w is well-defined.
We will show {g; j w}i,jenwew is a partition of unity on G,¢, with respect to {An(g;Usw ™) x w - Vitijenwew. Let
us fix any € Greq. We set
I:={(i,j) € N*|z € An(g;U;) x V;}

Then, by Theorem6.2,
Ix W = {(i,j,w) €€ N|a € An(g.Uiw™") x w- V;}

So,

Z gi,j,UJ(aj): Z gi,jw - Z Z gl,]w

i,jeEN,weW (i,5)€El,weW weW (i,j)el

Let us fix any w = mo(0) € W. And let us fix any i1, 2, j1,j2 and hy, € g5, Exp(U;,) and h;, € g;, Exp(U;,) and t;, € Vj,
and tj, € Vj, such that z = (w(h;,w™1),w - t;,) = (7(hi,w™),w - t;,). Then, because t;,,t;, € Te, t;, = t;,. And

hilwilT = hilwal = hiszil = higwil

So, there is the unique z,, € G/T x T, such that Az,, = = and

IPITECED I DIFICRED IS

weW (i,j)el wEW (z,j)EI ew
0
STEP2. Proof of our integeral formula. We set W, := ¢; Exp(U;) (i € N).
f(g)dg = / £(9)9i.5.0(9)dg = / F(9)i,5,0(9)dg
/,eg ,L;D Ar(Wiw— 1) xw-Vj » 2;) Anr(Wiw =) xw-V; ”
o Z / Flr(hw™t),w - ) fi jw(m(hw™"), w - )| det(dAr(huw-1),w)|dg
iojyw Wiw=1)xw-Vj
1
=l )y, F(gT,t)|det(dA iz (hw1) 1)) | dpcyr (9T pr (1)
: TXT
O

The following clearly holds.

Proposition 6.25. We succeed notations in Proposition6.20. Here are the settings and assumptions.

(51) Xi; = Eij— Eji (i <Jj).
Then By = {X; ;j}i<j s a basis of the complexification of g1 and By UiBy is a basis of g1.
Lemma 6.1. We succeed notations in Proposition6.24. Then

(i) det(dAyr,p)) = det(Ad(t)~ g, —id|g,).

(ii) det(Ad(t)~"[g, —idlg,) = [D(t)|*.

Proof of (i). Let us fix any X € g; and Y € t. Then
dAgr gy ojodry xdLioi(X +Y) =dAgrey ojodry x dLi(X,0) +dAgry o jodrg x dLi(0,Y)

Here,

A(gexp(sX)T,t) = 4 gexp(sX)texp(—sX)g~*

dAgr 0 jodry x dLi(X,0) = =

ds|,—o

s=0

d
gtg Lot texp(sX)texp(—sX)g ' = —  gtg 'gexp(sAd(t™ ) X)exp(—sX)g

ds‘s:(] dsls:()

=dLy,-1Ad(g)(Ad(t™ )X — X)

143



and

. d d _
dAgry 0 jodry x dLi(0,Y) = ) A(gT, texp(sY)) = s gtexp(sY)g~*
s=0 s=0

d
=0 gtg~ gt teap(sY)g™t = dLyy-1 Ad(g)(Y)
S s=0
So,
det(dA ) = det(Ad(g))det(F)
Here,
F:igixt3 (X, V)= (AdtHX - X,Y)egxt
Because clearly T - g; C gy and g1 - T C g1, Ad(t 1) X € g1 (Vt € T,VX € g1). So, ImF € g; x t. This implies that
det(F) = det(Ad(t™')|g1 — idg, ). And, by Proposition2.48, det(Ad(g)) =1 (Vg € G). a

Proof of (ii). It is enough to show that (ii) holds for any ¢ € T;.,. Let us fix any ¢ € T,..,. We succeed notations in

Proposition6.25.
t.
(Ad(t)™ —id) X, ; = (t% - 1)X;; (Vi <Vy)

So, by Proposition6.5,

det(Ad(t)™! —id) = (Hi<j|(% -1)?

(2

t; ot
by |t;| =1 and -2 = = (Vi < V9)
ti 1
= (igjl(t: = t;)))* = [D(B)?
Lemma6.1 and Proposition6.24 implies the following.

Theorem 6.3 (Weyl Integral Formula). For any f € C(U(n)),

1 _
e = [ | et D0 Pdrtae 67

6.4.5 The highest weight of U(n)

Definition 6.3 (Multiplicity of weight). We will succeed notations in Proposition6.7. Let
(S1) G is a compact Lie group.
(S2) (m,V) is a finite dimensional continuous representation of G.
(S3) A e Z™.

We call my := dimV) the multiplicity of \.

Definition 6.4 (Symmetric function). Let T' be the mazimal torus of U(n). We say f € C(T,C) is a symmelric function
if
fx) = f(wz) (Vz e T,Vw e W)

We denote the set of all symmetric functions by C(T);.

Definition 6.5 (Alternating function). Let T be the maximal torus of U(n). We say f € C(T,C) is a altenating function
if
f(z) = sign(w) f(wz) (Vz € T,Yw € W)

We denote the set of all symmetric functions by C(T')sgn-
Definition 6.6 (Laurant polynomial). Let T be the maximal torus of U(n). We say f € C(T,C) is a Laurant function if

fl@) =Y axt® (z€T),#{K € Z"|ax # 0} < o0
Kezm

We denote the set of all Laurant polynomials by R(T). We set
Ry(T) :={f € R(T)|Every coefficient of f are in Z}
and

Rz(T)l = RZ(T) N C(T)l
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Proposition 6.26. Here are the settings and assumptions.
(S1) T is th mazimal torus of U(n).
(52) W :=m(&,,).
(S3) (m,V) is a finite dimensional continuous representation of G.
(S4) A(V,T) :={\ € T|Vx # {0}}.
(S5) N € Z™ is the highest weight of (m,V).
Then
(i) For any w € W and A € Z™, m(w)|Vy is a bijection fo V.
(i) WAV, T) Cc A(V,T).
(iii) For any o € Z™, My = My -
(iv) A(V,T) is finite set.
(v) Vi = myxx as continuous unitary representation of T. The right side is a discrete direct sum.
(Vi) XriT = D oxea(v,r) MAXA
(vii) Xx7 € Rz(T)1.
(viii) \ € (Z"),.

Proof of (i). Firstly we will show 7(w)|Vx C Vipx (Vw € W,VA € T). Let us fix any w € W and any A € Z" and any
veVyandany teT.

m(t)m(w)v = m(w)r(w™t - t)v = T(w)xa(wt v = xa(wTh - DT(W)v = Xewr (t)T(w)V
So, by Proposition6.16, m(w)v € V,.x. Because w(w™1) is the inverse of m(w), m(w)|V, is bijective. O

Proof of (ii). For any w € W and any A € A(V,T), by (i), Viy.x = w(w) - V. Because w(w) - Vi # {0}, Vip.a # {0}. So,
w- X €AV, T). O

Proof of (iii). This is followed by (i). O

Proof of (iv). Because xx, 7% Xx, (VA1 # VA2), by Theorem4.9, V' = @yezn V. Because dimV < oo, A(V,T) is a finite
set. O

Proof of (v). Clearly V) is finite dimensional T-invariant space. Let us fix wy, ..., w,, which is the orthonormal basis of
V. We set
Pz :=z2w, (z€C,ie{1,2,..,m})

By Proposition6.16,
Pixa(t)z = zxa(t)w; = zr(t)w; = 7(t)zw; = 7(t) Pi(z)

and Cw; is T-invariant. So, P; : (xx,C) — (7|Cw;, Cw;) is an isomorphism as continuous unitary representations of T'.
Consequently, (v) holds.

Proof of (vi). (vi) is followed by (v) and Theorem4.9. O
P?”OOf O.f (U”) By (Vi)7 X=|T € RZ(T) By (l)a Xr|T € O(T)l SO, Xr|T € RZ(T) O
Proof of (viii). (viii) is followed by (i). O

Notation 6.6 (S,,A,). Fora € Z",

Sa(t) ::% > e

‘oe®,

1 . o
An(t) == ] Z sign(o)t
oed,,

Proposition 6.27.
(i) {Sa}tacz is a basis of Ry(T)1.
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(1t) {Aataczn is a basis of Rz(T)sgn.
1
Proof of (i). Let us fix any — 3°, aqat® € Rz(T)1. Let us fix any o € Z" such that oy > ... > . Then
n!

(o = @y (Vo € &)

So,

%Zaato‘ = Z a6 Se(t)

a1>...2ay

O

1
Proof of (ii). Let us fix any ] Y o @at® € Rz(T);. If there are i, j such that o; = aj, then a, = 0 by the definition of
the altenating function. Let us fix any o € Z" such that a; > ... > «a,,. Then

ayo = sign(a)a, (Vo € &,,)

So,

%Zaat”‘: > aada(t)

ar1>...2anp

Proposition 6.28.
(i) {Sa}taczn is a basis of Ry(T);.
(i1) {Aataczr is a basis of Rz(T)sgn-
By the orthogonality of trigonometric functions, the following holds.

Proposition 6.29. For a; > ... > a, and By > ... > By,

n! a=g.
(Ao Ag)r2(r) = { 0 a#8.
6.4.6 Weyl Character Formula
Theorem 6.4 (Weyl character formula). Here are the settings and assumptions.
(S1) T is the mazimal torus of U(n).

(S2) (m,V) is a finite dimensional irreducible continuous representation of G.
(S8) X is the highest weight of .

Then
(i)
Socw, sgn(o)tr M)
Ii<icj<n(ti — t;)

Xx(t) =

Here, p:=(n—1,n—2,...,1,0).
(i) dim(Vy) = 1.

Proof. We set
D(t) :==1Li<icj<n(t:i — t;) (t €T)

Then x,(¢)D(t) is an alternating laurant polynomial, there is {aqs }aez» such that #{a|a, # 0} < 0o and
Xr(t)D(t) = > aaAu(t) (VtET)

By Proposition6.29,

1= Z |aal®
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By Proposition6.26(vii), for any « a, € Z. So Jla such that |a,| = 1. By Proposition6.2,
X=D = A, (in C")

or
XrD =—A, (in C")

Let my denote the multiplicity of A. And we can assume oy > ... > «,. The maximal index of D(t) with respect to
lexicographic order is (n — 1,...,1). And the maximal index of x, with respect to lexicographic order is mjA. So,

m)\t()\l—s-n—l,...,)\n-&-l) — +ta (in (Cn)

and
m)\t()\l+n_1"”’>\"+l) — (in (Cn)

This implies that my = 1 and
M4+n—1,. 0\, +1) =«

O
6.4.7 Cartan-Weyl Highest Weight Theory
Theorem 6.5. The followings hold.
(i) For any ¢ € Ry(T)1, ®(¢) := D¢ € Rz(T)sgn-
(ii) ®: Rz(T)1 — Rz(T)sgn is surjective.
Proof of (i). It is clear. O

Proof of (ii). Let us fix any ¢ € Rz(T)sgn. There is N € N such that p(t) = 3t = NN € Py(T)gn. For any
«a € 7™ such that a; = asg, a, = 0.

For any ¢ € T such that t; = to, p(t) = 0. By Proposition6.2, For any z € C™ such that z; = 22, p(z) = 0.

For each o € Z"™ such that a; > g, Go = —as, ,o. Here, S1 o is the permutate of 1 and 2. So, there is ¢ € Pz(T) such
that

p(t) = (t1 — t2)q(t)
For any ¢t € T such that t; = t3,
q(t) =0
So, by the same argument as the above, there is € Pz(T') such that
q(t) = (tn — t3)r(t)

By repeating this argument, we find that there is ¢ € Py(T) such that

¢ =Dy
O
Theorem 6.6. The followings hold.
(i) For any ¢ € C(U(n))2%, ®(¢) := ¢|T € O(T);.
(ii) ® : C(U(n))A* — C(T); is surjective.
Proof of (i). Tt is clear. O

Proof of (ii). We set G := U(n). Let us fix any ¢ € C(T');. For each g € G, let denote the set of all eigenvalues of g by
¥(9) = o(Ai(g), - An(9))

Because ¢ is symmetric, v is well-defined. We will show ) is continuous. Let us fix any gg € G. Let denote A1, ..., A\, the
distinct set of eigenvalues of gg. Denote the degree of \; as zero point of characteristic polynomial of g by k;.

By Rouche’s Theorem(see [6]), for any € > 0, there is § > 0 such that g has just k; eigenvalues(allow multiplicity) of g
in B(A;,€) for any g € B(go,d). So, ¥ is continuous. Clearly, ®(¢) = ¢. So, ¥ is surjective. O

Theorem 6.7 (Cartan-Weyl Highest Weight Theory). The followings hold.
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(i) Let us assume (m, V) be a continuous irreducible unitary representation of U(n) and A be the highest
weight of w. Then X\ € (Z™)4 and the multiplicity of \ is 1.

(i) Let us fiz any X\ € (Z")4. Then there is the unique continuous irreducible unitary representation (mw, V')
whose highest weight is X\, ignoring isomorphism as continous unitary representation.

Proof of (i). (i) is from Weyl Character Formula(Theorem6.4) and Proposition6.26. O

Proof of (ii). The uniqueness is from Proposition6.19. We will show the existence. For aiming contradiction, let us
assume that there exists A € Z" such that A is different from the highest weight of any irreducible continuous unitary
representation of U(n). We set

p:i=(n-1,..,1)
Because Axy, € Rz(T)sgn, by Theorem6.5 and Theorem6.6, there is ¢ € C(U(n))A¢ such that D(t)) = Ay;,. For any
mE U(n), by Weyl Integral Formula

/ x-(9)B(g)dg = / X ()| D () 2dt = / Animriy () Angp (D)t = 0
U(n) T T

Here, a(m) is the highest weight of 7. By Theorem4.7, ¢ is zero function. This is contradiction. O

6.4.8 Review

In this subsection, we show the result of classification of irreducible continuous unitary representations of U(n). By Peter
Weyl Theorem, it is enough to classify finite dimensional irreducible continuous unitary representation of U(n).

We focus the set of all the set of all eigenvalues of g € U(n), T := T". We can simplify discussions about U(n) to
discussions about 7" in some cases. In specialty, Weyl Integral Formula is really usefull.

Theorem 6.8 (Weyl Integral Formula). For any f € C(U(n)),

1 _
s = [ ] et D Pdurtase o)

By this theorem, we can simply integral of class function on U(n) to simply integral of symmetric function on T'. Let
recall the proof of Weyl Integral Formula.

A:G)T xT > (gT,t) — gtg™' € G

is n!-th covering map of G and &,, acts on A~!(g) for each g € G. That implies
1 _
/ f(@)dpuny(9) = / / f(gtg™H)det(dAr vy)|durtdpcr(gT)
U(n) n-Jag/rJT

In the proof of this equation, we need take a good partition of unity of U(n). By focusing the decomposition
u(n) =u(n); &t
and action on u(n); and t, we get
det(dAyr4) = det(Ad(t™")|u(n); — idu(n))

Here,
u(n); ={X e u(n)|X;, =0 (i)}

By complexifying u(n); and showing F; ; are eigenvector of the complexification of Ad(t71)|u(n); — idju(n); with
t.
respect to (t—J —1) (Vi #£Vj), we get
det(Ad(t™ ") u(n), —idlu(n),) = |D(t)|?

Consequently, we get Weyl Integral Formula. By Weyl Integral Formula and Shur Orthogonality Relation, we can sim-
plify the classification of continuous finite dimensional irreducible unitary representations of U(n) to the classification of
{xx|T|7 is a continuous finite dimensional irreducible unitary representations of U(n)}.
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We focus the fact Dy, |T is an alternating Laurant polynomial on T with Z-coefficients. We can show {As}ar>. >a,,
is an orthonomal system of L?(T) and a basis of Rz(T)sg,. Here,

1
Aa=—~ E sign(o)t”®, Rz(T)sgn = {p|p is an alternating Laurant polynomial on T with Z-coefficients.}
n!
oe®,

It is important that the decompositions of Dy, with {A4}a,>.. >a, correspoinds to the decompositions of 7|T" as continuous
unitary representation of 1. The last decomposition is called a branching rule. Thanks to these insight, we can classify

U(n) by the highest weight of each 7 € U(n). In specialty, we get the following Weyl character formula.
Theorem 6.9 (Weyl character formula). Here are the settings and assumptions.

(S1) T is the mazimal torus of U(n).
(S2) (m,V) is a finite dimensional irreducible continuous representation of G.
(58) X is the highest weight of .

Then
(i)
Socw, sgn(o)tr o)
Mi<ici<n(ti —t;)

X (t) =

Here, p:=(n—1,n—2,...,1,0).
(i) dim(Vy) =1.

Inversely, for each A € (Z)? = {a € (Z)|ay > ... > a}, there is ¢ € C(U(n))*? such that (|T)D = Ax;,. Here
p:=(n—1,...,0). That facts from the correspondance

Un) 5 g s 22o1l9): 0 Mnl9)) o

D()\l(g)a e )\n(g))

By completeness of character about U(n), we can show there is m € U(n) such that the highest weight of 7 is A.
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