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This note is the result of studying facts based on [1], [2].

1 Preliminary

1.1 Linear algebra

1.1.1 Some facts without proof

For the proof, see [5].

Theorem 1.1 (Hahn Banach Theorem1). Let

(S1) (V, {pn}n∈N) is a semi-normed space.

(S2) x, y ∈ V such that x 6= y.

Then there is real-valued continuous linear function f such that f(x) 6= f(y).

1.1.2 Tensor Space

Clearly the following holds.

Proposition 1.1 (Tensor Space). Here are the settings and assumptions.

(S1) K denotes one of Q,R,C.
(S2) V,W are K-vector spaces.

(S3) By V ∨,W∨ denote by the set of all K-linear functionals of V,W , respectively.

(S4) For v ∈ V,w ∈W , we set
v ⊗ w(f, g) := f(v)g(w) (f ∈ V ∨, g ∈W∨)

Then, for any v ∈ V,w ∈W , v ⊗ w ∈ B(V,W ). We set

V ∨ ⊗W∨ := 〈{v ⊗ w|v ∈ V,w ∈W}〉

Proposition 1.2. Here are the settings and assumptions.

(S1) K denotes one of Q,R,C.
(S2) V,W are K-vector spaces.

(S3) w1, ..., wm ∈W are linear independent.

(S4) v1, ..., vm ∈ V \ {0}.

Then, {vi ⊗ wi}mi=1 are linear independent.

By Hahn-Banach Theorem,

Proof. there are f1, ..., fm ∈W∨ such that fi(wj) = δi,j (∀i, j) and there are g1, ..., gm ∈W∨ such that gi(vi) 6= 0 (∀i)
Let us fix any a1, ...am ∈ K such that

∑m
i=1 aivi⊗wi = 0. Since 0 =

∑m
i=1 aivi⊗wi(gj , fj) = aj (∀j), {vi⊗wi}mi=1 are

linear independent.

1.1.3 Kronecker Product

Definition 1.1 (Kronecker Product). Let K denotes one of Q,R,C and A ∈M(m,n,K) and B ∈M(p, q,K). Then

A⊗B = {ci+k,j+l := ai,jbk,l}i,j,k,l∈N =



a1,1b1,1 ... a1,1b1,q a1,2b1,1 ... a1,2b1,q ... a1,nb1,1 ... a1,nb1,q
a1,1b2,1 ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...

a1,1bp,1 ... a1,1bp,q a1,2bp,1 ... a1,2bp,q ... a1,nb1,q ... a1,nbp,q
a2,1b1,1 ... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ... ...

a2,1bp,1 ... ... ... ... ... ... ... ... ...
am,1b1,1 ... am,1b1,q am,2b1,1 ... am,2b1,1 ... am,nb1,1 ... am,nbp,q

... ... ... ... ... ... ... ... ... ...
am,1bp,1 ... am,1bp,q am,2bp,1 ... am,2bp,q ... am,nbp,1 ... am,nbp,q


We call A⊗B the Kronecker Product of A and B.
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Proposition 1.3. Here are the settings and assumptions.

(S1) K = Q,R,C.
(S2) A ∈M(m1,m2,K), B ∈M(m3,m4,K), C ∈M(n1, n2,K), D ∈M(n3, n4,K).

(A1) m2 = n1,m4 = n3.

Then
(A⊗B) · (C ⊗D) = (A · C) ⊗ (B ·D)

Proof. For any i1, i2, j1, j2,

(A⊗B) · (C ⊗D)(i1,i2),(j1,j2) =
∑
k1,k2

(A⊗B)(i1,i2),(k1,k2)(C ⊗D)(k1,k2),(j1,j2) =
∑
k1,k2

ai1,k1bi2,k2ck1,j1bk2,j2

=
∑
k1

ai1,k1ck1,j1
∑
k2

bi2,k2bk2,j2 = (A · C)i1,j1(B ·D)i2,j2 = ((A · C)⊗(B ·D))(i1,i2),(j1,j2)

Proposition 1.4. Here are the settings and assumptions.

(S1) A ∈M(m,C), B ∈M(n,C).

(S2) λ1, ..., λm are the eigenvalues of A.

(S3) µ1, ..., µn are the eigenvalues of B.

(A1) λiµj (i = 1, 2, ...,m, j = 1, 2, ..., n) are distinct.

Then
λiµj (i = 1, 2, ...,m, j = 1, 2, ..., n)

are the all eigenvalues of A⊗B.

Proof. Let xi denote an eigenvector of A with respect to λi (i = 1, 2, ...,m) and yj denote an eigenvector of B with
respect to µj (j = 1, 2, ..., n). By Proposition1.3, the vector xi ⊗ yj is an eigenvector of A ⊗ B with respect to λiµj
i = 1, 2, ...,m, j = 1, 2, ..., n.

Proposition 1.5. Here are the settings and assumptions.

(S1) A ∈M(m,C), B ∈M(n,C).

Then
det(A×B) = det(A)det(B)

Proof. By applying triangulization of matrices, we can show that there are {Ai}∞i=1 ⊂M(m,C), {Bi}∞i=1 ⊂M(m,C) such
that Ai, Bi satisfies the settings and the assumptions in Proposition1.4 for any i and

lim
i→∞

Ai = A, lim
i→∞

Bi = B

So,
lim
i→∞

det(Ai ⊗Bi) = det(A⊗B), lim
i→∞

det(Ai) = det(A), lim
i→∞

det(Bi) = det(B)

By Proposition1.4,
det(Ai ⊗Bi) = det(Ai)det(Bi) (∀i)

Consequently,
det(A⊗B) = det(A)det(B)
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1.2 Topological space

Proposition 1.6. Let X and Y are topological space and i : X → Y is homeomorphism. And let U ⊂ X ando V := i(u).
Then i|U : U → V is homeomorphisim.

Proof. For any closed set in X A and any closed set in Y B, i−1(B ∩ V ) = i−1(B) ∩ V and i(A ∩ U) = i(A) ∩ V .
Soi−1(B ∩ V ) is closed set of X and i(A ∩ U) is closed set of Y .

Proposition 1.7. Let X is a topological space and U ⊂ U ′ ⊂ X. Let us assume the topology of U ′ is the relative topology
respect to X. The relative topology of U respect to U ′ is equal to the relative topology of U respect to X.

Proof. Because for any open set A in X A ∩ U = A ∩ U ′ ∩ U , the Proposition holds.

Proposition 1.8. Let X be a Housdorff space and C ⊂ X be a compact subset. Then C is a closed subset of X.

Proof. Let us fix any x ∈ X \ C. For each y ∈ C, there are Uy and Vy such that Uy is an open neighborhood of x and
Vy is an open neighborhood of y and Uy ∩ Vy = ϕ. Because C is compact, there are Vy1 , ..., Vym such that C ⊂ ∪mi=1Vyi .
Because ∩mi=1Uyi is an open neighborhood of x and ∩mi=1Uyi ∩∪mi=1Vyi = ϕ, x /∈ C̄. Consequently, C is a closed subset.

Definition 1.2 (Locally path-connected space). Here are the settings and assumptions.

(S1) X is a topological space.

We say X is locally path-connected if for any U ∈ O(X) and x ∈ U , there is V such that V is a path-connected open
neighborhood of x and V ⊂ U .

The following clearly holds.

Proposition 1.9. Any topological manifold is locally path-connected.

Definition 1.3 (Covering Space). Here are the settings and assumptions.

(S1) E,B are path-connected and locally connected topological space.

(S2) p : E → B is a surjective continuous map.

We say (E,B, p) is a covering space if for any b ∈ B there is U such that U is an open neighborhood of b and any connected
component of π−1(U) V satisfies π|V : V → π(V ) is a homeomorphism. We call E the total space, B the base space, p
the projection.

Definition 1.4 (Finite covering Space). Here are the settings and assumptions.

(S1) (E,B, p) is a covering space.

We say (E,B, p) is a finite covering space if there is m ∈ N such that for any b ∈ B #p−1(b) = m. We call m the covering
degree of (E,B, p).

1.3 Hilbert Space

Proposition 1.10. Here are the settings and assumptions.

(S1) V is an inner product space.

(A1) {v ∈ V |||v|| = 1} is compact.

Then dimV <∞.

Proof. Let us assume dimV = ∞. Then there is a orthonormality {vi}∞i=1 ⊂ V . Because there is no subsequence of
{vi}∞i=1 which converges in V , {v ∈ V |||v|| = 1} is not compact. This is contradiction.

Proposition 1.11 (Bessel Inequality). Let

(S1) V is a inner product space.

(S2) {vi}Ni=1 is a orthonormal system of V .

Then for any u ∈ V ,
N∑
i=1

|(u, vi)|2 ≤ ||u||2

5



Proof. By (S2),

0 ≤ ||u−
N∑
i=1

(u, vi)vi||2 = ||u||2 −
N∑
i=1

|(u, vi)|2

This impliese the above inequality.

Proposition 1.12. Let

(S1) V is a separable Hilbert space.

(S2) {vi}∞i=1 is a complete orthonormal system of V .

Then

(i) If u ∈ V and (u, vi) = 0 (∀i), then u = 0.

(ii) For any u ∈ V ,
∑∞
i=1(u, vi)vi converges and

u =

∞∑
i=1

(u, vi)vi

(iii) Any complete orthonormal system of V is countable.

Proof of (i). We set W :=
∑∞
i=1 Cvi. There is a sequcen {wi}∞i=1 ⊂W such that lim

i→∞
wi = u. So,

||u||2 = lim
i→∞

(u,wi) = 0

This implies u = 0.

Proof of (ii). By bessel inequality, {
∑N
i=1(u, vi)vi}N∈N is a cauchy sequence in V . Because V is complete,

∑∞
i=1(u, vi)vi

converges. Because (u−
∑∞
i=1(u, vi)vi, vj) = 0 (∀j), by (i), (ii) holds.

Proof of (iii). Let us fix {wα}α∈Λ which is any complete orthonormal system of V . For each m,n ∈ N, there is a finite
subset Λm,n ⊂ Λ such that

d(vm,
∑

α∈Λm,n

Cwα) <
1

n

We set Λ∗ := ∪m,nΛm,n. Clearly Λ∗ is at most countable and {wα}α∈Λ∗ is a complete orthonormal system of V . So,
Λ∗ = Λ.

Proposition 1.13 (Projection Theorem). Let

(S1) V is a Hilbert space.

(S2) W is a closed subspace of V .

then
V = W ⊕W⊥

So, for each v ∈ V , there is a unique w ∈W such that v − w ∈W⊥. We call w is the orthogonal projection of v. We set
pW : V →W by

pM : V 3 v 7→ w ∈Ws.t.v − w ∈W⊥

We call pW is the orthogonal projection of W .

Proof in general case. Let us fix any v ∈W . We set

d := d(v,W )

Then there is {wi}∞i=1 ⊂W such that
lim
n→∞

||v − wi|| = d

We will show {wi}∞i=1 is a cauchy sequence. For any m,n ∈ N,

||wm − wn||2 = ||vm − w||2 − 2Re(wm − w,wn − w) + ||wn − w||2

6



And
2Re(wm − w,wn − w) = ||(wm − w) + (wn − w)||2 − ||wm − w||2 − ||wn − w||2

So,

||wm − wn||2 + 4||wm + wn
2

− w||2 = 2||wm − w||2 + 2||wn − w||2

Because

||wm − wn||2 + 4||wm + wn
2

− w||2 ≥ ||wm − wn||2 + 4d2

||wm − wn||2 ≤ 2||wm − w||2 + 2||wn − w||2 − 4d2

So, {wi}∞i=1 is a cauchy sequence. Because V is Hilbert space,

w := lim
n→∞

wn

exists. Because W is closed, w ∈W .

||v − w||2 = ||v − wn + wn − w||2 = ||v − wn||2 + 2Re(v − wn, wn − w) + ||wn − w||2

So,
||v − w||2 = d2

We set
u := v − w

Let us assume u /∈W⊥. Then there is w0 ∈W such that (u,w0) > 0. So, for any δ > 0

d2 ≤ ||u− δw0||2 = d2 − 2δRe(u,w0) + δ2||w0||2

This implies
2Re(u,w0) ≤ δ||w0||2

So, if we take δ <
2Re(u,w0)

||w0||2
, a contradiction arises. So u ∈W⊥.

Proof in case W is separable. Because W is separable, by Gram-Schmit orthogonalization method, there a {wi}∞i=1 which
is a complete orthonormal system of W . Let us fix any u ∈ V . By the same argument as the proof of Proposition1.12,
w :=

∑∞
i=1(u,wi)wi converges. Because W is closed, w ∈W . Clearly u− w ⊥W .

By the argument in the proof of Propoisition1.13, the following holds.

Proposition 1.14. Let

(S1) V is a pre Hilbert space.

(S2) W is a subspace of V .

(S3) v ∈ V .

(S4) {vn}n∈N ⊂ V such that
lim
n→∞

||v − vn|| = inf
u∈W

||v − u||

then {vn}n∈N is a cauchy space.

Proposition 1.15. Let

(S1) V is a Hilbert space.

(S2) W is a closed subspace of V .

(A1) p : V →W is a surjective self adjoint linear operator such that p2 = p.

then p is the orthogonal projection of W .

Proof. Let us set pW the orthogonal projection of W . Let us fix any v ∈ V and w := pW (v). Then, firstly, p(v) − w ∈W
and there is v′ ∈ V such that p(v′) = w.

p(v) − w = p(v) − p(v′) = p(v) − p2(v′) = p(v) − p(w) = p(v − w)

Because v − w ∈W⊥, for any w′ ∈W ,

(p(v) − w,w′) = (p(v − w), w′) = (v − w, p∗w′) = (v − w, p(w′)) = 0

So, p(v) − w ∈W⊥. These imply p(v) = w.
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By Proposition1.15, the following holds.

Proposition 1.16. Let

(S1) V is a Hilbert space.

(S2) W1, ...,Wm are closed subspace of V and Wi ⊥Wj (∀i 6= ∀j).
(A1) pi : V →Wi is the orthogonal projection to Wi (i = 1, 2, ...,m).

then

p :=

m∑
i=1

pi

is the orthogonal projection of ⊕mi=1Wi.

Proposition 1.17. Let

(S1) V is a Hilbert space.

(S2) {Wi}i∈I is a family of closed subspaces of V .

(A1) Wi ⊥Wj (∀i 6= ∀j).
(A2) V = ⊕i∈IWi.

(S3) We denote the orthogonal projection of Wi by pi (i ∈ I).

then for any v ∈ V

inf{||v −
∑
j∈J

Pjv|| |J ⊂ I : finite} = 0

Proof. Let us fix any v ∈ V and ϵ > 0. By (A2), there are J ⊂ I:finite and {vi}i∈J such that vi ∈ Wi (∀i ∈ J) and
||v −

∑
i∈J vi|| < ϵ. We set p :=

∑
i∈J Pi. By Proposition1.16, p is the orthogonal projection of ⊕i∈JWi. By the proof of

Projection theorem, ||v − p(v)|| ≤ ||v −
∑
i∈J vi||. So, ||v −

∑
j∈J Pjv|| < ϵ.

Proposition 1.18 (Riez representation theorem). Let

(S1) V is a Hilbert space.

(S2) f ∈ V ∗.

Then there is u ∈ V such that
f(·) = (·, u)

Proof. We set W := Ker(f). We can assume f 6= 0. Let us take w0 ∈ W⊥ \ {0}. We can assume f(w0) = 1. Let us fix
v ∈ V and u := v − f(v)w0. Clearly u ∈W , so u ⊥ w0. This implies

(v, w0) = f(v)||w0||2

Proposition 1.19. Let

(S1) V is a Hilbert space.

(S2) {vi}∞i=1 ⊂ {v ∈ V |||v|| = 1}.

Then there is subsequence {vφ(i)}∞i=1 and v ∈ V such that for any f ∈ V ∗

lim
i→∞

f(vφ(i)) = f(v)

We denote this by
w − lim

i→∞
vφ(i) = v
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Proof. Because (vi, vj) ∈ T1(∀i, j) and T1 is compact, then there are subsequences {vφn(k)}∞k=1 (n = 1, 2, ...) such that for
each n ∈ N {vφn(k)}∞k=1 is a subsequence of {vφn+1(k)}∞k=1 and limk→∞(vφn(k), vn) exists. We set

ψ(n) := φn(n) (n ∈ N)

Then for any n ∈ N, f(vn) := (limk→∞(vn, vψ(k)) exists. We set V0 be the minimum sublinear space which contains
{vi}∞i=1 and V1 := V̄0. Let us fix any w ∈ V̄1. Then there is {wi}∞i=1 ⊂ V0 such that limi→∞ wi = w. Let us fix any
ϵ > 0. Then there is n0 ∈ N for any m,n ≥ n0 ||wm − wn|| ≤ ϵ. |f(wm) − f(wn)| = |f(wm − wn)| ≤ ||wm − wn|| ≤ ϵ. So,
f(w) := limn→∞ f(wn) exists. Clearly ||f || ≤ 1. So f ∈ V ∗

1 . By Riez representation theorem, there is v ∈ V1 such that

f = (·, v). Let us fix any u ∈ V̄1 and ϵ > 0. Then there is u′ ∈ V0 such that ||u− u′|| < ϵ

2
. There is n0 ∈ N such that for

any k ≥ n0 |(u′, vψ(k)) − (u′, v)| ≤ ϵ

2
. So |(u, vψ(k)) − (u, v)| ≤ ϵ. This means

lim
k→∞

(u, vψ(k)) = (u, v) (1.3.1)

Let us fix any g ∈ V ∗. Then g|V1V ∗
1 . By Riez representation theorem, there is ug ∈ V1 such that g|V1 = (·, ug). So,

lim
k→∞

g(vψ(k)) = g(v) (1.3.2)

The following clearly holds.

Proposition 1.20. Any finite linear subspace of a Hilbert space is closed.

1.4 Topological group and representation

Definition 1.5 (Topological group). We call G is a topological group if G is a housdorff space and G is a group and
G×G 3 (x, y) 7→ xy ∈ G is continuous and G 3 x 7→ x−1 ∈ G is continuous.

Proposition 1.21. Let G is a topological group. Then the followings hold.

(i) i : G 3 x 7→ x−1 ∈ G is isomorphism.

(ii) For any g ∈ G, Lg : G 3 x 7→ gx ∈ G is isomorphism.

(iii) For any g ∈ G, Rg : G 3 x 7→ xg ∈ G is isomorphism.

Proof of (i). For any open set U in G, i(U) = i−1(U). Because i is continuous, i is open map. So i is isomorhism.

Proof of (ii). For any open set U in G, Lg(U) = L(g−1)−1(U). Because Lg−1 is continuous, Lg is open map. So Lg is
isomorhism.

Proof of (iii). It is possible to show (iii) by the approach which is similar to (ii).

Proposition 1.22 (Semidirectproduct of groups). Let

(i) G,H are groups.

(ii) σ : G→ Aut(H) is a homomorphism of group.

(iii) We set
(g1, h1) · (g2, h2) := (g1g2, h1σ(g1)(h2)) (g1, g2 ∈ G,h1, h2 ∈ H)

Then G×H is a group with ·. We denote this group by Gnσ H.

Proof. Clearly (1G, 1H) is the unit element of Gnσ H. Let us fix any g1, g2, g3 ∈ G and h1, h2, h3 ∈ H.

(g1, h1) · ((g2, h2) · (g3, h3)) = (g1, h1) · (g2g3, h2σ(g2)(h3)) = (g1g2g3, h1σ(g1)(h2σ(g2)(h3)))

= (g1g2g3, h1σ(g1)(h2)σ(g1)(σ(g2)(h3)))) = (g1g2g3, h1σ(g1)(h2)σ(g1g2)(h3))) = (g1g2, h1σ(g1)(h2))(g3, h3)

= ((g1, h1) · (g2, h2)) · (g3, h3)

So, the associativity of · holds. For every (g, h) ∈ G nσ H, (g−1, σ(g)(h)−1h−1) is the inverse element of (g, h). Conse-
quently, Gnσ H is a group.

Definition 1.6 (Representation of group). Let G be a group and V be a vector space on a field K. We call π : G →
EndK(V ) a representation of G if π(1G) = idV and π(g1g2) = π(g1)π(g2) (∀g1, g2 ∈ G).
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Definition 1.7 (Continuous Representation of Group). Let G be a topological group and V be a Hilbert space on a field
K. We call π : G→ EndK(V ) a continuous representation of G if (π, V ) is a representation of G and G× V 3 (g, v) 7→
π(g)v ∈ V is continuous.

Definition 1.8 (Unitary Representation of Group). Let G be a group and V be a Hilbert space on a field K. We call
π : G→ EndK(V ) a unitary representation of G if (π, V ) is a representation of G and π(g) is a unitary operator for any
g ∈ G.

Definition 1.9 (Subrepresentation). Let (π, V ) be a continuous unitary representation of a topological group G and W
be an invariant closed subspace of G. We call (π|W,W ) is a subrepresentation of π. We denote π|W by π1. We denote
this by π1 < π. And let (π2, V2) be a continuous unitary representation of a topological group G. We denote π2 ≺ π if π2
is isomorphic to a subrepresentation of G as continuous unitary representations.

Proposition 1.23. Let

(S1) G is a topological group.

(S2) (π, V ) is a finite dimensional continuous representations of G.

Then
G 3 g 7→ π(g) ∈ GL(V )

is continuous.

Proof. Let us take {vi}ri=1 such that {vi}ri=1 is a orthonormal basis of V . For any g1, g2 ∈ G and i, j

||(π(g1)vi, vj) − (π(g2)vi, vj)|| ≤ ||π(g1)vi − π(g2)vi||

So, (π(·)vi, vj) is continuous.

Proposition 1.24. Let

(S1) V is a vector space on K := R or C.
(S2) A ∈ EndK(V ).

(S3) A∗(f)(u) := f(Au) (f ∈ V ∗, u ∈ V ).

Then A∗ ∈ EndK(V ∗).

Proof. For any a, b ∈ K and f, g ∈ V ∗ and u ∈ V ,

A∗(af + bg)(u) = (af + bg)(Au) = af(Au) + bg(Au) = a(A∗f)(u) + b(A∗g)(u) = (a(A∗f) + b(A∗g))(u)

Proposition 1.25 (Contragredient representation). Let

(S1) G is a topological group.

(S2) (π, V ) is a representations of G.

Then

(i) The following π∗ is a homomorphism as groups.

π∗ : G 3 g 7→ π(g−1)∗ ∈ GLC(V )

We call π∗ a the contragredient representation of π.

(ii) If (π, V ) is a finite dimensional continuous representations of G, then π∗ is continuous.

Proof of (i). For any g, h ∈ G and f ∈ V ∗ and u ∈ V ,

π∗(gh)f(u) = f(π(gh)−1u) = f(π(h)−1π(g)−1u) = (π∗(h)f)(π(g)−1u) = π∗(g)(π∗(h)f)(u)
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Proof of (ii). Let us fix {v1, .., vm} an orhonormal basis of V . We set fi := (·, vi) (i = 1, 2, ...,m).

π(g)f(u) = f(

m∑
i=1

π(g−1(u, vi)vi) =

m∑
i=1

(u, vi)f(π(g−1)vi) =

m∑
i=1

f(π(g−1)vi)fi(u)

So, π∗ is continuous.

Definition 1.10 (Intertwining operator, G-linear map.). Let

(S1) G is a topological group.

(S2) (π1, V1) and (π2, V2) are representations of G.

We say T : V1 → V2 is an intertwining operator or a G-linear map if T is a linear and

T ◦ π1 = π2 ◦ T

If π1 and π2 are continuous representations of G, we denote the set of all continous G-linear mapping from π1 to π2 by

HomG(V1, V2) or HomG(π1, π2)

Definition 1.11 (Equivalent between two continuous representations of G). Let

(S1) G is a topological group.

(S2) (π1, V1) and (π2, V2) are continuous representations of G.

We say π1 and π2 are equivalent if there is T : V1 → V2 such that T is a bijective continuous G-linear and T−1 is a
continuous G-linear.

Definition 1.12 (Equivalent between two unitary representations of G). Let

(S1) G is a topological group.

(S2) (π1, V1) and (π2, V2) are unitary representations of G.

We say π1 and π2 are equivalent if there is T : V1 → V2 such that T is a bijective unitary G-linear.

Definition 1.13 (G-linear map.). Let

(S1) G is a topological group.

(S2) (π1, V1) and (π2, V2) are representations of G.

We say T : V1 → V2 is an intertwining operator or a G-linear map if T is a linear and

T ◦ π1 = π2 ◦ T

The following is clear.

Proposition 1.26. Let

(S1) G is a topological group.

(S2) (π, V ) is a continuous unitary representations of G.

(S2) W is a G-invariant subspace of V .

then W⊥ is also a G-invariant subspace of V .

Definition 1.14 (Completely reducible). Let

(S1) G is a topological group.

(S2) (π, V ) is a continuous representations of G.

We say (π, V ) is completely reducible if for any invariant subspace W1 there is an invariant subspace W2 such that
V = W1 +W2.

Proposition 1.27. Let

(S1) G is a topological group.
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(S2) (π, V ) is a continuous unitary representations of G.

Then (π, V ) is completely reducible.

Proof. Because of (S2), for any invarian subspace of W , W⊥ is an invariant subspace. So, (π, V ) is completely reducible.

By Proposition1.26, the following holds.

Proposition 1.28. Let

(S1) G is a topological group.

(S2) (π, V ) is a finite dimensional continuous unitary representations of G.

then (π, V ) has an irreducible decomposition.

Proposition 1.29 (Shur Lemma). Let

(S1) G is a compact Lie group.

(S2) (πi, Vi) is a continous irreducible representation of G on C (i = 1, 2).

(A1) Either V1 or V2 is finite dimensional.

(S2)

Then

HomG(V1, V2) =

{
{0} (π1 6' π2)
CT (π1 ' π2)

Here T is an G-isomorphism from V1 to V2.

STEP1. Proof of HomG(V1, V2) = {0} (π1 6' π2). Let us assume HomG(V1, V2) 6= {0}. There is f ∈ HomG(V1, V2) \ {0}.
Because Ker(f) is closed G-invariant, Ker(f) = {0}. Because of (A1), Im(f) is finite dimensional. By Proposition1.20,
Im(f) is closed G-invariant subspace of V2. Becuase π2 is irreducible, Im(f) = V2. So, V2 is finite dimensional and f is
bijective. Then V1 is finite dimensional. By Proposition1.20, f−1 ∈ HomG(V2, V2). So, f is an G-isomorphism from V1 to
V2.

STEP2. Proof of HomG(V1, V2) = CT (π1 ' π2). Let us fix any f ∈ HomG(V1, V2) 6= {0}. By STEP1, f is an G-
isomorphism from V1 to V2.

By (A1), V1 and V2 are finite dimensional. So, becuase T ◦ f has a eingenvalue λ, Ker(T−1 ◦ f − λid) 6= {0}. Because
π1 is irreducible, Ker(T−1 ◦ f − λid) = V1. So, f = λT .

Proposition 1.30. Let

(S1) G is a commutative topological group.

(S2) (π, V ) is a continous finite dimensional irreducible representation of G on C.

then dimπ = 1.

Proof. Let us fix v, w ∈ V \ {0}. Because π is irreducible, π(G)v = V . So, there is g ∈ G such that π(g)v = w. Because
G is commutative, A : V 3 u 7→ π(g)u ∈ V is continuous G-linear and ImA 6= {0}. So, by Shur Lemma, there is λ ∈ C
such that A = λidV . So, w = λv.

1.5 Homotopy and Fundamental group

Definition 1.15 (Path). Let

(S1) X be a topological space.

We call each element of C([0, 1], X) a path. For each c ∈ C([0, 1], X), we call c(0) the start point of c and c(1) the end
point of c. If c(0) = c(1) then we call c a loop.

Definition 1.16 (Homotop of continuous maps). Let

(S1) X,Y be a topological space.

(S2) f, g ∈ C(X,Y ).

We say f and g are homotop or homotopy equivalent if there is Φ ∈ C([0, 1]×X,Y ) such that Φ(0, ·) = f and
Φ(1, ·) = g.
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Definition 1.17 (Homotopy equivalent of continuous maps). Let

(S1) X,Y be a topological space.

(S2) f, g ∈ C(X,Y ).

We say f and g are homotop or homotopy equivalent if there is Φ ∈ C([0, 1]×X,Y ) such that Φ(0, ·) = f and Φ(1, ·) = g.
We call Φ a homotopy.

Clearly, the following holds.

Proposition 1.31. We succeed notations in Definition1.17. Homotop on C(X,Y ) is an equivalent relation on C(X,Y ).

Definition 1.18 (Homotopy equivalent of topological spaces). Let

(S1) X,Y be a topological space.

We say X and Y are homotopy equivalent if there is Φ ∈ C([0, 1] ×X,Y ) such that Φ(0, ·) = f and Φ(1, ·) = g. We call
Φ a homotopy.

Then, clearly, the followings hold.

Proposition 1.32 (Fundamental group). Let

(S1) X be a topological space.

(S2) x0 ∈ X.

(S3) Define

(i) Set
[([0, 1], ∂I), (X,x0)] := {c ∈ C(I,X)|c(∂I) ⊂ {x0}}

Here, I := [0, 1].

(ii) For each c1, c2 ∈ [(I, ∂I), (X,x0)],
c1 ∼ c2

if there is a homotopy Φ from c1 to c2 such that Φ(t, ·) ∈ [(I, ∂I), (X,x0)] (∀t ∈ I).

(iii) For each c1, c2 ∈ [(I, ∂I), (X,x0)],

c2 · c1(t) =


c1(2t) (0 ≤ t <

1

2
)

c2(2t− 1) (
1

2
≤ t ≤ 1)

(iii) Set
π1(X,x0) := [(I, ∂I), (X,x0)]/ ∼

(iv) For each [c1], [c2] ∈ π1(X,x0)
[c2] · [c1] = [c2 · c1]

Then ∼ is a equivalent relation on [(I, ∂I), (X,x0)] and · on π1(X,x0) is well-defined and π1(X,x0) is a group with respect
to ·. We call π1(X,x0) the fundamental group of X with base point x0. If X is path-connected and π1(X,x0) = {e}, we
say X is simply connected.

Proposition 1.33 (n-th Homotopy group). Let

(S1) X be a topological space.

(S2) x0 ∈ X.

(S3) n ∈ N.
(S4) Define

(i) Set
[(In, ∂In), (X,x0)] := {c ∈ C(In, X)|c(∂In) ⊂ {x0}}

Here, In := [0, 1]n.

(ii) For each c1, c2 ∈ [(In, ∂I), (X,x0)],
c1 ∼ c2

if there is a homotopy Φ from c1 to c2 such that Φ(t, ·) ∈ [(In, ∂I), (X,x0)] (∀t ∈ I).
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(iii) For each c1, c2 ∈ [(I := [0, 1], ∂I), (X,x0)],

c2 · c1(t) =


c1(2t1, t2, ..., tn) (0 ≤ t1 <

1

2
)

c2(2t1 − 1, t2, ..., tn) (
1

2
≤ t1 ≤ 1)

(iii) Set
πn(X,x0) := [(In, ∂In), (X,x0)]/ ∼

(iv) For each [c1], [c2] ∈ πn(X,x0)
[c2] · [c1] = [c2 · c1]

Then ∼ is a equivalent relation on [(In, ∂I), (X,x0)] and · on πn(X,x0) is well-defined and πn(X,x0) is a group with
respect to ·. We call πn(X,x0) the n-th homotopy group of X with base point x0.

1.6 Fiber bundle

Definition 1.19 (Topological transformation group). Let G be a topological group. And let Y be a topological space. If
η : G× Y → Y satisfies the following conditions, we say G is a topological transformation group of Y respects to η.

(i) η(e, ·) = idY .

(ii) η(g2, η(g1, ·)) = η(g2g1, ·) (∀g1, g2 ∈ G).

If is clear what η is, we denote gy := η(g, y) .

Definition 1.20 (Effective topological transformation group). Let G be a topological transformation group of a topological
space Y respects to η. We say that G is effective if η(g, ·) = idY only if g = e.

Definition 1.21 (Coordinate bundle). We call

B := (B,X, Y, p, {Vj}j∈J , {ϕj}j∈J , G)

a coordinate bundle if

(i) B,X, Y are toplogical spaces. B is called a bundle space or total space. X is called a base space. Y is
called a fibre.

(ii) p : B → X is a surjective and continuous map. p is called a projection.

(iii) G is a topological transformation group of Y respects to η and G is effective.

(iii) {Vj}j∈J is an open covering of X. We call each Vj a coordinate neighborhood.

(iv) ϕj : Vj × Y → p−1(Vj) is an isomorphism. We call ϕ−1
j : p−1(Vj) → Vj × Y a local trivialization or a

coordinate function. For each x ∈ Vj, we call Yx := p−1(x) a fiber on x.

(v) p ◦ ϕj(x, y) = x (∀j ∈ J, ∀x ∈ Vj , ∀y ∈ Y )

(vi) If Vi ∩ Vj 6= ϕ, for each x ∈ Vi ∩ Vj, we define ϕi,x : Y → Y by

ϕi,x(y) := ϕi(x, y)

Then there is the unique gj,i(x) ∈ G such that

ϕ−1
j,x ◦ ϕi,x(·) = η(gj,i(x), ·)

is an isomorphism.

(vii) gj,i : Vi ∩ Vj → G is continuous.

Memo 1.1. I think, roughly speaking, a coordinate bundle is a pair (B,X, Y, p) with local trivializations ({Vi}i∈I , {ϕi}i∈I
which induce a system of coordinate transformations {gi,j}i,j∈I . Steenrod Theorem, which is showed later, states a system
of coordinate transformations induces a local trivializations.

Definition 1.22 (Equivalent in the strict sense between two coordinate bundles). Let

B1 := (B1, X1, Y, p1, {V1,j}j∈J1 , {ϕj}j∈J1 , G)

and
B2 := (B2, X2, Y, p2, {V2,j}j∈J2 , {ϕj}j∈J2 , G)

are coordinate bundles. We say that B1 and B2 are equivalent in the strict sense if
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(i) B1 = B2, X1 = X2, Y1 = Y2, G1 = G2.

(ii) Fix any j1 ∈ J1 and j2 ∈ J2 such that V1,j1 ∩ V2,j2 6= ϕ. For any x ∈ V1,j1 ∩ V2,j2 , there is unique
gj2,j1(x) ∈ G such that

gj2,j1(x) = ϕ−1
2,x ◦ ϕ1,x

and
gj2,j1 : V1,j1 ∩ V2,j2 → G

is continuous.

Proposition 1.34. The relation in Definition1.22 is equivalent relation.

Definition 1.23 (Fibre bundle). We define that a fibre bundle is a equivalent class by strict sense equivalent of coordinate
bundles.

Clearly the following holds.

Proposition 1.35. Let

(S1)
B := (B,X, Y, p, {Vj}j∈J , {ϕj}j∈J , G)

(S2) X,Y,G are C∞-class manifolds.

(A1) Multiple operations and inverse operation of G are C∞-class.

(A2) The action of G on X is C∞-class.

Then B is a C∞-class manifold. We call B a smooth corrdinate bundle.

Definition 1.24 (Bundle map). Let

B1 := (B1, X1, Y, p1, {V1,j}j∈J1 , {ϕ1,j}j∈J1 , G)

and
B2 := (B2, X2, Y, p2, {V2,j}j∈J2 , {ϕ2,j}j∈J2 , G)

are coordinate bundles. We call (h, h̄) a bundle map from B1 to B2 if

(i) h : B1 → B2 is a continuous map.

(ii) h̄ : X1 → X2 is a continuous map.

(iii) For each x ∈ X, x′ := h(x) and Yx := p−1(x) and Yx′ := p−1(x′) and hx := h|Yx. Then hx : Yx → Yx′ is
an homeomorphism.

(iv) For any x ∈ V1,j ∩ h̄−1(V2,k), there is unique ḡk,j(x) ∈ G such that

ϕ−1
2,h̄(x)

◦ hx ◦ ϕ1,x = ḡk,j(x)·

(iv) ḡk,j : V1,j ∩ h̄−1(V2,k) → G is continuous. We call ḡk,j a mapping transformation.

We also call h itself a bundle map and call h̄ a map induced by h or call h̄ the induced map from h.

Proposition 1.36. The followings hold.

(i) The identity map of any coordinate bundle is a bundle map.

(ii) The composition of any two bundle maps is a bundle map.

Proof of (i). This is clear because of the definition of coordinate bundle.

Proof of (ii). Let
Bi := (Bi, Xi, Y, pi, {Vi,j}j∈Ji , {ϕj}j∈Ji , G) (i = 1, 2, 3)

be corrdinate bundles and (h1, h̄1) be a bundle map from B1 to B2 and (h2, h̄2) be a bundle map from B2 to B3. We set
h3 := h2 ◦ h1 and h̄3 := h̄2 ◦ h̄1. Clearly, h3 and h̄3 are continuous. For any x ∈ X, clearly,

h3,x = h2,h̄1(x) ◦ h1,x

So, h3,x is a homeomorphism from Yx to Yh3(x).
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Let us fix any x ∈ V1,j ∩ h̄3
−1

(V3,k). Clearly

h̄3
−1

(V3,k) = h̄1
−1

(h̄2
−1

(V3,k))

This implies

h̄1(x) ∈ h̄2
−1

(V3,k)

Because {V2,j}j∈J2 is an open covering of X, there is j ∈ J2 such that

h̄1(x) ∈ V2,j

So,

ϕ−1
3,h̄3(x)

◦ h3,x ◦ ϕ1,x
= ϕ−1

3,h̄2(h̄1(x))
◦ h2,x ◦ h2,x ◦ ϕ1,x

= ϕ−1
3,h̄2(h̄1(x))

◦ h2,x ◦ ϕ2,h̄1(x) ◦ ϕ
−1
2,h̄1(x)

◦ h2,x ◦ ϕ1,x
= ḡ2,k,j(h̄1(x))ḡ1,j,i(x)

Clearly ḡ2,k,j(h̄1(·))ḡ1,j,i(·) is continuous on V1,j ∩ h̄3
−1

(V3,k) ∩ h̄−1
1 (V2,j).

Definition 1.25 (Equivalent between two coordinate bundles). Let

B1 := (B1, X1, Y, p1, {V1,j}j∈J1 , {ϕj}j∈J1 , G)

and
B2 := (B2, X2, Y, p2, {V2,j}j∈J2 , {ϕj}j∈J2 , G)

are coordinate bundles. We say that B1 and B2 are equivalent if there is h such that (h, idX) is a bundle map from B1

to B2.

The following is clear from the definition of bundle map.

Proposition 1.37. Let
B1 := (B1, X1, Y, p1, {V1,j}j∈J1 , {ϕ1,j}j∈J1 , G)

and
B2 := (B2, X2, Y, p2, {V2,j}j∈J2 , {ϕ2,j}j∈J2 , G)

are coordinate bundles. And (h, h̄) is a bundle map from B1 to B2. Then the followings hold.

ḡj,i(x)gi,k(x) = ḡj,k(x) (∀x ∈ V1,i ∩ V1,k ∩ h̄−1(V2,j)) (1.6.1)

gj,i(h̄(x))ḡi,k(x) = ḡj,k(x) (∀x ∈ V1,k ∩ h̄−1(V1,i ∩ V2,j)) (1.6.2)

Lemma 1.1. Let
B1 := (B1, X1, Y, p1, {V1,j}j∈J1 , {ϕ1,j}j∈J1 , G)

and
B2 := (B2, X2, Y, p2, {V2,j}j∈J2 , {ϕ2,j}j∈J2 , G)

are coordinate bundles. And let us assume h̄ is a continous map from X1 to X2. and there is {ḡi,j}i,j∈J such that for
each i, j ∈ J ḡi,j ∈ C(Vj ∩ h̄−1(Vi), G) and the followings hold.

ḡj,i(x)gi,k(x) = ḡj,k(x) (∀x ∈ V1,i ∩ V1,k ∩ h̄−1(V2,j))

gj,i(h̄(x))ḡi,k(x) = ḡj,k(x) (∀x ∈ V1,k ∩ h̄−1(V1,i ∩ V2,j))

Then there is a bundle map h from B1 to B2 such that h̄ is the induced map from h and for each i, j ∈ J ḡi,j is a mapping
transformations of h.
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Proof. For each i ∈ J1 and j ∈ J2 such that (V1,i ∩ h̄−1(V2,j)) × Y 6= ϕ, we set

h(ϕ1,i(x, y)) = ϕ2,j(h̄(x), ḡj,i(x)y) ((x, y) ∈ (V1,i ∩ h̄−1(V2,j)) × Y )

We will show h is well-defined. Let us assume (x, y) ∈ (V1,i ∩ h̄−1(V2,j)) × Y and (x′, y′) ∈ (V1,i′ ∩ h̄−1(V2,j′)) × Y and

ϕ1,i(x, y) = ϕ1,i′(x
′, y′)

Then
x = p ◦ ϕ1,i(x, y) = p ◦ ϕ1,i′(x′, y′) = x′

So, ϕ1,i(x, y) = ϕ1,i′(x, y
′). This implies

gi′,i(x)y = y′

So,
ḡj,i(x)y = ḡj,i(x)gi,i′(x)y′ = ḡj,i′(x)y′

So,

ϕ2,j(h̄(x), ḡj,i(x)y) = ϕ2,j,h̄(x)(ḡj,i(x)y) = ϕ2,j′,h̄(x) ◦ ϕ−1
2,j′,h̄(x)

◦ ϕ2,j,h̄(x)(ḡj,i′(x)y′) = ϕ2,j′,h̄(x)(gj′,j(h̄(x))ḡj,i′(x)y′)

= ϕ2,j′,h̄(x)(ḡj′,i′(x)y′) = ϕ2,j′(h̄(x), ḡj′,i′(x)y′)

Consequently, h is well-defined. Clearly, h is continuous. Also, clearly, for any x ∈ V1,i ∩ h̄−1(V2,j), h|Yx is an homeomor-
phism from Yx to Yh̄(x) and

ϕ−1
2,j,h̄(x)

◦ h ◦ ϕ1,i,x = ḡj,i(x)

Lemma 1.2. The followings are the settings and assumptions.

(S1)
B1 := (B1, X1, Y, p1, {V1,j}j∈J1 , {ϕ1,j}j∈J1 , G)

and
B2 := (B2, X2, Y, p2, {V2,j}j∈J2 , {ϕ2,j}j∈J2 , G)

are coordinate bundles.

(A1) X1 = X2.

(A2) There are ḡk,j : Vj ∩ V ′
k → G:continuous map(j ∈ J1, k ∈ J2) such that

ḡk,j(x)gj,i(x) = ḡk,i(x) (∀x ∈ Vi ∩ Vj ∩ V ′
k), g′l,k(x)ḡk,j(x) = ḡ′l,j(x) (∀x ∈ Vi ∩ V ′

l ∩ V ′
k)

Then B1 and B2 are equivalent.

Proof. It is from Proposition1.1.

Lemma 1.3. The followings are the settings and assumptions.

(S1)
B1 := (B1, X1, Y, p1, {Vj}j∈J , {ϕj}j∈J1 , G)

and
B2 := (B2, X2, Y, p2, {Vj}j∈J , {ϕj}j∈J2 , G)

are coordinate bundles.

(A1) X1 = X2.

(A2) There are λj : Vj → G:continuous map(j ∈ J) such that

g′i,j(x) = λi(x)−1gi,j(x)λj(x) (∀x ∈ Vi ∩ Vj)

Then B1 and B2 are equivalent.
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Proof. We set
ḡi,j(x) := λi(x)−1gi,j(x) (x ∈ Vi ∩ Vj)

Then
ḡi,j(x)gj,k(x) = λi(x)−1gi,j(x)gj,k(x) = λi(x)−1gi,k(x) = ḡi,k(x)

and
g′k,i(x)ḡi,j(x) = λk(x)−1gk,i(x)λi(x)λi(x)−1gi,j(x) = λk(x)−1gk,i(x)gi,j(x) = λk(x)−1gk,j(x) = ḡk,j(x)

So, B1 and B2 are equivalent from Lemma1.2.

Definition 1.26 (System of coordinate transformations). Let

(S1) G is a topological group.

(S2) X is a topological space.

We call ({Vj}j∈J , {gi,j}i∈J) a system of coordinate transformations in X with values in G if

(i) {Vj}j∈J is an open covering of X.

(ii) gj,i ∈ C(Vj ∩ Vi, G) (∀i, j ∈ J).

(iii) gk,j ◦ gj,i = gk,i in Vk ∩ Vj ∩ Vi (∀i, j, k ∈ J).

Clearly the following holds.

Proposition 1.38. Let

(S1) G is a topological group.

(S2) X is a topological space.

(S3) ({Vj}j∈J , {gi,j}i∈J) is a a system of coordinate transformations in X with values in G.

Then the followings hold.

(i) gi,i = e (∀i ∈ J).

(ii) gi,j = g−1
j,i (∀i, j ∈ J).

Theorem 1.2 (Steenrod’s theorem). Let

(S1) G is a topological group.

(S2) X is a topological space.

(S3) ({Vj}j∈J , {gi,j}i∈J) is a system of coordinate transformations in X with values in G.

(S4) Y is a topological space.

(S5) G is a topological transformation group of Y .

(A1) The action of G on Y is effective.

Then

(i) There is B, p, {ϕj}j∈J such that (B,X, p, {Vj}j∈J , Y, {ϕj}j∈J) is a coordinate bundle and for any j, i ∈ J
such that Vi ∩ Vj 6= ϕ , for any x ∈ Vi ∩ Vj, in Vi ∩ Vj,

ϕ−1
j,x ◦ ϕi,x = gj,i

(ii) If B1 and B2 are topological spaces which individually satisfy (i), (B1, X, p, {Vj}j∈J , Y, {ϕ1j}j∈J) and

(B2, X, p, {Vj}j∈J , Y, {ϕ2j}j∈J) are equivalent.

STEP1. Construction of B and {ϕj}j∈J . Hereafter, let us assume the topology of J is the discrete topology. We set

T := X × Y × J

We define the relation of T by
(x, y, j) ∼ (x′, y′, k) : ⇐⇒ x = x′ and y′ = gk,j(x)y

We will show ∼ is a equivalent relation of T . Because gi,i = e, the reflexivity of ∼ holds. Because gi,i = e, by (S5), the
reflexivity of ∼ holds. Because gi,j = g−1

j,i , by (S5), the symmetry of ∼ holds. Because gk,j ◦ gj,i = gk,i, by (S5), the
transitivity of ∼ holds. So ∼ is a equivalent relation.
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We set
B := T/ ∼

and
q : T 3 (x, y, j) 7→ [x, y, j] ∈ B

and
p : B 3 [x, y, j] 7→ x ∈ X

By the definition of ∼, p is well-defined. And, clearly, p is surjective. Let us assume that the topology of B is the final
topology of B induced by q. For any O ∈ O(X),

q−1(p−1(O)) = O × Y × {j ∈ J |Vj ∩O 6= ϕ}

In this equation, the right side is an open set of T . So, p is continuous.
We define ϕj : Vj × Y → B by

ϕj(x, y) = [x, y, j]

Clearly, ϕj is continuous and
ϕj : Vj × Y ⊂ B

and
p ◦ ϕj = idVj

STEP2. Proof of that ϕj is an isomorphism. By STEP1, it is enough to show that ϕj is bijective and an open map. We
will show that ϕj : Vj × Y → p−1(Vj) is surjective. Let us fix any [x, y, k] ∈ p−1(Vj). Clealy x ∈ Vk and

(x, y, k) ∼ (x, gj,k(x)y, j)

So,
[x, y, k] = ϕj(x, gj,k(x)y)

So ϕj is surjective.
Nextly, we will show that ϕj is injective. Let us fix any (x, y), (x′, y′) ∈ Vj × Y such that [x, y, j] = [x′, y′, j]. Then

x = x′ and
gj,j(x)y = y′

Because gj,j(x) = idVj
, y = y′. So ϕj is injective.

Lastly, we will show that ϕj is an open map. Let us fix W1 ×W2 ⊂ Vj × Y which is an open set. For any k ∈ J such
that Vk ∩ Vj 6= ϕ, we set rj,k : (Vk ∩ Vj) × Y → (Vk ∩ Vj) × Y by

rj,k(x, y) := (x, gj,k(x)y)

By (S5), rj,k is continuous.
We will show for any W ∈ O(Vj × Y ),

q−1(ϕj(W )) =
∪

k∈J,Vk∩Vj ̸=ϕ

r−1
j,k(W ) × {k} (1.6.3)

Let us fix any (x, y) ∈ (Vj ∩ Vk) × Y such that rj,k(x, y) ∈W . Because

ϕj(x, gj,k(x)y) = [rj,k(x), j] = q(x, y, k) (1.6.4)

in (1.6.3), the right side is containd the left side. By (1.6.4), it is clear that in (1.6.3), the left side is containd the right
side. So, (1.6.3) holds. Clearly, in (1.6.3), the right side is an open set. So, ϕj is an open map.

STEP3. Proof of (i). By STEP1 and STEP2, it is enough to show that for any i, j ∈ J such that Vi ∩ Vj 6= ϕ and any
x ∈ Vi ∩ Vj 6= ϕ

ϕ−1
j,x ◦ ϕi,x = gj,i (1.6.5)

For any y ∈ Y

ϕ−1
j,x ◦ ϕi,x(y)

= ϕ−1
j,x([x, y, i])

= ϕ−1
j,x([x, gj,i(x)y, j])

= gj,i(x)y

So (1.6.5) holds.
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STEP3. Proof of (ii).
ϕ−1
1,j,x ◦ ϕ

1,i,x = gj,i(x) = ϕ−1
2,j,x ◦ ϕ2,i,x (∀i, j, ∀x ∈ Vi ∩ Vj)

When we set λi(x) := e (∀i, ∀x ∈ VI), {λi}i satisfies the conditions of Lemma1.3. So, B1 and B2 are equivalent.

Proposition 1.39 (Tangent bundle). The following are settings and assumptions.

(S1) {M, {(Ui, ψi)}i∈I} is a n-dimensional C∞-class manifold.

(S2) B := ∪x∈M{x} × Tx(M)).

(S3) p : B 3 (x,X) 7→ x ∈M .

(S4) Y := Rn.

(S5) ϕi : Ui × Y 3 (x, v) 7→ (x,
∑n
j=1 vj

(
∂

∂ψji

)
x

) ∈ B.

Then {B, p,M,Rn, {(Ui, ϕi)}i∈I , GL(n,R)} is a coordinate bundle. We call the fibre bundle of the coordinate bundle
tangent bundle of M .

Proof. Clearly,
p ◦ ϕi(x, v) = x (∀i ∈ I, ∀x ∈ Ui, v ∈ Y )

and
ϕi(Ui × Y ) = p−1(Ui)

and ϕi is injective and ϕi is C∞-class and ϕ−1
i is C∞-class. So, ϕi is a local trivialization. And

ϕ−1
j,x ◦ ϕi,x(v) = J(ϕ−1

j,x ◦ ϕi,x)(v)

and
Ui ∩ Uj 3 x 7→ J(ϕ−1

j,x ◦ ϕi,x) ∈ GL(n,R)

is C∞-class. So, {J(ϕ−1
j,x ◦ ϕi,x)}x∈Ui∩Uj

is a system of coordinate transformations. Consequently,

{B, p,M,Rn, {(Ui, ϕi)}i∈I , GL(n,R)}

is a coordinate bundle.

Definition 1.27 (Cross section). Let

B := (B,X, Y, p, {Vj}j∈J , {ϕj}j∈J , G)

is a coordinate bundle. We say s : X → B is a cross-section if s is continuous and p ◦ s = id|X.

Definition 1.28 (Vector Bundle). Let
B := (B,X, Y, p,G)

be a fibre bundle. We say B is a vector bundle if Y = Rn and G = GL(n,R) and G acts on Y with g·v = gv (g ∈ G, v ∈ Y ).

Definition 1.29 (Principal Bundle). Let
B := (B,X, Y, p,G)

be a fibre bundle. We say B is a principal bundle if Y = G and G acts on Y with g · h = gv (g, h ∈ G) in B.
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2 Lie group and Lie algebra

2.1 Lie group

Definition 2.1 (Locally isomorphism between two topological groups). Let G and H are topological groups. We say G
and H are locally isomorphic if there is U ⊂ G and V ⊂ H and isomoriphism i : U → G such that U is a neighborhood of
1G and V is a neighborhood of 1H and the followings hold.

(i) For any x, y ∈ U such that xy ∈ U , i(xy) = i(x)i(y).

(ii) For any x, y ∈ U , xy ∈ U ⇐⇒ i(x)i(y) ∈ V .

Example 2.1. R and T are locally isomorphic.

Definition 2.2 (Lie subgroup of GL(n,C)). We say G is a Lie subgroup of GL(n,C) if the followings hold.

(i) G is a subgroup of GL(n,C)

(ii) G is a topological group

(iii) There is a neighborhood of e in G V such that

(iii-1) The topology of V is relative topology of GL(n,C)

(iii-2) There is a neighborhood of e in GL(n,C) U such that if xj ∈ V (j ∈ N) and xj → x ∈ U
then x ∈ V .

(iii-3) G has at most countable connected components.

Proposition 2.1. Let

(S1) G is a subgroup of GL(n,C).

(A1) G is a topological group.

(A2) G has at most countable connected components.

Then the followings are hold.

(i) G is a Lie subgroup of GL(n,C)

(ii) There is V which is a neighborhood of 1G and is a closed subset of GL(n,C) and the topology of V is
relative topology of GL(n,C)

Proof of that (ii) =⇒ (i). We set U := G. V and U satisfies the condition (iii) in Definition2.2.

Proof of that (i) =⇒ (ii). By the condition (iii-1) in Definition2.2, there is W such that W is an open subset of GL(n,C)
and V ◦ = V ∩ W . Clearly W is an open neighborhood of 1GL(n,C). There is W0 such that W0 is an open subset of
GL(n,C) and 1G ∈ W0 ⊂ W̄0 ⊂ U ∩W . We set V ′ := W̄0 ∩ V . By the condition (iii-1) in Definition2.2, there is Z such
that Z is an open subset of G and V ∩W0 = V ∩Z. So V ′ = W̄0 ∩ V is a neighborhood of 1G in G. Because W̄0 ⊂ U , by
the condition (iii-2) in Definition2.2, V ′ is closed subset of GL(n,C).

Proposition 2.2. Let

(S1) G is a Lie subgroup of GL(n,C).

Then, for any W which is a neighborhood of 1G in G, there is V ′ such that V ′ is a closed subset of GL(n,C) and V ′ is a
neighborhood of 1G.

Proof. There is ϵ > 0 such that B(1G, 4ϵ) ∩ V ⊂W ∩ V . Because V ⊂ G,

B(1G, 2ϵ) ∩ V ⊂ B(1G, 4ϵ) ∩ V ⊂W

Clearly B(1G, 2ϵ) ∩ V is a closed subset of GL(n,C).
There is Z such that Z is an open subset of G and 1 ∈ Z and Z ⊂ V . By Proposition1.6, Z ∩ B(1G, ϵ) is an open

subset of Z. So, there is open subset of G O such that Z ∩ B(1G, ϵ) = Z ∩ O. So Z ∩ O is an open subset of G and
1 ∈ Z ∩O ⊂ B(1G, 2ϵ)∩ V . So, B(1G, 2ϵ)∩ V is a neighborhood of 1G. By Proposition1.6, The topology of B(1G, 2ϵ)∩ V
is the relative topology to GL(n,C).
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Example 2.2. Let λ be a irrelational number. Let G := exp(i2πλZ) ⊂ GL(1,C). Le us assume G is a topological group
respects to the discrete topology. V := {1} is a neighborhood of 1 on G and V is a closed subset of GL(1,C). So, G is a
Lie subgroup of GL(1,C). Because T is compact, there is subsequence {exp(i2πλφ(m))}∞m=1 and x ∈ T such that

lim
m→∞

exp(i2πλφ(m)) = x

Because λ is irrelational, x /∈ G. So, G is not closed subset of GL(1,C).

Definition 2.3 (Linear Lie group of GL(n,C)). We call G ∈ GL(n,C) is a Linear Lie group of GL(n,C) if G is closed
subgroup of GL(n,C)

Proposition 2.3. If G ∈ GL(n,C) is a Linear Lie group of GL(n,C) then G is a Lie subgroup of GL(n,C)

Proof. Clearly G satisfies Definition2.2. Because GL(n,C) satisfies the second countable axiom, G satisfies the second
countable axiom. So G has at most countable connected components.

Definition 2.4 (General Lie group). We say G is a Lie group if G is a topological group such that there is a Lie subgroup
of GL(n,C) which is locally isomorphic to G.

Proposition 2.4. Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

(S2) V which is a neighborhood of 1G2 in G2 and U which is a neighborhood of 1G1 in G1 and isomorphism
i : U → V satisfying the conditions in Definition2.1..

(S3) U ′ ⊂ U and V ′ := i(U ′).

Then i|U ′ satisfying the conditions in Definition2.1.

Proof of condition(i). It is trivial.

Proof of condition(ii). Let us fix any x, y ∈ U ′. Let us assume xy ∈ U ′. Then by condition(i), i(x)i(y) = i(xy) ∈ V ′. Let
us assume i(x)i(y) ∈ U ′. Then xy ∈ U . i(xy) = i(x)i(y) ∈ U ′. So xy ∈ V ′.

Proposition 2.5. Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

Then there is V := G∩B(1G2 , ϵ) for some ϵ > 0 which is a compact neighborhood of 1G2 in G2 and U which is a compact
neighborhood of 1G1

in G1 and isomorphism τ : U → V satisfying the conditions in Definition2.1.

Proof. Let us fix U and V and τ : U → V such that U is a neighborhood of 1G1
and V is a neighborhood of 1G2

and
τ : U → V is isomorphism satisfying the conditions in Definition2.1. There is a open set B1 of GL(n,C) such that
V ◦ = G2 ∩ B1. There is ϵ > 0 such that B(1G2 , 2ϵ) ⊂ B1. We set V2 := B(1G2 , ϵ) ∩ G2 and U1 := τ−1(V2). Because
τ−1(G ∩ B(1G2 , ϵ) is open set in the relative topology with G and subset of U1, U1 is the neighborhood of 1G1 . We set
η := τ−1. Because G2 ∩ B(1G2

, ϵ) ⊂ G2 ∩ B1 ⊂ V , V2 = V ∩ B(1G2
, ϵ). So V2 is a closed subset of V and U1 is a closed

subset of U .
By Proposition1.7 and Propositon1.6, τ |U1 is homeomorphism. So U1 is compact. Also, by Proposition2.4.1, τ |U1

satisfies conditions in Definition2.1.

In this note, unless otherwise stated, U and V are assumed to be the neighborhoods obtained in Proposition2.5.

Proposition 2.6. Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

(S2) V which is a neighborhood of 1G2 in G2 and U which is a neighborhood of 1G1 in G1 and isomorphism
i : U → V satisfying the conditions in Definition2.1..

Then j := i−1 satisfying the conditions in Definition2.1.

Proof of condition(i). Let us fix any z, w ∈ V . Let us assume zw ∈ V . Then i(j(z))i(j(w)) ∈ V . So j(z)j(w) ∈ U . By
condition(i), i(j(z)j(w)) = i(j(z))i(j(w)) = zw. So j(z)j(w) = j(zw).

Proof of condition(ii). Let us fix any z, w ∈ V . Let us assume zw ∈ V . By the proof of condition(i), j(z)j(w) ∈ U .
Inversely, let us assume j(z)j(w) ∈ U . Then by condition(ii), zw = i(j(z))i(j(w) ∈ V .
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2.2 Matrix exponential

Definition 2.5 (Operator Norm). For X ∈M(n,C),

||X||op := ||X|| := sup
||v||=1, v∈Cn

|Xv|

Definition 2.6. For X ∈M(n,C),
||X||∞ := sup{|xi,j ||i, j ∈ {1, 2, ..., n}}

Proposition 2.7. For X ∈M(n,C),
||X||∞ ≤ ||X||op ≤

√
n||X||∞

Proof of ||X||∞ ≤ ||X||op. For any i, j ∈ {1, 2, ..., n}, |xi,j | ≤ |Xej | ≤ ||X||.

Proof of ||X||op ≤
√
n||X||∞. We set xi := (xi,j)

n
j=1 for each i. For any u ∈ Cn such that |u| = 1, by Schwartz’s inequality,

|Xu| ≤ |((x1|u), ..., (xn|u))| ≤
√
n sup
i=1,2,...,n

|xi| ≤
√
n||X||∞

Proposition2.7 implies the following.

Proposition 2.8. M(n,C) is banach space with the operator norm.

Proposition 2.9. Let

(S1) X ∈M(n,C)

Then for any eigenvalue λ of X
|λ| ≤ ||X||

Proposition 2.10. Let

(S1) M := {X ∈M(n,C)| X is diagonalizable }

Then M is dense in M(n,C)

Proof. Because M is triangularisable(See [12]), there is P ∈ GL(n,C) such that

P−1MP :=


α1 *

. . .

0 αn


We set for each 0 ≤ s << 1

E(s) :=


s 0

. . .

0 sn


Because P−1MP+E(s) has not a duplicate eigenvalue, so P−1MP+E(s) is diagonalizable. So M(s) := M+PE(s)P−1

is diagonalizable. lim
s→0

M(s) = M .

Proposition 2.11. (S1) X ∈M(n,C)

(S2) f is a power series whose radius of convergence is not less than R > 0.
then

(i) If ||X|| < R then f(X) exists.

(ii) f(X) is a horomoriphic function for each variable xi,j.

Proof of (i). We set f(x) =:
∑∞
i=1 ciX

i. By the definition of the radius of convergence,

∞∑
i=1

|ci|||X||i <∞

This implies that {
∑n
i=1 ciXi}∞n=1 is a cauchy sequence. By Proposition2.8, f(X) exists.
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Proof of (ii). We set fn(X) := Σni=1ciX
i for each n ∈ N. By Proposition2.7, for any K ∈ (0, R), {X ∈M(n,C)|||X|| ≤ K}

is compact. And,

sup
||X||≤K

||fn(X) − f(X)|| (2.2.1)

= sup
||X||≤K

||
∞∑

i=n+1

ciX
i||

=

∞∑
i=n+1

|ci|Ki

→ 0 (n→ ∞)

So {fn}∞n=1 uniformly converges to f on compact sets. By Weierstrass’s theorem(See [6]), bhis implies that f is homo-
morphic.

Proposition 2.12. Let

(S1) X ∈M(n,C)

(S2) f, h are power series whose radius of convergence is not less than R > 0.

(S3) u is a power series whose radius of convergence is not less than R′ > 0.

(A1) ||X|| < R.

then the followings hold

(i) If u = f + h and R = R′ then u(X) = f(X) + h(X).

(ii) If u = fh and R = R′ then u(X) = f(X)h(X).

(iii) If ||f(X)|| < R′ then u ◦ f(X) = u(f(X)).

Proof. By Proposition2.9, clearly these Propositions hold in M .
By Proposition2.11, u, f + h, fh, u ◦ f, u(f(·)) are continuous on M(n,C). So, by Proposition2.10, these Propositions

hold at X.

Proposition 2.13. For any X ∈M(n,C)
det(exp(X)) = exp(tr(X)) (2.2.2)

Proof. Because det(exp(·)) and exp(tr(·)) are continuous, by Proposition2.10, it is enough to show (2.2.2) for any X ∈
M(n,C) such that X is diagonizable. Let us fix X ∈ M(n,C) such that X is diagonizable. There is P ∈ GL(n,C) such

that PXP−1 =


λ1 0 ... 0
0 λ2 ... 0
... ... ... ...
0 0 ... λn

. And exp(PXP−1) =


exp(λ1) 0 ... 0

0 exp(λ2) ... 0
... ... ... ...
0 0 ... exp(λn)

 So

det(exp(X)) = det(Pexp(X)P−1)

= det(exp(PXP−1))

= exp(λ1)exp(λ2)...exp(λn)

= exp(

n∑
i=1

λi)

= exp(tr(PXP−1))

= exp(tr(X)) (2.2.3)

Proposition 2.14 (Exponential and Logarithm of matrix). Let

(S1) log(X) := Σ∞
i=1

(−1)i−1(X − En)i

i!
for X ∈M(n,C) such that ||X|| < 1.

then

(i) exp(log(X)) = X for any X ∈M(n,C) such that ||X|| < 1.
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(ii) log(exp(X)) = X for any X ∈M(n,C) such that ||X|| < 1 such that ||X|| < log2.

Proof. By (iii) of Proposition, (i) and (ii) hold.

The following Proposition says exponential map is locally isomorphism.

Proposition 2.15.

(i) exp(·) is C∞ isomorphism to some open set in some neighborhood of O.

(ii) log(E + ·) is C∞ isomorphism to some open set in some neighborhood of E.

Proof. See the corollary of inverse mapping theorem in [13]

Proposition 2.16 (Basic properties about Exponential of matrix).

(i) exp(X + Y ) = exp(X)exp(Y ) for any X,Y ∈M(n,C) such that XY = Y X.

(ii) exp(X)m = exp(mX) for any X ∈M(n,C) and m ∈ N.

(iii) exp(tX) = ΣKi=0

tiXi

i!
+O(tK+1) (t→ 0) for any X ∈M(n,C) and K ∈ N.

(iv)
d

dt
exp(tX) = exp(tX)X = Xexp(tX)

proof of (i).

exp(X + Y ) = Σ∞
j=0Σji=0

jCiX
iY j−i

j!

= Σ∞
j=0Σji=0

jPi
i!

XiY j−i

j!

= Σ∞
j=0Σji=0

j!

(j − i)!i!

XiY j−i

j!

For any M ∈ N

||ΣMi=0

Xi

i!
ΣMj=0

Y j

j!
− ΣMj=0Σji=0

j!

(j − i)!i!

XiY j−i

j!
||

= ||Σ0≤i≤M,0≤j≤M,i+j>M
XiY j

i!j!
||

≤ Σ0≤i≤M,0≤j≤M,i+j>M
||X||i||Y ||j

i!j!

= ||ΣMi=0

||X||i

i!
ΣMj=0

||Y ||j

j!

−ΣMj=0Σji=0

j!

(j − i)!i!

||X||i||Y ||j−i

j!
||

Because

lim
M→∞

||ΣMi=0

||X||i

i!
ΣMj=0

||Y ||j

j!
= exp(||X||)exp(||Y ||)

and

lim
M→∞

ΣMj=0Σji=0

j!

(j − i)!i!

||X||i||Y ||j−i

j!
|| = exp(||X|| + ||Y ||)

and exp(||X||)exp(||Y ||) = exp(||X|| + ||Y ||), the following holds.

lim
M→∞

ΣMi=0

||X||i

i!
ΣMj=0

||Y ||j

j!
− ΣMj=0Σji=0

j!

(j − i)!i!

||X||i||Y ||j−i

j!
= 0

So

exp(X + Y ) = lim
M→∞

ΣMi=0

Xi

i!
ΣMj=0

Y j

j!
= exp(X)exp(Y )
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proof of (ii). It is easy to show (ii) from (i)

proof of (iii).

||exp(tX) − ΣKi=0

tiXi

i!
|| ≤ ||Σ∞

i=K+1

tiXi

i!
||

= |t|K+1||Σ∞
i=K+1

ti−K+1Xi

i!
||

≤ |t|K+1||X||K+1Σ∞
i=K+1

|t|i−K+1||X||i−K+1

i!

≤ |t|K+1||X||K+1Σ∞
i=K+1

|t|i−K+1||X||i−K+1

(i−K − 1)!

= |t|K+1||X||K+1exp(|t|||X||) (2.2.4)

proof of (iv). By (i), for any t0 ∈ R

exp(tX) − exp(t0X) = exp(t0X)(exp((t− t0)X) − E)

= (exp((t− t0)X) − E)exp(t0X)

By (iii),
exp((t− t0)X) − E = X + o(t− t0)

So (iv) holds.

Proposition 2.17.

exp(tX)exp(tY ) = exp(t(X + Y ) +
t2[X,Y ]

2
+ o(t2))

Proof.

exp(tX)exp(tY ) = (E + tX +
1

2
t2X2 +O(t3))(E + tY +

1

2
t2Y 2 +O(t3))

= E + t(X + Y ) +
1

2
t2(X2 + Y 2 + 2XY ) + o(t3)

So

log(exp(tX)exp(tY )) = t(X + Y ) +
1

2
t2(X2 + Y 2 + 2XY ) +O(t3)

−1

2
(t(X + Y ) +

1

2
t2(X2 + Y 2 + 2XY ) +O(t3))2

+O(t3)

= t(X + Y ) +
1

2
t2(X2 + Y 2 + 2XY ) − 1

2
t2(X + Y )2

+O(t3)

= t(X + Y ) +
1

2
t2(XY − Y X) +O(t3)

By Proposition2.16,

exp(tX)exp(tY ) = exp(t(X + Y ) +
1

2
t2(XY − Y X) +O(t3))

Proposition implies the following.

Proposition 2.18.

exp(tX)exp(tY )exp(−tX)exp(−tY ) = exp(
t2[X,Y ]

2
+ o(t2))
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2.3 Lie algebra

2.3.1 Definition of Lie algebra

Definition 2.7 (Lie algebra of Lie subgroup). Let G is a Lie subgroup of GL(n,C). We set

Lie(G) := {X ∈M(n,C)|exp(tX) ∈ G (∀t ∈ R)}

We call Lie(G) Lie algebra of G.

Definition 2.8 (Lie algebra of Lie group). Let G1 is a Lie group and G2 is a Lie subgroup of GL(n,C) such that G1 is
locally isomorphic to G2. We set Lie(G1) := Lie(G2).

By Proposition2.32, Lie(G1) is well-defined.

Definition 2.9 (General Lie algebra). Let

(i) K be a field.

(ii) L be a vector space on K.

(iii) L has operation [·, ·] which satisfies the followings.

(a)Alternativity. [X,X] = 0 for any X ∈ L.

(b)Jacobi’s Rule. [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for any X, Y, Z ∈ L.

(c)Bilinearity. [aX + bY, cZ + dW ] = ac[X,Z] + ad[X,W ] + bc[Y, Z] + bd[Y,W ] for any X, Y, Z, W ∈ L
and a, b, c, d ∈ K.

then we call L a Lie algebra on K.

Clearly, the followings hold.

Proposition 2.19. For any Lie albegra L,

[X,Y ] = −[Y,X] (∀X,Y ∈ L)

Definition 2.10 (Lie subalgebra, ideal). Let L be a Lie algebra. We call L′ ⊂ L a Lie subalgebra of L if L′ is a
subvectorspace of L and [L′, L′] ⊂ L′. And, if L′ is a Lie subalgebra and [L,L′] ⊂ L′ then we call L′ is an ideal of L. We
call {0} and L are trivial ideals.

The following clearly holds.

Proposition 2.20. Let g be a Lie algebra and h1 and h2 are ideals of g. We denote the minimam ideal containing h1
and h2 by 〈[h1, h2]〉.

Proposition 2.21. Let g be a Lie algebra. Then z := {X ∈ g|[X,Y ] = 0 (∀Y ∈ g)}

Definition 2.11 (Simple Lie algebra). Let g be a Lie algebra. We call g is a simple Lie algebra if g has no non-trivial
ideals and g is not abelian.

By Proposition2.24, the following clearly holds.

Proposition 2.22. Let g be a simple Lie algebra. Then 〈[g, g]〉 = g.

Definition 2.12 (Direct sum of Lie algebras). Let L be a Lie algebra. And let g1, ..., gk be ideals of L and L = ⊕ki=1gi.
Then we say L is the direct sum of g1, ..., gk.

Definition 2.13 (Abelian Lie algebra). Let g be a Lie algebra. We call g is an abelian Lie algebra if [g, g] = 0.

Proposition 2.23. Let z is the center of a Lie algebra and fix any X ∈ z. Then 〈X〉 is an ideal of g and irreducible.

By Proposition2.24, the following clearly holds.

Proposition 2.24. Let g is a Lie algebra which is the direct sum of g1, ..., gk which are ideals of g. Then if i 6= j then

[gi, gj ] = {0}

Proposition 2.25. Let g is a Lie algebra which is the direct sum of g1, ..., gk which are ideals of g. Let us fix any
i ∈ {1, 2, ..., k}. For any h which is an ideal of gi, h is an ideal of g.
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Proof. Let us fix any X ∈ g and Y ∈ gi. There are Xj ∈ gj (j = 1, 2, ., , , .k) such that X =
∑k
j=1Xj . By Proposition2.24,

XY = XiY ∈ gi

Definition 2.14 (Semisimple Lie algebra). Let g be a Lie algebra. We call g is a semisimple Lie algebra if g is a direct
sum of finite simple Lie algebras.

Definition 2.15 (Reductive Lie algebra). Let g be a Lie algebra. We call g is a reductive Lie algebra if g is a direct sum
of finite simple Lie algebras and an abelian Lie algebras.

Proposition 2.26 (quotient Lie algebra). Let g be a Lie algebra and h be an ideal of g. Let g/h be the quotient vector
space. We set for each X,Y ∈ g

[X + h, Y + h] = [X,Y ] + h

[·, ·] is the well-defined Lie bracket on g/h. So g/h is a Lie algebra.

Proof. For any X,Y ∈ g and hX , hY ∈ h,

[X + hX , Y + hY ] = [X,Y ] + [X,hY ] − [Y + hY , hX ]

So [X + hX , Y + hY ] ∈ [X,Y ] + h. This means that [·, ·] is the well-defined Lie bracket on g/h.

Proposition 2.27 (Adjoint representation of a Lie algebra). Let g be a Lie algebra. We set for each X ∈ g

ad(X)Y = [X,Y ] (Y ∈ g)

Then
ad(aX + bY ) = a · ad(X) + b · ad(Y ) (∀a, ∀b ∈ R, ∀X ∈ g, ∀Y ∈ g) (2.3.1)

and
ad([X,Y ]) = [ad(X), ad(Y )] (∀X ∈ g, ∀Y ∈ g) (2.3.2)

We call ad the adjoint representation of g.

Proof. By linearlity of Lie bracket, (2.3.1) holds. And for any X,Y, Z ∈ g

[[X,Y ], Z]

= −[Z, [X,Y ]]

= [X, [Y, Z]] + [Y, [Z,X]]

= [X, [Y, Z]] − [Y, [X,Z]]

= (ad(X)ad(Y ) − ad(Y )ad(X))Z

= [ad(X), ad(Y )]Z

So (2.3.2) holds.

2.3.2 Examples of Lie group and Lie algebra

Example 2.3 (R×). Clearly R× is Linear Liegroup of GL(1,C). So R× is Lie subgroup of GL(1,C). And clearly
Lie(R×) = R.

Example 2.4 (C×). Clearly C× is Linear Liegroup of GL(1,C) and Lie(C×) = C.

Clearly G := {
(
a −b
b a

)
|a, b ∈ Rsuchthata2 + b2 6= 0} is Lie subgroup GL(2,R and G is isomorphic to C× and

Lie(G) = {
(
a −b
b a

)
|a, b ∈ R}. Clearly the right side is subset of the left side. We will show the proof of the inverse in

below.

Proof. Let us fix any X ∈ Lie(G).
exp(tX) = E + tX +O(t2) (t→ 0)

We define

M(t) :=

(
a(t) b(t)
c(t) d(t)

)
:= exp(tX) − tX
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So there is C > 0 such that ||M(t)|| ≤ C|t|2 for any t ∈ R. We assume |x1,1 − x2,2| 6= 0.
We pick t 6= 0 such that

|t| < |x1,1 − x2,2|
2(C + 1)

Because X ∈ Let(G)
|t(x1,1 − x2,2)| = |a(t) − d(t)|

Because for any t ∈ [−1, 1] |a(t) − d(t)| ≤ 2C|t|2 < |t||x1,1 − x2,2|,

|t(x1,1 − x2,2)| < |t||x1,1 − x2,2|

So 1 < 1. It implies contradiction.

Example 2.5 (SL(n,R), SL(n,C)). By Proposition2.13,

Lie(SL(n,R)) = {X ∈M(n,R)|tr(X) = 0}

Example 2.6 (O(n), U(n)).
Lie(O(n)) = {X ∈M(n,R|XT = −X} (2.3.3)

Lie(U(n)) = {X ∈M(n,C|X∗ = −X} (2.3.4)

proof of (2.3.3). Let us fix anyX ∈M(n,R) such thatXT = −X. Then for any t ∈ R exp(tX)exp(tX)T = exp(tX)exp(tXT ) ==
exp(tX)exp(−tX) = E. So the right side is subset of Lie(O(n)). Nextly let us fix any X ∈ Lie(O(n)). Because
for any t ∈ R exp(tX) ∈ M(n,R). By the argument similar to Example2.4, X ∈ M(n,R). By Proposition2.2,
E = exp(tX)exp(tX)T = exp(t(X +XT ) +O(t2)). By the argument similar to Example2.4, X +XT = O.

proof of (2.3.4). It is similar to the proof of (2.3.3).

Lie(SL(n,R)) = {X ∈M(n,R)|tr(X) = 0}

Lie(SL(n,C)) = {X ∈M(n,C)|tr(X) = 0}
Example 2.7 (R). Because i : R 3 t 7→ exp(t) ∈ (0,∞) is isomorphism of topological groups, R is a Lie group. Clearly
Lie(R) = {a+ nπi|a ∈ R, n ∈ Z}.
Example 2.8 (C). By inverse function theorem about holomorphic function, i : R× (−π, π) 3 (a, b) 7→ exp(a)exp(ib)R is

isomorphism of topological spaces. Clearly i|R × (−π
2
,
π

2
) is isomorphism in Definition2.1. So C is a Lie group. Clearly

Lie(C) = C.

2.3.3 Basic properties of Lie algebra

Lemma 2.1. Let

(S1) A : N 3 n 7→ A(n) ∈M(n,C) and B : N 3 n 7→ B(n) ∈M(n,C).

(A1) B(m) = O(
1

m2
)

(A2) S := supm∈N||A(m)||m <∞
then

{A(m)(E +B(m))}m = A(m)m +O(
1

m
)

Proof.

{A(m)(E +B(m))}m = A(m)(E +B(m))A(m)(E +B(m))...A(m)(E +B(m))

= A(m)m +

m∑
k=1

Ck(m)

Here, for each k ∈ {1, 2, ...,m}

Ck(m) :=
∑

i1<i2<...<ik

A(m)i1B(m)A(m)i2B(m)...A(m)ikB(m)A(m)m−i1−i2...−ik

Then ||Ck(m)|| ≤ mCk||A(m)||m||B(t)||k ≤ S

k!
mkO(

1

m2k
) = O(

1

mk
).

So
∑m
k=1 ||Ck(m)|| = ||C1(m)|| +

∑m
k=2 ||Ck(m)|| ≤ O(

1

m
) +mO(

1

m2
) = O(

1

m
).
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Proposition 2.28. Let G is a Lie sub group of GL(n,C). Then Lie(G) is a R-vector space and for any X,Y ∈ Lie(G)
[X,Y ] ∈ Lie(G).

Proof. There is W such that W is an open subset of GL(n,C) and 1G ∈W and W ∩G ⊂ V .
By the definition of Lie(G), For any X ∈ Lie(G) and a ∈ R, aX ∈ Lie(G).
Let us fix any X,Y ∈ Lie(G). By Proposition2.2,

exp(sX)exp(sY ) = exp(s(X + Y ) +O(s2)) = exp(s(X + Y ))(E +O(s2)) (s→ 0)

So

{exp( t
m

(X + Y ))(E +O(
1

m2
))}m = exp(t(X + Y )) +O(

1

m
)

This implies

exp(t(X + Y )) +O(
1

m
) = {exp( t

m
X)exp(

t

m
Y )}m (m→ ∞)

There is δ > 0 such that exp(s(X + Y ) ∈ W (∀s ∈ (−δ, δ)). Let us fix s ∈ (−δ, δ). So for sufficient larget m ∈ N
exp(s(X + Y )) +O(

1

m
) ∈W ∩G. So exp(s(X + Y )) +O(

1

m
) ∈ V ,

Because V is closed set, exp(t(X + Y )) ∈ V . Consequently X + Y ∈ Lie(G).
Also, by similar argument to the above one,

exp(t[X,Y ]) = lim
m→∞

{exp( t
m
X)exp(

t

m
Y )exp(

−t
m
X)exp(

−t
m
Y )}m

Consequently [X,Y ] ∈ Lie(G).

From the proof of Proposition, the following holds.

Proposition 2.29. Let G is a Lie subgroup of GL(n,C) and V is a closed subset of GL(n,C) and V is a neighborhood
of 1G. And we set

gV := {X ∈M(n,C|exp(tX) ∈ V, |t| � 1}
Then gV is a R-vector space and for any X,Y ∈ gV [X,Y ] ∈ gV .

2.4 The structure of Cω-class manifold of Lie group

2.4.1 Local coordinate system of Lie group

Lemma 2.2. For X1, X2, ..., Xm ∈M(n,C),

exp(X1)exp(X2)...exp(Xm) = E +X1 +X2 + ...+Xm + o(

m∑
i=1

||Xi||)

Proof. For any i,

o(||Xi||) = o(

m∑
i=1

||Xi||)

So, by the definition of exponential of matrix and Lemma2.4.1

exp(X1)exp(X2)...exp(Xm)

= (E +X1 + o(||X1||))(E +X2 + o(||X2||))...(E +Xm + o(||Xm||))
= E +X1 +X2 + ...+Xm

+
∑

2≤k≤m,i1<i2<...<ik

Xi1Xi2 ...Xik + o(

m∑
i=1

||Xi||)

= E +X1 +X2 + ...+Xm

+
∑

2≤k≤m,i1<i2<...<ik

o(Xi1) + o(

m∑
i=1

||Xi||)

= E +X1 +X2 + ...+Xm

+
∑

2≤k≤m,i1<i2<...<ik

o(

m∑
i=1

||Xi||) + o(

m∑
i=1

||Xi||)

= E +X1 +X2 + ...+Xm + o(

m∑
i=1

||Xi||)
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Lemma 2.3. Let us fix any subvectorspace V 1 and V 2 of Cn such that V1 ⊕ V2 = Cn. Then V1 and V2 are closed subset.

Proof. There is P ∈ GL(n,C) such that V1 = P{w ∈ Cn|wj = 0 (j = 1, 2, ..., dimV1)}P−1 and V2 = P{w ∈ Cn|wj =
0 (j = dimV1 + 1, ..., n)}P−1

Lemma 2.4. Let

(S1) G = GL(n,C).

(S2) g1, g2, ..., gm are vector subspaces of Lie(G) such that

Lie(G2) = ⊕mi=1gi

(S3) gi(ϵ) := {X ∈ Lie(G)|||X|| < ϵ} (i = 1, 2, ...,m, ϵ > 0).

i : ⊕mi=1gi(ϵ) → G

∈ ∈

(X1, X2, ..., Xm) 7→ exp(X1)exp(X2)...exp(Xm)

then there is ϵ > 0 such that i(⊕mi=1gi(ϵ)) is an open set and i| ⊕mi=1 gi(ϵ) is Cω-class isomorphism.

Proof. We set

j : G → M(n,C)

∈ ∈

y 7→ log(y)

By Lemma2.2,
j ◦ i(X1, X2, ..., Xm) = X1 +X2 + ...+Xm + o(||X1|| + ||X2|| + ...+ ||Xm||)

So, the jacobian of j ◦ i at O is non-singular. By inverse function theorem(see [13]), the proposition holds.

Lemma 2.5. Let

(S1) G2 is a Lie subgroup of GL(n,C).

Then for sufficient small ϵ > 0,
G2 ∩ exp(B(O, ϵ)) = exp(Lie(G2) ∩B(O, ϵ))

Proof of the right side ⊂ the left side. It is trivial.

Proof of the left side ⊂ the right side. There is a vector subspace q such that M(n,C) = Lie(G) ⊕ q. Proposition2.4,
i : Lie(G) ⊕ q 3 (X,Y ) 7→ exp(X)exp(Y ) is locally homeomorphism. Let us assume there is {ϵk}∞k=1 ⊂ (0, 1) such that
lim
k→∞

ϵ = 0 and for each ϵk the left side ( the right side. By Lemma2.4, there are Zk ∈ B(O, ϵk) and Xk ∈ Lie(G2) and

Yk ∈ q (k = 1, 2, ...) such that for any k
exp(Zk) = exp(Xk)exp(Yk)

and
lim
k→∞

||Xk|| = 0, lim
k→∞

||Yk|| = 0

and
||Yk|| 6= 0

We can assume ||Yk|| ≤ 1 for any k. BecauseB(O, 1) is compact, there is a subsequence {Yφ(k)}∞k=1 such that lim
k→∞

d 1

||Yφ(k)||
eYφ(k) =

Y . Clearly ||Y || = 1. By Proposition2.3, Y ∈ q. So Y /∈ Lie(G).
Because V is a neighborhood of 1G2 , there is ϵ > 0 such that exp(B(O, ϵ)) ∩G2 ⊂ V . Let us fix any t ∈ (0, ϵ).

exp(tY ) = lim
k→∞

exp(td 1

||Yφ(k)||
eYφ(k))
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Because rk := d 1

||Yφ(k)||
e → ∞, t = lim

k→∞

dtrke
rk

. So

exp(tY ) = lim
k→∞

exp(
dtrke
rk

rkYφ(k))

= lim
k→∞

exp(Yφ(k))
⌈trk⌉

For any k,

exp(dtrkeYφ(k)) = {exp(−Xφ(k))exp(Zφ(k))}⌈trk⌉ ∈ G2 ∩ exp(B(O, ϵ)) ⊂ V

Because V is closed set, exp(tY ) ∈ V . So for any t ∈ R

exp(tY ) = exp(
t

d t
δ
e + 1

Y )
⌈
t

δ
⌉+1

∈ G2

So Y ∈ Lie(G2). This is contradiction.

Proposition 2.30. Let G be a topological group and G0 be a connected component of G which contains 1G. Then G0 is
closed normal subgroup of G.

Proof. Because Ḡ0 is connected, Ḡ0 = G0. So G0 is closed. Because x 7→ x−1 is isomorphism, G−1
0 is connected and

1G ∈ G−1
0 . So G−1

0 ⊂ G0. Because x 7→ gx is isomorphism, for any g ∈ G0, gG0 is connected and contains 1G. So for any
g ∈ G0, gG0 ⊂ G0. This implies that G0 is subgroup of G. And for any g ∈ G0, gG0g

−1 is connected and contains 1G..
So for any g ∈ G0, gG0g

−1 ⊂ G0. This implies that G0 is a normal subgroup of G.

Proposition 2.31. Let

(S1) G1 is a connected Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) G2.

(S2) G0 is a connected component of G1 which contains 1G1
.

(A1) N is a connected open neighborhood of 1G1
.

(S3) Nm := {n1n2...nm|ni ∈ N, i = 1, 2, ...,m} for each m ∈ N.

then

(i) G0 is closed and open subset of G1.

(ii) G0 = ∪∞
i=1Ni.

(iii) Any connected component of G1 is closed and open subset of G1.

(iv) G1 satisfies the second axiom of countability. Specially, G1 is paracompact.

(v) G1 is separable.

(vi) G1 is σ-compact.

Proof of (i) and (ii). By Lemma2.5, we can assume N = η(exp(Lie(G2) ∩ B(O, ϵ))) for some ϵ > 0 and N = N−1. We
set H := ∪∞

i=1Ni. By continuity of multiple operation in G1, for each i ∈ N, Ni is connected. Because 1G1
∈ Ni for any

i ∈ N, H is connected. So,
H ⊂ G0

Because Nm is an open subset for each m ∈ N, H is an open subset. Let us fix any g ∈ Hc. If we assume gN ∩H 6= ϕ, then
there is m ∈ N and there are n0 ∈ N and n1, n2, ..., nm ∈ N such that gn0 = n1n2..nm. So g ∈ NmN

−1 = NmN = Nm+1.
This implise g ∈ H. This is a contradiction. So gN ∩H = ϕ. This means H is a closed subset of G1. Because G0 ⊂ H∪Hc

and H is open and Hc is open and G0 is connected and G0 ∩H 6= ϕ, G0 ∩Hc = ϕ. This means

G0 ⊂ H

So G0 = H.

Proof of (iii). Let us fix and set any connected component of G1 C. And let us fix g0 ∈ C. Clearly C = g0G0. Because
Lg0 is isomorphism, C is open and closed.
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Proof of (iv)(v). In the proof of (ii), we set N ′ := η(exp(Lie(G2) ∩ B(O, ϵ))). By (ii), G0 = ∪∞
n=1N

′
n. Because N ′

n

is compact for any n ∈ N, clearly, G0 satisfies the second axiom of countability. Because B(O, ϵ)) is separable, N ′ is
separable. Because N ′

n is separable for any n ∈ N, clearly, G0 is separable. And, by (S1) and (iii), G1 satisfies the second
axiom of countability and G1 is separable.

Proof of (vi). Let {Xi}∞i=1 is a sequence of all connected components of G. Let fix {xi}∞i=1 such that xi ∈ Xi (∀i). In
(A1), we can assume that N is relative compact. Then G = ∪∞

m=1 ∪mk=1 xkN̄m and ∪mk=1xkN̄m is compact (∀m ∈ N). So,
G is σ-compact.

From the proof of Lemma2.5, by Proposition2.2, the following holds.

Lemma 2.6. Let

(S1) G2 is a Lie subgroup of GL(n,C).

(A1) W is a neighborhood of 1G2
in G2.

(S2) gW := {X ∈M(n,C|exp(tX) ∈W |t| � 1}.

Then for sufficient small ϵ > 0,
W ∩ exp(B(O, ϵ)) = exp(gW ∩B(O, ϵ))

Proposition 2.32. Let G is a Lie subgroup of GL(n,C) and W is a neighborhood of 1G. Then

Lie(G) = {X ∈M(n,C)|exp(tX) ∈W (0 ≤ t << 1)}

Proof. By Proposition2.2, there is V such that V is a closed subset of GL(n,C) and V is a neighborhood of 1G and V ⊂W .
Clearly gV ⊂ gW and gV ⊂ Lie(G). We assume that there is X ∈ Lie(G) \ gV . By Proposition2.29, 〈X〉 ∩ gV = {0}. By
Lemma2.4, there is δ > 0 such that

(−δ, δ) × (B(O, δ) ∩ gV ) 3 (t, Y ) → exp(tX)exp(Y ) ∈ GL(n,C)

is injective. By Lemma2.6, {exp(tX)exp(gV ∩ B(O, δ))}t∈(−δ,δ) is a family of neighborhood of some point of G. Because
{exp(tX)exp(gV ∩ B(O, δ))}t∈(−δ,δ) are disjoint, G does not satisfy the second axiom. This contradicts with Proposi-
tion2.31.

By Lemma2.6 and Proposition2.32, the following holds.

Lemma 2.7. Let

(S1) G2 is a Lie subgroup of GL(n,C).

(A1) W is a neighborhood of 1G2
in G2.

(S2) gW := {X ∈M(n,C|exp(tX) ∈W |t| � 1}.

Then for sufficient small ϵ > 0,
W ∩ exp(B(O, ϵ)) = exp(Lie(G2) ∩B(O, ϵ)) (2.4.1)

Theorem 2.1 (von Neumann-Cartan’s theorem I). Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

(S2) g1, g2, ..., gm are vector subspaces of Lie(G2) such that

Lie(G2) = ⊕mi=1gi (2.4.2)

(S3) gi(ϵ) := {X ∈ Lie(G2)|||X|| < ϵ} (i = 1, 2, ...,m, ϵ > 0).

(S4) For any x ∈ G2

ix : ⊕mi=1gi(ϵ) → G2

∈ ∈

(X1, X2, ..., Xm) 7→ xexp(X1)exp(X2)...exp(Xm) (2.4.3)

(S5) ψ := ie

(S6) ϕ := exp(·)

then
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(i) G1 is a Cω-manifold and {ηz ◦ ϕ}z∈G1
is a local coordinate system.

(ii) {ηz ◦ ψ}z∈G1
is a local corrdinate system which is equivalent to {ηz ◦ ϕ}z∈G1

.

(iii) There are open neighborhood of 1G1
U and open neighborhood of 1G2

V and τ : U → V is a Cω-class
homeomorphism.

STEP1. Showing ix is locally injective. We set

jx : G2 → M(n,C)

∈ ∈

y 7→ log(x−1y) (2.4.4)

By Lemma2.2,
jx ◦ ix(X1, X2, ..., Xm) = X1 +X2 + ...+Xm + o(||X1|| + ||X2|| + ...+ ||Xm||) (2.4.5)

So, the jacobian of jx ◦ ix at O is non-singular. By inverse function theorem(see [13]), ix is locally injective.

STEP2. Constructing local corrdinates system of G2. By Lemma2.7, there is ϵ > 0 such that

Vϵ := exp(Lie(G) ∩B(O, ϵ)) = V ∩ exp(B(O, ϵ)) (2.4.6)

Clearly Vϵ is an open neighborhood of 1G2 . By (2.4.6), for any X0 ∈ Lie(G) ∩ B(O, ϵ) and δ > 0 such that B(X0, δ) ⊂
B(O, ϵ),

exp(Lie(G) ∩B(X0, δ)) = V ∩ exp(B(X0, δ)) (2.4.7)

Because the topology of V is equal to the relative topology respect to GL(n,C), ie : Lie(G)∩B(O, ϵ) → G2∩exp(B(O, ϵ))
is an continous and open map. By STEP1, ie is a homeomorphism.

And, for any x ∈ G2, ix : Lie(G2) ∩B(O, ϵ) → xVϵ is homeomorphism.

STEP3. Constructing local corrdinates system of G1. There is δ > 0 such that

VδV
−1
δ Vδ ⊂ Vϵ (2.4.8)

Uδ := η(Vδ). For any x′ ∈ G1, ϕ′x : Lie(G2) ∩B(O, δ) 3 X 7→ x′η(exp(X)) ∈ x′Uδ. Clearly ϕ′x is homeomorphism. By
Proposition, Uϵ and Vϵ satisfy the conditions in Definition2.1.

STEP4. Showing (i). Let us assume zUδ∩wUδ 6= ϕ and let us fix any X ∈ ϕ−1
z (zUδ∩wUδ) and let us set Y := ϕ−1

w (ϕz(X)).
Then

Y = log(τ(w−1zη(exp(X))) (2.4.9)

There are ux, uy ∈ Uδ and vx, vy ∈ Vδ such that
zux = wuy

and
η(vx) = ux, η(vy) = uy

By (2.4.8),
v−1
x ∈ Vϵ (2.4.10)

So
η(v−1

x ) = η(vx)−1

This implies
uyu

−1
x = η(vy)η(v−1

x )

By (2.4.10),
η(vy)η(v−1

x ) = η(vyx
−1
x )

So
Y = log(τ(η(vyx

−1
x )η(exp(X)))) (2.4.11)

Because vyx
−1
x exp(X) ∈ Vϵ,

η(vyx
−1
x )η(exp(X)) = η(vyx

−1
x exp(X))

So
Y = log(vyx

−1
x exp(X)) (2.4.12)

Consequently, ϕ−1
w ◦ ϕz is Cω-class.
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STEP5. Showing (iii). It is possible to show (iii) by from STEP1. to STEP4.

STEP6. Showing ψ−1 ◦ ϕ is locally Cω-homeomorphism. It is possible to show STEP6 by STEP1.

STEP7. Showing (ii). If zUδ ∩ wUδ 6= ϕ,

ϕ−1 ◦ τw ◦ ηz ◦ ϕ = ϕ−1 ◦ ψ ◦ ψ−1 ◦ τw ◦ ηz ◦ ψ ◦ ψ−1 ◦ ϕ

and
ψ−1 ◦ τw ◦ ηz ◦ ϕ = ψ−1 ◦ τw ◦ ηz ◦ ψ ◦ ψ−1 ◦ ϕ

So by STEP6, (iii) holds.

Proposition 2.33. Let G be a Lie group. Then there is an open neighborhood U such that U has no subgroups without
{e}.

Case when Lie(G) = {0}. By von-Neumann Cartan theorem, {e} is an open neighborhood.

Case when Lie(G) 6= {0}. There is ϵ > 0 such that Exp : Lie(G)∩B(O, 2ϵ) 3 X 7→ Exp(X) ∈ Exp(Lie(G)∩B(O, 2ϵ)) is
a diffeomorphism and Exp(Lie(G) ∩ B(O, 2ϵ)) is an open subset of G. We set U := Exp(Lie(G) ∩ B(O, ϵ)). Let us any

Exp(X) ∈ U such that X ∈ Lie(G) ∩B(O, ϵ) \ {0}. We set g := Exp(b ||X||
ϵ

cX). Then ϵ ≤ b||X||
ϵ

c||X|| < 2ϵ. So, g /∈ U .

This implies that U has no subgroups without {e}.

2.4.2 Analycity of Lie group

Definition 2.16 (One-parameter group). We call g ∈ C(R, G) a one-parameter group of G if g(s+ t) = g(s)g(t) (for any
s, t ∈ R).

Proposition 2.34. Let G1 be a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C). Let us assume τ is a
local isomorphism from G1 to G2. And let g ∈ C(R, G) be a one-parameter group of G. Then there is ϵ > 0 and such that
there is the unique X ∈ Lie(G2) such that

τ(g(s)) = exp(sX) ∀s ∈ (−ϵ, ϵ) (2.4.13)

Existence. Let us fix τ : U → V is a local isomorphism and ϵ > 0 and i : Lie(G2) ∩ B(O, 2ϵ) → G2 ∩ exp(B(O, 2ϵ)) be a
homeomorphism and δ > 0 such that g((−2δ, 2δ)) ⊂ U . There is the one-parameter subgroup h such that h|(−2δ, 2δ) =
τ ◦ g|(−2δ, 2δ).

If h ≡ 1G2 , then O satisfies (2.4.13). Else if h ≡ 1G2 , there is t0 ∈ (0, δ) and X1 ∈ Lie(G2) ∩ B(O, ϵ) such that

1G2
6= h(t0) = exp(X1). We set X0 :=

X1

t0
.

There is Y1 ∈ Lie(G2) ∩B(O, ϵ) such that

h(
t0
2

) = exp(Y1)

Then exp(X1) = h(t0) = exp(2Y1). Because 2Y1 ∈ Lie(G2) ∩B(O, 2ϵ), X1 = 2Y1. So,

h(
t0
2

) = exp(
1

2
X1)

And there is Y1 ∈ Lie(G2) ∩B(O, ϵ) such that

h(
t0
4

) = exp(Y2)

Then exp(Y1) = h(
t0
2

) = exp(2Y2). Because 2Y2 ∈ Lie(G2) ∩B(O, 2ϵ), Y1 = 2Y2. So,

h(
t0
4

) = exp(
1

2
Y1) = exp(

1

4
X1)

So, by mathematical induction,

h(
t0
2m

) = exp(
1

2m
X1) (∀m ∈ N)

By calculating powers of both sides,

h(t0
k

2m
) = exp(t0

k

2m
X0) (∀k,m ∈ N)
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Because {t0
k

2m
|k,m ∈ N such that

k

2m
≤ 1} is dense in [0, δ],

h(t) = exp(tX0) (∀t ∈ (−δ, δ))

Uniqueness. Let us fix any X,Y ∈ Lie(G2) such that exp(tX) = exp(tY ) (∀t ∈ R). If there is a ∈ R such that X = aY ,
exp(t(a− 1)Y ) = E (∀t ∈ R). By (i) of Theorem2.1, a = 1 or Y = 0.

If there is X and Y are linear independent, there are Z1, Z2, ..., Zr such that Z1, Z2, ..., Zr, X,−Y are the basis of
Lie(G2). exp(tX) = exp(tY ) implies exp(tX)exp(t(−Y )) = e. This contradicts with (ii) of Theorem2.1.

Theorem 2.2. Let

(S1) G1,1 be a Lie group which is isomorphic to a Lie subgroup G1,2 of GL(n,C).

(S2) G2,1 be a Lie group which is isomorphic to a Lie subgroup G2,2 of GL(n,C).

(A1) Φ ∈ C(G1,1, G2,1) is a homomorphism.

then

(i) There is a homomorphisim of Lie algebras ι : Lie(G1,1) → Lie(G2,1) such that

Φ(η1(exp(tX)) = η2(exp(tι(X))) (|t| � 1) (2.4.14)

(ii) Φ is Cω-class.

(iii) If Φ is a local isomorphism, then ι is an isomorphism.

STEP1. constructing ι. For each X ∈ Lie(G1,1), by Proposition2.34, there is only one Y such that

Φ(η1(exp(tX))) = η2(exp(tY )) (any t such that |t| � 1)

We set ι(X) := Y .

STEP2. Showing ι is a linear. For any X ∈ Lie(G1,1) and a ∈ R, clearly ι(aX) := aι(X).
For any X, Y ∈ Lie(G1,1) and t ∈ R such that |t| � 1,

Φ(η1(exp(t(X + Y ))))

= Φ(η1( lim
m→∞

(exp(
t

m
X)exp(

t

m
Y ))m))

= Φ( lim
m→∞

η1((exp(
t

m
X)exp(

t

m
Y ))m))

= lim
m→∞

Φ(η1((exp(
t

m
X)exp(

t

m
Y ))m))

= lim
m→∞

Φ(η1((exp(
t

m
X)exp(

t

m
Y )))m)

= lim
m→∞

Φ(η1((exp(
t

m
X)exp(

t

m
Y ))))m

= lim
m→∞

{Φ(η1(exp(
t

m
X)))Φ(η1(exp(

t

m
Y )))}m

= lim
m→∞

{η2(exp(
t

m
ι(X)))η2(exp(

t

m
ι(Y )))}m

= lim
m→∞

{η2(exp(
t

m
ι(X))exp(

t

m
ι(Y )))}m

= lim
m→∞

η2({exp( t
m
ι(X))exp(

t

m
ι(Y ))}m)

= η2( lim
m→∞

{exp( t
m
ι(X))exp(

t

m
ι(Y ))}m)

= η2(t(ι(X) + ι(Y )))

So
ι(X + Y ) = ι(X) + ι(Y )
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STEP2. Showing (ii). Let ψi is the local corrdinate of Gi,2 in von Neumann-Cartan’s theorem(i = 1, 2). By (i), for any
x ∈ G1,1 and X ∈ Lie(G1,1) such that ||X|| � 1

Φ(ηx,1 ◦ ψ−1
1 (X)) = Φ(x)η2(ψ−1

2 (ι(X))

This implies
ψ2(τΦ(x),2(Φ(ηx,1 ◦ ψ−1

1 (X)))) = ι(X)

Because ι is a linear mapping, Φ is Cω.

STEP3. Showing ι([X,Y ]) = [ι(X), ι(Y )]. By Proposition2.18, for any X, Y ∈ Lie(G1,1) and t ∈ R such that |t| � 1,

Φ(η1(exp(t([X,Y ])))

= Φ(η1( lim
m→∞

(exp(

√
t

m
X)exp(

√
t

m
Y )exp(

−
√
t

m
X)exp(

−
√
t

m
Y ))m))

= Φ( lim
m→∞

η1((exp(

√
t

m
X)exp(

√
t

m
Y )exp(

−
√
t

m
X)exp(

−
√
t

m
Y ))m))

= lim
m→∞

Φ(η1((exp(

√
t

m
X)exp(

√
t

m
Y )exp(

−
√
t

m
X)exp(

−
√
t

m
Y ))m))

= lim
m→∞

Φ(η1((exp(

√
t

m
X)exp(

√
t

m
Y )exp(

−
√
t

m
X)exp(

−
√
t

m
Y )))m)

= lim
m→∞

Φ(η1((exp(

√
t

m
X)exp(

√
t

m
Y )exp(

−
√
t

m
X)exp(

−
√
t

m
Y ))m))

= lim
m→∞

Φ(η1((exp(

√
t

m
X)exp(

√
t

m
Y )exp(

−
√
t

m
X)exp(

−
√
t

m
Y ))))m

= lim
m→∞

{Φ(η1(exp(

√
t

m
X)))Φ(η1(exp(

√
t

m
Y )))Φ(η1(exp(−

√
t

m
X)))Φ(η1(exp(−

√
t

m
Y )))}m

= lim
m→∞

{η2(exp(

√
t

m
ι(X)))η2(exp(

√
t

m
ι(Y )))η2(exp(−

√
t

m
ι(X)))η2(exp(−

√
t

m
ι(Y )))}m

= lim
m→∞

{η2(exp(

√
t

m
ι(X))exp(

√
t

m
ι(Y ))exp(−

√
t

m
ι(X))exp(−

√
t

m
ι(Y )))}m

= lim
m→∞

η2({exp(
√
t

m
ι(X))exp(

√
t

ι
(Y ))exp(−

√
t

m
ι(X))exp(−

√
t

ι
(Y ))}m)

= η2( lim
m→∞

{exp(
√
t

m
ι(X))exp(

√
t

ι
(Y ))exp(−

√
t

m
ι(X))exp(−

√
t

ι
(Y ))}m)

= η2(t[ι(X), ι(Y )])

Proposition 2.35. Let

(S1) G1,1 be a Lie group which is isomorphic to a Lie subgroup G1,2 of GL(n,C).

(S2) G2,1 be a Lie group which is isomorphic to a Lie subgroup G2,2 of GL(n,C).

(S3) G3,1 be a Lie group which is isomorphic to a Lie subgroup G3,2 of GL(n,C).

(A1) f : G1,1 → G2,1 is a homomorphism of Lie groups.

(A2) g : G2,1 → G3,1 is a homomorphism of Lie groups.

(S4) By Propositionprop:homomorphismanalytic, homomorphisms of Lie algebras derived from f ◦ g, f, g, re-
spectively. We define Φ(f ◦ g),Φ(f),Φ(g) are homomorphisms of Lie algebras derived from f ◦ g, f, g,
respectively.

then
Φ(f ◦ g) = Φ(g) ◦ Φ(f) (2.4.15)

Proof. Let us fix any X ∈ Lie(G1,1). Because for t ∈ R such that |t| � 1

η3(exp(tΦ(g ◦ f)X)

= g ◦ f(η1(exp(tX)))

= g(η2(exptΦ(f)X))

= η3(exp(tΦ(g)Φ(f)X))

Φ(f ◦ g) = Φ(g) ◦ Φ(f).
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By Theorem2.2, any inner automorphism of G1 is Cω-class. By von-Neumann Cartan’s theorem, This implies the
following two Proposition.

Proposition 2.36. Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

(S2) For sufficient small open neighborhood of 1G2
V and z ∈ G1, we set µz : V 3 g 7→ gz ∈ G1.

then

(i) {µz ◦ ϕ}z∈G1 is a local corrdinate system of G1 which is equivalent to {ηz ◦ ϕ}z∈G1 .

(ii) {µz ◦ ψ}z∈G1
is a local corrdinate system of G1 which is equivalent to {ηz ◦ ψ}z∈G1

.

Proposition 2.37. Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

then for any g ∈ G1,

(i) lg : G1 3 x 7→ gx ∈ G1 is Cω-class homeomorphism.

(ii) rg : G1 3 x 7→ xg ∈ G1 is Cω-class homeomorphism.

These Propositions imply the following theorem.

Theorem 2.3 (von Neumann-Cartan’s theorem II). Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

(S2) g1, g2, ..., gm are vector subspaces of Lie(G2) such that

Lie(G2) = ⊕mi=1gi

(S3) gi(ϵ) := {X ∈ Lie(G2)|||X|| < ϵ} (i = 1, 2, ...,m, ϵ > 0).

(S4) For any x ∈ G2

ix : ⊕mi=1gi(ϵ) → G2

∈ ∈

(X1, X2, ..., Xm) 7→ xexp(X1)exp(X2)...exp(Xm)

then G1 ×G1 3 (x, y) 7→ xy−1 ∈ G1 is Cω-class.

Proposition 2.38 (Exponential mapping of Lie algebra). Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

(S2) ϵ > 0 and exp(Lie(G1) ∩B(O, ϵ)).

(S3) For each X ∈ Lie(G1), set Exp(X) := η(exp(
X

m
))m for m ∈ N such that

X

m
∈ B(O, ϵ).

then the followings hold.

(i) Exp is well-defined and continuous.

Proof of (i). Let us fix any m,m′ ∈ N such that
X

m
∈ B(O, ϵ) and

X

m′ ∈ B(O, ϵ). Then
iX

mm′ ∈ B(O, ϵ) i =

0, 1, ...,max(m,m′). By the Definition of locally isomorphism(Definition2.1),

η(exp(
t

m
X))m = η(exp(

t

mm′X))mm
′

= η(exp(
t

m′X))m
′

So Exp is well-defined. Because η and exp are continuous and G1 is topological group, Exp is continuous.
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2.5 Correspondence between Lie groups and Lie algebras

2.5.1 Tangent space of Lie Groups

Proposition 2.39. Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

(S2) For each X ∈ Lie(G1),

ι(X)(f) :=
d

dt
|t=0f(η(exp(tX))) (f ∈ C∞(1G1

))

then ι(Lie(G1)) ⊂ T1G1
(G1) and ι : Lie(G1) → T1G1

(G1) is a isomorphism of vector spaces.

STEP0:Proof of ι(Lie(G1)) ⊂ T1G1
(G1). By Leibniz product rule in calculas, ι(Lie(G1)) ⊂ T1G1

(G1).

STEP1:Proof of linearity of ι. Let us fix anyX ∈ Lie(G1) and a ∈ R. For the formula of the compositition of f(η(exp(·X)))
and a·, ι(aX) = aι(X)

And let us fix any Y ∈ Lie(G1). By Lemma2.2,

f(η(ψ(t(X + Y )))) = f(η(φ(φ−1ψ(t(X + Y ))))) = f(η(φ((tX, tY ) + o(t))))

By the chain rule, ι(X + Y )(f) =
d

dt |t=0

f(η(φ(tX, tY ))). By applying the chain rulte to the composition of (u,w) 7→

f(η(φ(uX,wY ))) and t 7→ (tX, tY ),
Because f(η(exp(t(X + Y )))) = f(η(exp(tX)exp(tY ) + o(t))),

d

dt |t=0

f(η(φ(tX, tY ))) = ι(X)(f) + ι(X)(f)

STEP2:Proof of that ι is injective. Let us fin any X ∈ Lie(G1) such that X 6= O. By linearity of ι, it is enought to show
ι(X) 6= 0. There is X2, X3, ..., Xr ∈ Lie(G1) such that X,X2, X3, ..., Xr is a basis of Lie(G1). Here, r := Lie(G1). Let us
set fX(η(ψ(t1, t2, ..., tr))) := t1 for |t1| � 1, ..., |tr| � 1. Clearly fX ∈ C∞(1G1

) and ι(X)(fX) = 1. So ι(X) 6= 0.

STEP3:Proof of that ι is surjective. By Proposition2.1, dim T1G1
= Lie(G1). By this and STEP1 and STEP2, ι is surjec-

tive.

2.5.2 Homomorphism of Lie groups

Theorem 2.4. Let

(S1) G1,1 be a Lie group which is isomorphic to a Lie subgroup G1,2 of GL(n,C).

(S2) G2,1 be a Lie group which is isomorphic to a Lie subgroup G2,2 of GL(n,C).

(A1) Φ ∈ C(G1,1, G2,1) is a homomorphism.

then

(i) dΦe(i1(X)) = i2(ι(X)) (∀X ∈ Lie(G1,1). Here, ii : Lie(Gi,1) → Te(Gi,1) (i = 1, 2) are isomorphisms of
two vector spaces.

(ii) Φ(Exp(X)) = Exp(i−1
2 (dΦe(i1(X)))) (∀X ∈ Lie(G1,1))

STEP1. Showing (i). Let us fix any X ∈ Lie(G1,1) and f ∈ C∞(1G2,1
). Then

f(Φ(η1(exp(tX)))) = f(η2(exptι(X))) (∀t : |t| � 1)

Differentiating both sides by t and setting t = 0,

dΦe(ι1(X))(f) = i2(ι(X))(f)
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STEP2. Showing (ii). Let us fix any X ∈ Lie(G1,1). For sufficient large m ∈ N,

Φ(Exp(X)) = Φ(Exp(
1

m
X))m

= Φ(η1(exp(
1

m
X)))m

= η2(exp(ι(
1

m
X)))m

= η2(exp(i−1
2 (i2(ι(

1

m
X)))))m

= η2(exp(dΦe(i1((
1

m
X)))))m

= Exp(dΦe(i1((
1

m
X))))m

= Exp(dΦe(i1((m
1

m
X))))

= Exp(dΦe(i1((X))))

2.5.3 Invariant vector fields of Lie Groups

It is easy to show the following proposition.

Proposition 2.40 (Regular representation on C∞(G)). Let G1 be a Lie group which is locally isomorphic to a linear Lie
subgroup G2. For g ∈ G1 and f ∈ C∞(G1), we set

πL(g)f(x) := f(g−1x), πR(g)f(x) := f(xg), (x ∈ G1) (2.5.1)

Then πL and πR are representation of G1. We call πL the left regular representation of G1 and πR the right regular
representation of G1

Proof. By

πL(g1)πL(g2)f(x)

= πL(g2)f(g−1
1 x)

= f(g−1
2 g−1

1 x)

= f((g1g2)−1x)

= πL(g1g2)f(x)

and

πR(g1)πR(g2)f(x)

= πR(g2)f(xg1)

= f(xg1g2)

= πR(g1g2)f(x)

πL and πR are representation of G1.

Definition 2.17 (D(M)). Let M be a C∞-class manifold. Denote the set of all C∞-class vector fields by X. Denote the
algebra on R generated by C∞(M,R) and X(M) with the operation of EndC(C∞(M)) by D(M).

Definition 2.18 (Invariant vector field on a Lie group). Let G1 be a Lie group which is locally isomorphic to a Lie
subgroup G2. We call P ∈ D(G1) an left invariant differential operation if πL(g)P = PπL(g) for any g ∈ G1. We call
P ∈ D(G1) an right invariant differential operation if πR(g)P = PπR(g) for any g ∈ G1. If P ∈ X(G1) then we call P a
left invariant vector field on G1 by XL(G1). If P ∈ X(G1) then we call P a right invariant vector field on G1. We denote
the set of all left invariant differential fields on G1 by by XL(G1). We denote the set of all right invariant differential
fields on G1 by by XR(G1).

The following clearly holds.
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Proposition 2.41. Let G1 be a Lie group which is locally isomorphic to a Lie subgroup G2. Then XL(G1) and XR(G1)
are algebras on R.

Proposition 2.42. Let

(S1) G1 is a Lie group which is isomorphic to a Lie subgroup G2 of GL(n,C).

(S2) For each X ∈ Lie(G1),

ιL(X)(f)(x) :=
d

dt
|t=0f(xη(exp(tX))) (f ∈ C∞(1G1

, x ∈ G1)) (2.5.2)

and

ιR(X)(f)(x) :=
d

dt
|t=0f(η(exp(−tX))x) (f ∈ C∞(1G1 , x ∈ G1)) (2.5.3)

then the followings hold.

(i) ιL is an isomorphism of Lie algebras between Lie(G1) and XL(G1). In particular, for anly X,Y ∈ Lie(G1)

[ιL(X), ιL(Y )] = ιL([X,Y ]) (2.5.4)

(ii) ιR is an isomorphism of Lie algebras between Lie(G1) and XR(G1).

STEP1. ιL(Lie(G1)) ⊂ XL(G1). By analiticity of multiple operation of G1 and the product rule in calculas, ιL(Lie(G1)) ⊂
XL(G1). For any g ∈ G1 and f ∈ C∞(G1) and x ∈ G1,

πL(g)ιL(X)(f)(x)

= ιL(X)(f)(g−1x)

=
d

dt
f((g−1x)η(exp(tX)))|t=0

=
d

dt
f(g−1(xη(exp(tX))))|t=0

=
d

dt
πL(g)f(xη(exp(tX)))|t=0

= ιL(X)πL(g)f(x) (2.5.5)

So ιL(X) is left invariant.

STEP2. ιR(Lie(G1)) ⊂ XR(G1). It is easy to show this by the similar method to STEP1.

STEP3. ιL and ιR are R-linear and injective. It is easy to show this by the similar method to Proposition2.39.

STEP4. ιL and ιR are surjective. Let us fix any F ∈ XL(G1). By Proposition2.39, there is X ∈ Lie(G1) such that

F (f)(e) = ι(X)(f) (∀f ∈ C∞(G1), ∀x ∈ G1) (2.5.6)

Because F is a left invariant vector field, for any x ∈ G1,

F (f)(x) =

= πL(x−1)(F (f))(e)

= F (πL(x−1)(f))(e)

=
d

dt
πL(x−1)(f)(η(exp(tX)))|t=0

=
d

dt
f(xη(exp(tX)))|t=0

= ιL(X)(f)(x) (2.5.7)
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STEP5. Calculas of ι([X,Y ]). Let us fix any f ∈ C∞(1G1
).

By Proposition2.18,

ι([X,Y ])(f)

=
d

dt
f(η(exp(t[X,Y ])))|t=0

=
d

dt
f(η(exp(

√
tX)exp(

√
tY )exp(−

√
tX)exp(−

√
tY )))|t=0 (2.5.8)

STEP6. Taylor expansion of f(η(exp(t1X1)exp(t2X2)exp(t3X3)exp(t4X4))). By the definition of ιL, for any i4 ∈ Z ∩
[0,∞),

ιL(X4)i4(f)(exp(t1X1)exp(t2X2)exp(t3X3))

= (
∂

∂t4
)i4f(η(exp(t1X1)exp(t2X2)exp(t3X3)exp(t4X4)|t4=0 (2.5.9)

By repeating the above discussion in the same manner below, for any i1, i2, i3, i4 ∈ Z ∩ [0,∞),

ιL(X1)i1ιL(X2)i2ιL(X3)i3ιL(X4)i4(f)(e)

= (
∂

∂t1
)i1 ...(

∂

∂t4
)i4f(η(Π4

k=1exp(tkXk))|t=0 (2.5.10)

So,

f(exp(t1X1)exp(t2X2)exp(t3X3)exp(t4X4))

= f(e)

+

4∑
k=1

ιL(Xk)(f)

+
∑

t1+...+t4=2

1

i1!

1

i2!

1

i3!

1

i4!
ιL(X1)i1 ...ιL(X4)i4f(e)ti1 ...ti4

+ o(|t|2) (2.5.11)

STEP7. Showing ιL([X,Y ]) = [ιL(X), ιL(Y )]. In we set t1 = t2 = −t3 = −t4 = t and X1 = −X3 = X and X2 = −X4 = Y
in (2.5.11),

f(exp(
√
tX)exp(

√
tY )exp(−

√
tX)exp(−

√
tY ))

= f(e)

+ [ι(X), ι(X)](f)t

+ o(|t|) (2.5.12)

By (2.5.8),
ι([X,Y ])(f) = [ι(X), ι(X)](f) (2.5.13)

STEP4 in the proof of Proposition2.42 implies the following Proposition.

Proposition 2.43. Let G1 be a Lie group which is locally isomorphic to a Lie subgroup G2. Let us fix any F1, F2 ∈ XL(G1)
such that F1(f)(e) = F2(f)(e) (∀f ∈ C∞(e)). Then F1 = F2.

2.5.4 Taylor expansion of Cω-class function

STEP6 in the proof of Proposition2.42 implies the following Proposition.

Proposition 2.44. Let

(S1) G1 be a Lie group which is locally isomorphic to a Lie subgroup G2.
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(S2) f be a C∞-class function at a neighborhood of 1G1
.

(S3) X1, ..., Xm ∈ Lie(G1).

(S4) g(t) := f(
∑m
i=1 tiXi).

Then

(
∂

∂t1
)i1 ...(

∂

∂tm
)img(0) = ιL(X1)i1 ...ιL(Xm)imf (2.5.14)

Theorem 2.5. Let

(S1) G1,1 is a Lie group which is isomorphic to a Lie subgroup G1,2 of GL(n,C).

(S2) G2,1 is a Lie group which is isomorphic to a Lie subgroup G2,2 of GL(n,C).

then the followings are equivalent.

(i) Lie(G1,1) and Lie(G2,1) are isomorphic.

(ii) G1,1 and G2,1 are locally isomorphic.

Proof of (ii) =⇒ (i). If (ii), by the same argument of the proof of Proposition2.2 and Lemma2.6 and von Neumann-
Cartan’s theorem, (ii) =⇒ (i).

Proof of (i) =⇒ (ii). Let Φ : Lie(G1,1 → Lie(G2,1 be an isomorphism. Let X1,1, ..., X1,m be a basis of Lie(G1,1. And
let us set X2,i := Φ(X1,i) (i = 1, 2, ...,m). We set ej : (−ϵ, ϵ)m 3 (t1, ..., tm) → Πm

i=1exp(tiXj,i) (j = 1, 2). There is ϵ > 0
such that ej((−ϵ, ϵ)m) is an open subset of Gj and ej((−ϵ, ϵ)m) ⊂ Vj and ej is homeomorphism(j = 1, 2).

We set Ψ : η1(e1((−ϵ, ϵ)m)) → η2(e2((−ϵ, ϵ)m)) by Ψ(e1(t)) := e2(t). There is δ > 0 such that ej((−δ, δ)m)ej((−δ, δ)m) ⊂
ej((−ϵ, ϵ)m) (j = 1, 2). We set ϕj,i : (−δ, δ)2m → (−ϵ, ϵ) by

ej(x)ej(y) = ej(ϕj,1(x,y), ..., ϕj,m(x,y)) (2.5.15)

(j = 1, 2). We set ψj,i(ej(x)ej(y)) := ϕj,i(x,y). By von Neumann-Cartan’s theorem, ϕ{j,i} are relal analytic functions.
So, for each j, i there are Cj,i,I,J I, J ∈ Zm

ϕj,i(x,y) =
∑

Cj,i,I,J t
(I,J) (2.5.16)

We will show ϕ1,i = ϕ2,i (i = 1, 2, ...,m). By Proposition2.44,

Cj,i,I,J = ιL(X1)i1 ...ιL(Xm)imιL(X1)j1 ...ιL(Xm)jmψj,i(0) (2.5.17)

Let us fix k, l ∈ {1, 2, ...,m}. Because Φ is an isomorphism, there is ck,l,1, ..., ck,l,m ∈ R such that

[Xj,k, Xj,l] =

m∑
i=1

ck,l,iXj,i (2.5.18)

So, by (2.5.4),

ιL(Xj,k)ιL(Xj,l) = ιL(Xj,l)ιL(Xj,k) +

m∑
i=1

ck,l,iιL(Xj,i) (2.5.19)

By repeating apply of this equation to ιL(X1)i1 ...ιL(Xm)jm , C1,i,I,J = C2,i,I,J . So ϕ1,i = ϕ2,i (i = 1, 2, ...,m).
We set Wj := ηj(ej((−δ, δ)2m)) j = 1, 2. Because ϕ1,i = ϕ2,i (i = 1, 2, ...,m), for each x, y ∈W1

xy ∈W1 ⇐⇒ Ψ(x)Ψ(y) ∈W2 (2.5.20)

and if xy ∈W1

Ψ(xy) = Ψ(x)Ψ(y) (2.5.21)

Consequently, G1,1 and G2,1 are locally isomorphic.
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2.5.5 Differential representation

Clearly the following holds.

Proposition 2.45 (Definition of differential representation of a continuous representation of Lie group). Let

(S1) G1 is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C). G2 has at most countable
connected components.

(S2) (π, V ) is a finite dimensional continuous representation of G1.

(S3) P := {v1, v2, ...., vr} is a basis of V .

(S4) For each f ∈ EndC(V ), denote the representation matrix with respect to P by Φ(f).

(S5) By Φ|GL(V ) : GL(V ) → GL(n,C), introduces a topology of GL(V ).

Then

(i) Φ|GL(V ) : GL(V ) → GL(n,C) is an isomorphism of topological groups. So, GL(V ) is a Lie group.

(ii) π : G1 → GL(V ) is an homomorphism of Lie groups.

(iii) Lie(GL(V )) = M(nC). By Proposition2.2, π introduces the homomorphism from Lie(G1) to M(nC). we
denote this homomorphism by dπe. We call dπe the differential representation of π.

(iv) dπ is continuous.

Proof of (iv). Because dπ is a linear mapping from Lie(G1) to M(nC), dπ is continuous.

Proposition 2.46 (Adjoint representation of a Lie group). Let

(S1) G1 is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C). G2 has at most countable
connected components.

(S2) For each g ∈ G1, we define σ(g) ∈ Auto(G) by σ(g)(x) := gxg−1 (x ∈ G1).

Then

(i) For any g ∈ G1, σ(g) is an automorhism of a Lie group. By Proposition2.2, we denote the endmorphism
of Lie(G1) by Ad(g).

(ii) Ad(G1) ⊂ GL(Lie(G1))

(iii) (Ad,GL(Lie(G1))) is a continuous representation of G1 on R.

Proof of (i). Because σ(g−1) = σ(g)−1 and analyticity of the group operation on G1, (i) holds.

Proof of (ii). Because σ(1G1) = idG1 , Ad(1G1) = idLie(G1). Let us fix any g, h ∈ G1. Because σ(gh) = σ(g)σ(h), Ad(gh)
is the homomorphism of a Lie algebra Lie(G1) derived from σ(g)σ(h). By Proposition2.35, Ad(gh) = Ad(g)Ad(h). So,
Ad(G1) ⊂ GL(Lie(G1)).

Proof of (iii). Let us fix v := (v1, v2, ..., vr) which is a basis of Lie(G1). We denote the representation matrix of Ad(g)
respect to v by R(g). Let us fix ϵ > 0 such that exp(B(O, ϵ) ∩ Lie(G1)) ⊂ V . Let us fix δ > 0 such that {vY |Y ∈
B(0, 2δ) ∩ Cr} ⊂ B(O, ϵ) ∩ Lie(G1). For any Y ∈ B(0, 1) ∩ Cr, exp(δAd(g)vY ) = τ(gη(exp(δY ))g−1). So,

vR(g)Y =
1

δ
log(τ(gη(exp(δY ))g−1)) (2.5.22)

By setting Y = e1, ..., Y = er, vR(·) is continuous. Because v is N × r-matrix and rank(v) = r, R(·) is continuous. So,
(Ad,Lie(G1)) is a continuous representation of G1.

Proposition 2.47. Here are the settings and assumptions.

(S1) G1 is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C).

Then

(i) dAd = ad.

(ii) Ad(Exp(X)) = Exp(ad(X)) (∀X ∈ Lie(G1).
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Proof of (i). Let us assume i : Lie(G1) → Te(G1) be an isomorphism of vector spaces in Proposition2.39. Let us fix any
X,Y ∈ Lie(G1) and s, t ∈ R such that |s| � 1, |t| � 1 and f ∈ C∞(e). Then

f(Exp(sAd(Exp(tX))Y )) = f(Exp(tX)Exp(sY )Exp(−tX))

And, by Proposition2.4,
Ad(Exp(tX)) = exp(tdAd(X))

Because

d

dt
|t=0

d

ds
|s=0f(Exp(tX)Exp(sY )Exp(−tX))

=
d

ds
|s=0

d

dt
|t=0f(η(exp(sY ) + st[X,Y ] +O(t2)))

=
d

ds
|s=0i(s[X,Y ])(f)

= i([X,Y ])(f) = i(ad(X)Y )(f)

and

d

dt
|t=0

d

ds
|s=0f(Exp(sAd(Exp(tx))Y ))

=
d

dt
|t=0i(Ad(Exp(tX))(Y ))(f)

=
d

dt
|t=0i(exp(tdAd(X)(Y ))(f)

=
d

dt
|t=0i(E + tdAd(X)(Y ) +O(t2))(f)

=
d

dt
|t=0i(E)(f) + ti(dAd(X)(Y ))(f) +O(t2)

= i(dAd(X)(Y ))(f)

i(dAd(X)(Y ))(f) = i(ad(X)Y )(f). So, dAd = ad.

Proof of (ii). By (2.5.5) and (i),
Ad(Exp(X)) = Exp(dAd(X)) = Exp(ad(X))

Proposition 2.48. Here are the settings and assumptions.

(S1) G is a linear Lie group of GL(n,C).

Then for any g ∈ G

(i) The representation matrix of Ag(g) is g ⊗ (gT )−1 with basis {Ei,j}i,j.
(ii) det(Ag(g)) = 1.

Proof of (i). We set h := g−1. Let us fix any i0, j0 and i, j. Then

(gEi0,j0g
−1)i,j = (gEi0,j0g

−1)i,j =
∑
l

(gEi0,j0)i,lhl,j =
∑
k,l

gi,k(Ei0,j0)k,lhl,j = gi,i0hj0,j = gi,i0h
T
j,j0

So, the representation matrix of Ag(g) is g ⊗ (gT )−1.

Proof of (ii). By Proposition1.5 and (i), (ii) holds.

2.5.6 Baker-Campbell-Hausdorff formula

Proposition 2.49. Here are the settings and assumptions.

(S1) S, T ∈M(n,C).

Then
d

ds
|s=0exp(−S)exp(S + sT ) =

E − exp(−ad(S))

ad(S)
T =

∑
p=0

(−1)p
ad(S)p

(p+ 1)!
T
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STEP1. Simplifieing S. Clearly
d

ds
|s=0exp(−S)exp(S + sT )

and ∑
p=0

(−1)p
ad(S)p

(p+ 1)!
T

are continuous respects to S. For any P ∈ GL(n,C)

P
d

ds
|s=0exp(−S)exp(S + sT )P−1

=
d

ds
|s=0exp(−PSP−1)exp(PSP−1 + sPTP−1)

and

P
∑
p=0

(−1)p
ad(S)p

(p+ 1)!
TP−1

=
∑
p=0

(−1)p
ad(PSP−1)p

(p+ 1)!
PTP−1

So, we can assume S is a diagonal matrix.

STEP2. Linearity respects to T . By Wierstrass’s theorem,

exp(−S)exp(S + sT )

= exp(−S) lim
m→∞

d

ds
|s=0

m∑
i=0

(S + sT )i

i!

We set

Lm(T ) := exp(−S)
d

ds
|s=0

m∑
i=0

(S + sT )i

i!

Because

d

ds
|s=0(S + sT )i

=
d

ds
|s=0

∑
j=0

sSjTSi−j−1 + o(s)

=
∑
j=0

SjTSi−j−1

Lm(·) is linear for any m ∈ N. Because Lm(·) normed converges to

d

ds
|s=0exp(−S)exp(S + s·)

d

ds
|s=0exp(−S)exp(S + s·) is linear.

STEP3. Simplifying T . By STEP2, we can assume T = Ei,j .

STEP4. Showing this equation. If [S, T ] = 0, the both side equals to T . So, we can assume [S, T ] 6= 0. We set λ1, ..., λn
by

S =


λ1 0 ... 0
0 λ2 ... 0
... ... ... ...
0 0 ... λn


We set λ = λi − λj . Then

ST = λT
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Because [S, T ] 6= 0, λi 6= λj and i 6= j. Because λjT and T are commutative, by replacing S by S − λjT , we can assume
λj = 0. Then

TS = T 2 = O

So
ad(S)T = λT

d

ds
|s=0exp(−S)exp(S + sT )

=
d

ds
|s=0exp(−S){

m∑
i=1

s
Si−1

i!
T + o(1)}

= exp(−S)

m∑
i=1

Si−1

i!
T

= exp(−S)

m∑
i=1

λi−1

i!
T

= exp(−λ)

m∑
i=1

λi−1

i!
T

= exp(−λ)
expλ− 1

λ
T

=
1 − exp(−λ)

λ
T

=

m∑
i=1

(−1)i+1λ
i−1

i!
T

=

m∑
i=1

(−1)i+1 ad(S)i−1

i!
T

Consequently, this Proposition holds.

Proposition 2.50. Let

(S1) S, T ∈M(n,C).

Then

(i) If |t| < log2

||X|| + ||Y ||
then Z(t) := log(exp(tX)exp(tY )) converges.

(ii) We set {Zm}∞m=1 by Z(t) =
∑∞
m=1 Zmt

m then

Z1 = X + Y

and for any m ∈ N ∩ [2,∞)

Zm =
∑

ϵ∈{0,1}m−2

Cϵad(Wϵ1)...ad(Wϵm−2)ad(X)Y (2.5.23)

Here W0 := X and W1 := Y and Cϵ ∈ Q and Cϵ does not X,Y .

(iii) If ||X|| + ||Y || < log2 then Z :=
∑∞
m=1 Zm exists and exp(X)exp(Y ) = expZ.

Proof of (i). If |t| < log2

||X|| + ||Y ||
then

||exp(tX)exp(tY ) − E||

≤ lim
m→∞

||
m∑
i=0

1

i!
tiXi|

m∑
i=0

1

i!
tiY i − E||

≤ lim
m→∞

|
m∑
i=0

1

i!
|t|i||X||i

m∑
i=0

1

i!
|t|i||Y ||i − 1|

≤ |exp|t|||X|||exp|t|||Y || − 1|
≤ |exp|t|(||X|| + ||Y ||) − 1|
< 1
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So, if |t| < log2

||X|| + ||Y ||
then log(exp(tX)exp(tY )) converges.

Proof of (ii). By Proposition2.47,

d

dt
exp(Z(t))

=
d

dt
exp(tX)exp(tY )

= exp(tX)Xexp(tY ) + exp(tX)exp(tY )Y

= exp(tX)exp(tY )exp(−tY )Xexp(tY ) + exp(tX)exp(tY )Y

= exp(Z(t))(exp(−tY )Xexp(tY ) + Y )

= exp(Z(t))(exp(−tad(Y ))X + Y )

So

exp(−Z(t))
d

dt
exp(Z(t)) = exp(−tad(Y ))X + Y

Because

exp(−Z(t))
d

dt
exp(Z(t))

= exp(−Z(t))
d

ds
|s=0exp(Z(t+ s))

= exp(−Z(t))
d

ds
|s=0exp(Z(t) + sZ ′(t) + o(s))

= exp(−Z(t))
d

ds
|s=0exp(Z(t) + sZ ′(t)) + o(s)

= exp(−Z(t))
d

ds
|s=0exp(Z(t) + sZ ′(t))

by Proposition2.49, ∑
p=0

(−1)p
ad(Z(t))p

(p+ 1)!
Z ′(t) = exp(−tad(Y ))X + Y

So,

Z ′(t) =
∑
p=1

(−1)p+1 ad(Z(t))p

(p+ 1)!
Z ′(t) + exp(−tad(Y ))X + Y

Because ∑
p=1

(−1)p+1 ad(Z(t))p

(p+ 1)!
Z ′(t)

has no constant,
Z1 = X + Y

We assume Z1, ..., Zm satisfies the condition (2.5.23). Because

Z(t) = Z1t+ Z2t
2 + ...+ Zmt

m + ...

and
Z ′(t) = t+ 2Z2t+ ...+mZmt

m−1 + (m+ 1)Zm+1t
m...

(m+ 1)Zm+1 =

m∑
k=1

∑
i1+...+ik+(l−1)=m−1

lZi1 ...ZikZl +
(−1)m

m!
ad(Y )mX
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Because of (2.5.6) and the assumption of this mathematical induction,

(m+ 1)Zm+1

=
∑

ϵ∈{0,1}m−1

D1,ϵad(Wϵ1)...ad(Wϵm−1
)ad(X)X

+
∑

ϵ∈{0,1}m−1

D2,ϵad(Wϵ1)...ad(Wϵm−1
)ad(X)Y

+
∑

ϵ∈{0,1}m−1

D3,ϵad(Wϵ1)...ad(Wϵm−1
)ad(Y )X

+
∑

ϵ∈{0,1}m−1

D4,ϵad(Wϵ1)...ad(Wϵm−1
)ad(Y )Y

Because ad(X)X = 0 and ad(Y )Y = 0 and ad(Y )X = −ad(X)Y ,

(m+ 1)Zm+1

=
∑

ϵ∈{0,1}m−1

(D2,ϵ −D3,ϵ)ad(Wϵ1)...ad(Wϵm−1)ad(X)Y

So Zm+1 satisfies the condition (2.5.23).

2.5.7 Analytic subgroup

Theorem 2.6 (Analytic subgroup). Let

(S1) G1 is a Lie group which is locally isomorphic to a linear Lie subgroup G2 of GL(n,C).

(S2) h be a Lie subalgebra of Lig(G1).

Then there is H such that H is a subgroup of G1 and H is a Lie group and Lie(H) = h. We say H is a analytic subgroup
of G whose Lie algebra is h.

STEP1. Construction of H. There are X1, ..., Xk, ..., Xm, ..., XN ∈ M(n,C) such that N = n2 and X1, ..., XN is a basis
of M(n,C) X1, ..., Xk, ..., Xm is a basis of Lie(G1) and X1, ..., Xk is a basis of h. By von Neumann-Cartan’s theorem,
there is ϵ > 0 such that

e : (−ϵ, ϵ)m 3 t 7→ Exp(

m∑
i=1

tiXi) ∈ G1

is a Cω-class homeomorphism to an open subset of U and

E : (−ϵ, ϵ)N 3 t 7→ Exp(

N∑
i=1

tiXi) ∈ GL(nC)

is a Cω-class homeomorphism to an open subset of GL(nC). We set

H := {Exp(X1)...Exp(Xl)|X1, ..., Xl ∈ h, l ∈ N}

Clearly H is subgroup of G1.

STEP2. Constructing the topology of H. We set the topology of H whose fundamental neighborhood system of H is
{hExp(Bk(O, sϵ))|0 ≤ s < 1, h ∈ H}. We will show {hExp(Bk(O, sϵ))|0 ≤ s < 1, h ∈ H} satisfies the aixoms of a
fundamental neighborhood system.

Let us fix any exp(
∑k
i=1 tiXi) such that t ∈ (−sϵ, sϵ)k. We will show there is δ > 0 such that

exp(

k∑
i=1

tiXi)exp(

k∑
i=1

(−δ, δ)Xi) ⊂ exp(

k∑
i=1

(−sϵ, sϵ)Xi) (2.5.24)

There is ϵ1 > 0 such that t+ (−ϵ1, ϵ1)k ⊂ (−sϵ, sϵ)k. There is δ ∈ (0, ϵ) such that

exp(

k∑
i=1

tiXi)exp(

k∑
i=1

(−δ, δ)Xi) ⊂ exp(

k∑
i=1

tiXi +

N∑
i=1

(−ϵ1, ϵ1)Xi)
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By the continuity of exp and log, we can assume

log(exp(

k∑
i=1

tiXi))exp(

k∑
i=1

(−δ, δ)Xi)) ⊂
N∑
i=1

(−ϵ, ϵ)Xi

By Baker-Campbell-Hausdorff formula,

log(exp(

k∑
i=1

tiXi)exp(

k∑
i=1

(−δ, δ)Xi)) ⊂
N∑
i=1

(−ϵ, ϵ)Xi ∩ h

Because exp|(
∑N
i=1(−ϵ, ϵ)Xi) is injective,

exp(

k∑
i=1

tiXi))exp(

k∑
i=1

(−δ, δ)Xi)

⊂ exp(

k∑
i=1

(−ϵ, ϵ)Xi ∩
k∑
i=1

tiXi +

N∑
i=1

(−ϵ1, ϵ1)Xi)

= exp(

k∑
i=1

tiXi +

k∑
i=1

(−ϵ1, ϵ1)Xi)

⊂ exp(

k∑
i=1

(−sϵ, sϵ)Xi)

Let us fix any h1, h2 ∈ H such that

h1Exp(Bk(O, s1ϵ)) ∩ h2Exp(Bk(O, s2ϵ)) 6= ϕ

Then there is u1 ∈ Exp(Bk(O, s1ϵ)) and u2 ∈ Exp(Bk(O, s2ϵ)) such that h1u1 = h2u2. By (2.5.24), there is δ > 0 such
that u1Exp(Bk(O, δ)) ⊂ Exp(Bk(O, s1ϵ)) and u2Exp(Bk(O, δ)) ⊂ Exp(Bk(O, s2ϵ)).

h1Exp(Bk(O, s1ϵ)) ⊃ h1u1Exp(Bk(O, δ))

= h1u2Exp(Bk(O, δ)) ⊂ h2Exp(Bk(O, s2ϵ))

Consequently, {hExp(Bk(O, sϵ))|0 ≤ s < 1, h ∈ H} satisfies the aixoms of a fundamental neighborhood system.

STEP3. Showing properties of H. Clearly Exp : h → H is continuous. Because Bk(O, ϵ) is connected and Exp is contin-
uous, Exp(Bk(O, ϵ)) is a connected. So H is connected. And clearly H is Housdorff space.

STEP4. Showing H is a topological group. It is enough to show continuity of the multiple operation and the inverse
operation of H. Let us fix any g1, g2 ∈ H and s ∈ [0, 1). We set g := g−1

1 g2. It is enouth to show for sufficient small
s1, s2 ∈ [0, 1) {g1Exp((Bk(O, s1ϵ))}−1g2Exp((Bk(O, s2ϵ)) is contained gExp((Bk(O, sϵ)). For sufficient small X,Y ∈ h,

{g1Exp(X)}−1g2Exp(Y )

= Exp(−X)gExp(Y )

= gg−1Exp(−X)gExp(Y )

= gExp(−Ad(g−1)X)Exp(Y )

By the defitnition of H, there are Z1, ..., Zk ∈ h such that

g−1 = exp(Z1)...exp(Zk)

So, by Proposition2.47,

Ad(g−1)X

= Ad(exp(Z1))...Ad(exp(Zk))X

= exp(ad(Z1))...exp(ad(Zk))X
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By Proposition2.3, h is a closed subset of M(n,C). So, Ad(g−1)X ∈ h. By Baker-Campbell-Hausdorff’s formula, for
sufficient small X,Y ∈ h,

Exp(−Ad(g−1)X)Exp(Y ) ∈ Exp((Bk(O, sϵ))

So, the multiple operation and the inverse operation of H are continuous.

STEP5. Showing H is a Lie group. We can assume τ(e((−ϵ, ϵ)m)) ⊂ V . By Baker-Campbell-Hausdorff’s formula, there
is ϵ1 > 0 such that

τ(e([−ϵ1, ϵ1]k × {0}m−k))τ(e([−ϵ1, ϵ1]k × {0}m−k)) ⊂ τ(e((−ϵ, ϵ)k × {0}m−k))

We set VH := τ(e([−ϵ1, ϵ1]k × {0}m−k)). Clearly VH is a neighborhood of the unit element in H and VH ⊂ V . Because
τ(e([−ϵ1, ϵ1]k × {0}m−k)) is compact subset of GL(n,C), VH is closed subset of GL(n,C). We will show the topology of
VH is equal to the relative topology of GL(n,C). It is enough to show for any t ∈ [−ϵ1, ϵ1]k such that for any α < ϵ

VH ∩ exp(
k∑
i=1

tiXi)exp(

k∑
i=1

(−α, α)Xi) = VH ∩ exp(
k∑
i=1

tiXi)exp(

N∑
i=1

(−α, α)Xi)

Let us fix any t ∈ [−ϵ1, ϵ1]k and α < ϵ and

exp(

k∑
i=1

tiXi)u ∈ exp(

k∑
i=1

tiXi)exp(

N∑
i=1

(−α, α)Xi) ∩ VH

Because exp(
∑k
i=1 −tiXi)exp(

∑k
i=1[−ϵ1, ϵ1]Xi) ⊂ exp(

∑k
i=1(−ϵ, ϵ)Xi) and exp is injective in

∑N
i=1(−ϵ, ϵ)Xi,

u ∈ exp(

k∑
i=1

(−ϵ, ϵ)Xi)

So,

exp(

k∑
i=1

tiXi)u ∈ exp(

k∑
i=1

tiXi)exp(

k∑
i=1

(−α, α)Xi)

Consequently, H is a Lie group. Clearly Lie(H) = h.

Proposition 2.51. Let G be a Lie group and H is a closed subgroup of G. Then H is a Lie group.

STEP1. Showing that H has at most countable connected components. For any h ∈ H, the connected component of H
which contains h(called Hh) is contained some connected component of G.So, H has at most countable connected com-
ponents.

STEP2. Showing that H is a Lie group. We set

h := {X ∈M(n,C)|Exp(tX) ∈ U ∩H (|t| � 1)}

Because U ∩H is closed, by the argument which is similar to the proof of Proposition2.3.3, h is a Lie algebra. And clearly
h is a Lie subalgebra of Lie(G). Let us take X1, ..., Xk, ..., Xm, ..., XN which is a basis of M(n,C) such that X1, ..., Xk is
a basis of h and X1, ..., Xm is a basis of Lie(G). Because U ∩H is closed and H satisfies the second countable axiom, by
the argument which is similar to the proof of Lemma2.7 and Baker-Campbell-Hausdorff formula,

Exp(h ∩
k∑
i=1

(−ϵ, ϵ)Xi) = Exp(

m∑
i=1

(−ϵ, ϵ)Xi) ∩H = Exp(

N∑
i=1

(−ϵ, ϵ)Xi) ∩H

We set

VH := Exp(h ∩
k∑
i=1

[−1

2
ϵ,

1

2
ϵ]Xi)

So, by the argument which is similar to the proof of Theorem2.6, VH is closed neighborhood of e and the relative topology of
VH to G is equal to the relative topology of VH to GL(n,C). So, by Proposition2.32, H is a Lie group and h = Lie(H).
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2.6 Invariant measure

2.6.1 Existence of Invariant measure

Definition 2.19 (Baire measure). Let X be a locally compact Housdorff space. We say µ is a Baire measure on X if

Cc(X) ⊂ L1(X,µ)

Definition 2.20 (Invariant measure). Let G be a locally compact topological group. We say µ is a left invariant measure
on G if for any f ∈ Cc(G) and any g0 ∈ G ∫

G

f(g0g)dµ(g) =

∫
G

f(g)dµ(g)

We say µ is a right invariant measure on G or a right Haar measure on G if for any f ∈ Cc(G) and any g0 ∈ G∫
G

f(gg0)dµ(g) =

∫
G

f(g)dµ(g)

We say G is unimodular if there is a left and right Haar measure on G. We call a left and right Haar measure on G
a Haar measure on G.

We say µ is a right invariant measure on G

Notation 2.1. Let G be a Lie group and g0 ∈ G. For each g ∈ G and x ∈ G, Lg0(x) := g0x.

Definition 2.21 (Left invariant form). Let

(S1) G is a Lie group and m := Lie(G).

(S2) ω is a m-form on G.

We say ω is left invariant if for any g ∈ G dLgω = ω. Here, for eahc v1, ..., vm ∈ Tx(G),

(dLgω)x(v1, ..., vm) := ωgx(dLgv1, ..., dLgvm)

Lemma 2.8. Let G be a Lie group and m := Lie(G). And let us ωe a antisymmetric m-th tensor at 1G and ω 6= 0. For
each x ∈ G and v1, ...vm ∈ Tx(G),

ωx(v1, ..., vm) := ωe(dL
−1
x v1, ..., dL

−1
x vm)

Then ω is a Cω-class left invariant form.

Proof. Let us fix any g, x ∈ G and v1, ..., vm ∈ Tx(G).

(Lgω)x(v1, ..., vm)

= ωgx(dLgv1, ..., dLgvm)

= ωe(dL
−1
gx dLgv1, ..., dL

−1
gx dLgvm)

= ωe(dL
−1
x dL−1

g dLgv1, ..., dL
−1
x dL−1

g dLgvm)

= ωe(dL
−1
x v1, ..., dL

−1
x vm) = ωx(v1, ..., vm)

Lemma 2.9. Let

(S1) G be a Lie group.

(S2) ω be a Cω-class left invariant form.

(S3) g ∈ G.

(S4) (Uα, ψα) and (Uβ , ψβ) are local coordinates on G and gUβ ∩ Uα 6= ϕ.

(S5) For any x ∈ Uα and y ∈ Uβ

ωx = Φα(x)dϕα,1 ∧ ... ∧ dϕα,m, ωy = Φβ(y)dϕβ,1 ∧ ... ∧ dϕβ,m

Then, for any x ∈ Uβ ∩ L−1
g Uα,

Φβ(x) = det(J(ψα ◦ Lg ◦ ϕβ)(ψβ(x)))Φα(gx)
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Proof. Let us fix any x ∈ Uβ ∩ L−1
g Uα. Then

ωx = Φβ(x)(dϕβ,1 ∧ ... ∧ dϕβ,m)x

and
ωgx = Φα(gx)(dϕα,1 ∧ ... ∧ dϕα,m)gx

So,

ωx((
∂

∂ψβ,1
)x, ..., (

∂

∂ψβ,m
)x) = ωgx(dLg((

∂

∂ψβ,1
)x), ..., dLg((

∂

∂ψβ,m
)x))

and

ωgx(dLg((
∂

∂ψβ,1
)x), ..., dLg((

∂

∂ψβ,m
)x)) = detJ(ψα ◦ Lg ◦ ϕβ)(ψβ(x))

These implies that
Φβ(x) = Φα(gx)detJ(ψα ◦ Lg ◦ ϕβ)(ψβ(x))

By following the argument of the proof of Lemma2.9 in reverse, we can show the following proposition.

Lemma 2.10. Here are settings and assumptions.

(S1) G is a Lie group.

(S2) {Uα, ψα}α∈Λ is a system of local corrdinates of G.

(S3) {Φα}α∈Λ is a family such that Φα ∈ C∞(Uα,R) (∀α ∈ Λ).

(A1) Then, for any g ∈ G and x ∈ Uβ ∩ L−1
g Uα,

Φβ(x) = det(J(ψα ◦ Lg ◦ ϕβ)(ψβ(x)))Φα(gx)

(S4) We set
ωx = Φα(x)dϕα,1 ∧ ... ∧ dϕα,m (x ∈ Uα, α ∈ Λ)

Then ω is well-defined and Cω left-invariant form.

Proposition 2.52. Here are settings and assumptions.

(S1) G is a Lie group.

(S2) ω is a C∞ class form on G such that ωg 6= 0 (∀g ∈ G)

(S3) µ is the measure on G induced by ω.

(A1) µ is left invariant.

Then ω is a left invariant form.

Proof. By Lemma2.9, There is a {Uα, ψα}α∈Λ is a system of local corrdinates of G preserving the orientation of G and
Φα > 0 on Uα (∀α ∈ Λ) and det(ϕ−1

α ◦ Lg ◦ ψβ) > 0. Let us fix any g ∈ G and Uβ ∩ g−1Uα 6= ϕ. Let us fix any
f ∈ Cc(gUβ ∩ Uα). Because µ is left invariant,∫

Uβ∩g−1Uα

f(gx)dµ(x) =

∫
G

f(gx)dµ(x) =

∫
G

f(x)dµ(x) =

∫
gUβ∩Uα

f(x)dµ(x) =

∫
ψ−1

α (gUβ∩Uα)

f(ψα(x))Φα(ψα(x))dx

By change-of-variables formula for integral∫
Uβ∩g−1Uα

f(gx)dµ(x) =

∫
ψ−1

β (Uβ∩g−1Uα)

f(gψβ(y))Φβ(ψβ(y))dy

=

∫
ψ−1

α (gUβ∩Uα)

f(ψα(x))Φβ(g−1ψα(x))|det(ϕβ ◦ Lg ◦ ψα)|−1dx

So, for any g ∈ G and x ∈ Uβ ∩ L−1
g Uα,

Φβ(x) = |det(J(ψα ◦ Lg ◦ ϕβ)(ψβ(x)))|Φα(gx)

Because det(J(ψα ◦ Lg ◦ ϕβ)(ψβ(x))) > 0,

Φβ(x) = det(J(ψα ◦ Lg ◦ ϕβ)(ψβ(x)))Φα(gx)

So, ω is left invariant form.
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Lemma2.9 implies the following.

Lemma 2.11. Let G be a Lie group in which there is a left invariant form ω. Then G is orientable and ω is Cω-class .

Proof. By replacing two variables if necessary, there is a local coordinate system {Uα, ψα}α∈Λ such that Φα > 0 (∀α ∈ Λ).
By Lemma2.9, {Uα, ψα}α∈Λ preserves the orientation of G.

Lemma 2.12. Let

(S1) M is a paracompact C∞-class manifold.

(S2) H : M →M is a C∞-class homeomorphism.

(S3) {Uα}α∈Λ is a open covering of M .

(S4) f is a C∞-class function on M .

(A1) supp(f) is compact and there is α ∈ Λ such that supp(f) ⊂ Uα.

Then there are {Uβi}Ni=1 and {fi}Ni=1 ⊂ C∞(M) such that {H(Uβi)}Ni=1 is a covering of supp(f) and

f =

N∑
i=1

fi

and
supp(fi) ⊂ Uα, supp(fi ◦H) ⊂ Uβi (i = 1, 2, ..., N)

Proof. Because supp(f) is compact, there are {Uβi}Ni=1 such that {H(Uβi)}Ni=1 is a covering of supp(f). Because supp(f)
is paracompact and {H(Uβi

)}Ni=1 is a open covering of supp(f), there is {hi}Ni=1 ⊂ C∞(M) such that {hi}Ni=1 is a partition
of unity which is subordinate to {H(Uβi

)}Ni=1. We set fi := hi (i = 1, 2, ..., N). Clearly {fi}Ni=1 satisfies the conditions in
this Proposition.

By Riesz-Markov-Kakutani representation theorem[8], any left invariant measure induces a measure.

Theorem 2.7. Let

(S1) G be a Lie group.

Then

(i) There is C∞-class left invariant form ω on G.

(ii) G is orientable by ω.

(iii) The measure induced from ω is left invariant. Specially, G has a left invariant measure.

Proof. (i) is from Lemma2.8. (ii) is from Lemma2.11. We will show (iii). We set m := Lie(G). Let us fix f ∈ C∞
c (G) and

g0 ∈ G. For x ∈ G,
(Lg0f)(x) := f(g0x)

By (ii) and the second contable axiom, there is {Ui, ψi, Vi,Φi, ρi}∞i=1 such that {Ui, ψi}∞i=1 is a local coordinate system of
G and {Ui, ψi}∞i=1 is local finite and for each i Vi ∈ O(Rm)

ψi : Ui → Vi

is an homeomorphism and {Ui, ψi}∞i=1 preserves a orientation of G and for each i and x ∈ Ui

ωx = Φi(x)(dψi,1 ∧ ... ∧ dψi,m)x

and Φi > 0 and {ρi}∞i=1 is a partition of unity subordinating {Ui}∞i=1. We set for each i, fi := fρi. By Lebesgue’s
convergence theorem, ∫

G

fω =

∞∑
i=1

∫
G

fiω,

∫
G

Lg0fω =

∞∑
i=1

∫
G

Lg0fiω

So, it is enough to show for each i ∫
G

fiω =

∫
G

Lg0fiω
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By Lemma 2.12, we can assume that for each i, there is j such that supp(Lg0fi) ⊂ Uj . Because supp(fi) is compact, there
is an open set U ′

i such that
supp(fi) ⊂ U ′

i ⊂ Ui

and
supp(Lg0fi) = L−1

g0 supp(fi) ⊂ L−1
g0 U

′
i ⊂ Uj

We set ϕi := ψ−1
i and Vi := ψi(Ui) and ϕj := ψ−1

j and Vj := ψj(Uj). By change-of-variables formula for integral and
Lemma2.9, ∫

G

Lg0fiω =

∫
ψj(L

−1
g0
U ′

i)

fi(g0ϕj(x))Φj(x)dx

=

∫
ψj(L

−1
g0
U ′

i)

fi(ϕi(ψi(g0ϕj(x))))Φj(x)dx

=

∫
ψj(L

−1
g0
U ′

i)

fi(ϕi(ψi ◦ Lg0 ◦ ϕj(x)))

×det(J(ψi ◦ Lg0 ◦ ϕj))(ψj ◦ L−1
g0 ϕi ◦ ψi ◦ Lg0 ◦ ϕj(x))))−1

×Φj(ψj ◦ L−1
g0 ϕi ◦ ψi ◦ Lg0 ◦ ϕj(x))))

=

∫
V ′
i

fi(ϕi(y))det(J(ψi ◦ Lg0 ◦ ϕj))(ψj ◦ L−1
g0 ◦ ϕi(y))−1

×Φj(ψj ◦ L−1
g0 ϕi(y))dy

=

∫
V ′
i

fi(ϕi(y))Φi(y)dy

=

∫
G

fiω

2.6.2 Haar measure

Theorem 2.8. Let

(S1) G be a Lie group with m := dimLie(G).

(S2) ωL is a left invariant m-form and ωR is a right m-form on G.

(A1) ωLe = ωRe .

(S3) dgL is the left invariant measure induced from ωL. dgR is the right invariant measure induced from ωR.

Then

(i) ωR = det(Ad(·))ωL.
(ii) dgR = |det(Ad(·))|dgL. We set ∆L(·) := |det(Ad(·))| and ∆R(·) := |det(Ad(·))|−1.

Proof. It is enough to show (i). Let us fix any g ∈ G. and v ∈ Tg(G) and u := dL−1
g v. Then

ωRg (v) = ωRg (dLgu) = ωe(dRgdLgu) = ωe(ι(Ad(g)ι−1(u))) = det(Ad(g))ωe(u)

= det(Ad(g))ωe(dL
−1
g v) = det(Ad(g))ωL(v)

This implies (i).

Proposition 2.53. Any compact Lie group is unimodular.

Proof. Let us fix any G be a compact Lie group. Clearly, |det(Ad(G))| is compact subgroup of R×
>0. So, |det(Ad(G))| =

{1}.
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2.6.3 Integral on all inverse elements

Proposition 2.54. Let

(S1) G is a Lie group.

(S2) I : G 3 g 7→ g−1 ∈ G.

(S3) f ∈ Cc(G).

(S4) ω be a left invariant and right invariant form on G.

then ∫
G

f(g−1)ω =

∫
G

f(g)ω

STEP1. Construction of a left invariant form. We set m := dim(Lie(G)). Let us fix {(Uα, ψα)}α∈Λ a system of local
coordinates which preserves the orientation of G. Let us fix {aα}α∈Λ such that for any α ∈ Λ aα ∈ C∞(Uα) and

ω|Uα = aαdψ
1
α ∧ ... ∧ dψmα

Then {(I(Uα), ψα ◦ I−1)}α∈Λ a system of local coordinates of G. For any α, β ∈ Λ such that (I(Uα) ∩ (I(Uβ) 6= ϕ,

ψα ◦ I−1 ◦ (ψβ ◦ I−1)−1 = ψα ◦ ψ−1
β

So, {(I(Uα), ψα ◦ I−1)}α∈Λ preserves the orientation of G.
We set ω′ by

ω′
g(u1, u2, ..., um) := ωI−1(g)((dI)−1

I−1(g)u1, ..., (dI)−1
I−1(g)um)

We will show ω′ is left invarinat. Because ω is right invariant,

ω′
(Lx)(g)

((dLx)gv1, ...(dLx)gvm) = ω′
xg((dLx)gv1, ...(dLx)gvm) = ωI(xg)((dI)−1

I(xy)(dLx)gv1, ..., (dI)−1
I(xy)(dLx)gvm)

= ωI(xg)((dI)−1
I(xy)(dLI(x))−1

g v1, ..., (dI)−1
I(xy)(dLI(x))−1

g vm) = ωI(xg)(d(LI(x) ◦ I))−1
I(xy)v1, ..., d(LI(x) ◦ I))−1

I(xy)vm)

= ωI(xg)(d(I ◦Rx)−1
I(xy)v1, ..., d(I ◦Rx)−1

I(xy)vm) = ωRI(x)(I(g))
(d(I ◦Rx)−1

I(xy)v1, ..., d(I ◦Rx)−1
I(xy)vm)

= ωRI(x)(I(g))
((dRx)−1

RI(x)(I(g))
(dI)−1

I(g)v1, ..., (dRx)−1
RI(x)(I(g))

(dI)−1
I(g)vm)

= ωRI(x)(I(g))
((dRI(x))I(g)(dI)−1

I(g)v1, ..., (dRI(x))
−1
I(g)(dI)−1

I(g)vm)

= ωI(g)(dI)−1
I(g)v1, ..., (dI)−1

I(g)vm) = ωI−1(g)(dI)−1
I−1(g)v1, ..., (dI)−1

I−1(g)vm) = ω′
g(v1, ..., vm)

So, ω′ is left invariant. So, there is C ∈ R such that ω′ = Cω.

STEP2. Display of X using local coordinates.

ω′
g(u1, u2, ..., um) = ωI−1(g)((dI)−1

I−1(g)u1, ..., (dI)−1
I−1(g)um) = ωe(d(LI−1(g))

−1
e (dI)−1

I−1(g)u1, ..., d(LI−1(g))
−1
e (dI)−1

I−1(g)um)

= ωe(d(I ◦ LI−1(g))
−1
e u1, ..., d(I ◦ LI−1(g))

−1
e um) = ωe(d(Lg)

−1
e u1, ..., d(Lg)

−1
e um)

For any u1, ..., um ∈ Tg(G),

ω′
g(u1, u2, ..., um) = ωI−1(g)((dI)−1

I−1(g)u1, ..., (dI)−1
I−1(g)um) = ωI−1(g)((dI)−1

I−1(g)u1, ..., (dI)−1
I−1(g)um)

= aα(I−1(g))dψ1
α ∧ ... ∧ dψmα ((dI)−1

I−1(g)u1, ..., (dI)−1
I−1(g)um)

= aα(I−1(g))dψ1
α ◦ (dI)−1

I−1(g) ∧ ... ∧ dψ
1
α ◦ (dI)−1

I−1(g)(v1, ..., vm)

= aα(I−1(g))d(ψα ◦ I−1)1I−1(g) ∧ ... ∧ d(ψα ◦ I−1)mI−1(g)(v1, ..., vm)

this proposition holds. So, ∫
G

f(g−1)ω =

∫
G

f(g)ω′

By setting f = 1, ω′ = ω. So, ∫
G

f(g−1)ω =

∫
G

f(g)ω

By the proof of Proposition2.54, the following holds.
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Proposition 2.55. Let

(S1) G is a Lie group.

(S2) I : G 3 g 7→ g−1 ∈ G.

(S3) f ∈ Cc(G).

(S4) ω be a left invariant on G.

then ∫
G

f(g−1)ω =

∫
G

f(g)∆R(g)ω

2.6.4 Lp(G)

Proposition 2.56. Let G be a Lie group. Then Lp(G) is separable for any p ∈ N ∩ [1,∞).

Proof. By Proposition2.31 there is {Ui}∞i=1 which is a local finite open covering of G1 and {φi}∞i=1 is a partition of unity
with respect to {Ui}∞i=1 and for any i Ui is C∞-class homeomorphic to (0, 1)m. For each i, L2(Ui) is separable. So, there is

{fi,k}i,k ⊂ C∞(G) such that supp(fi,k) ⊂ Ui (∀i, ∀k) and {fi,k|Ui}k is dense in Lp(Ui) (∀i). We set A := {
∑N
i=1 fi,ki |ki ∈

N (i = 1, 2, ..., N), N ∈ N}. Clearly A is separable.
Let us fix any f ∈ Lp(G). Let us fix any ϵ > 0. Because limN→∞ f ∗ χ∪N

i=1Ui
= f and f ∈ Lp(G), by Lebesgue’s

convergence theorem, there is N ∈ N such that

||f − f ∗ χ∪N
i=1Ui

|| < ϵ

2

We set f1 := f ∗ χU1 and fi := f ∗ χUi\∪N
k=i−1Uk

(i = 1, 2, ..., N). Then f ∗ χ∪N
i=1Ui

=
∑N
i=1 fi. There are fi,k1 , ..., fi,kN

such that ||fi − fi,ki || <
ϵ

2N
(i = 1, 2, ..., N). Clearly

||f ∗ χ∪N
i=1Ui

−
N∑
i=1

fi,ki || <
ϵ

2

So, ||f −
∑N
i=1 fi,ki || < ϵ. Consequently, Lp(G1) is separable.

By the proof of Proposition2.56, the following holds.

Proposition 2.57. Let G be a Lie group. Then there is at most countable subset of Cc(G) which is dense in Lp(G).

2.6.5 Convolution

Definition 2.22 (Convolution of function and linear functional). Let

(S1) G be a Lie group.

(S2) f ∈ Cc(G).

(S3) T is a C-linear functional on Cc(G).

Then
T ∗ f(x) := T (τx(f)) (x ∈ G)

Here,
τx(f)(y) = f(xy−1) (x, y ∈ G)

Notation 2.2 (Dirac delta function δx). Let G be a topological group and x ∈ G. We set δx by

δx(f) := f(x) (f ∈ C(G))

Definition 2.23 (Convolution of functions). Let G be a Lie group. Let us fix dgr which is a right invariant measure on
G. Let us fix f, g ∈ C(G) and assume supp(f) or supp(g) is compact. We set

f ∗ g(x) :=

∫
G

f(xy−1)g(y)dgr(y) (x ∈ G)

Proposition 2.58. We succeed notations in Definition2.23. Then
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(i) f ∗ g ∈ C(G)

(ii) If f1, f2 ∈ Cc(G) then f1 ∗ f2 ∈ Cc(G) and supp(f1 ∗ f2) ⊂ supp(f1)supp(f2)

(iii) If f3, f3 ∈ Cc(G) then (f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3).

Proof of (i). Firstly let us assume g ∈ Cc(G). Let us fix any x ∈ G and ϵ > 0.

f ∗ g(x) =

∫
G

f(xy−1)g(y)dgr(y) =

∫
supp(g)

f(xy−1)g(y)dgr(y)

We set K := dgr(supp(g)). Becase f, g ∈ C(G), for each y ∈ supp(g), there is Ux,y and Vy such that Ux,y is an open
neighborhood of x and Vy is an open neighborhood of y and

|f(zw−1)g(w) − f(xw−1)g(w)| < ϵ

K + 1
(∀z ∈ Ux,y, ∀w ∈ Vy)

Because supp(g) is compact, there are Vy1 , ..., Vyn such that supp(g) ⊂ ∪ni=1Vyi . We set Ux := ∩ni=1Ux,yi . Then clearly

|f(zw−1)g(w) − f(xw−1)g(w)| < ϵ

K + 1
(∀z ∈ Ux, ∀w ∈ Vy)

So,
|f ∗ g(z) − f ∗ g(x)| < ϵ (∀z ∈ Ux)

This means f ∗ g is continuous.
Firstly let us assume f ∈ Cc(G). Let us fix any x ∈ G.

f ∗ g(x) =

∫
G

f(xy−1)g(y)dgr(y) =

∫
G

f((yx−1)−1)g(yx−1x)dgr(y) =

∫
G

f(y−1)g(yx)dgr(y)

=

∫
supp(f)−1

f(y−1)g(yx)dgr(y)

So, we can prove continuity of f ∗ g by the argument which is similar to the proof in case g ∈ Cc(G).

Proof of (iii). Let us fix any x ∈ G.

(f1 ∗ f2) ∗ f3(x) =

∫
G

f1 ∗ f2(xy−1)f3(y)dgr(y) =

∫
G

∫
G

f1(xy−1z−1)f2(z)dgr(z)f3(y)dgr(y)

=

∫
G

∫
G

f1(x(zy)−1)f2(zyy−1)dgr(z)f3(y)dgr(y) =

∫
G

∫
G

f1(xz−1)f2(zy−1)dgr(z)f3(y)dgr(y)

by Fubini Theorem

=

∫
G

f1(xz−1)

∫
G

f2(zy−1)f3(y)dgr(y)dgr(z) =

∫
G

f1(xz−1)f2 ∗ f3(z)dgr(z) = f1 ∗ (f2 ∗ f3)(x)

2.7 Various types of Lie group

2.7.1 Connected component of Lie group

Proposition 2.59. Let

(S1) G1 is a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C) and G1 be connected.

(A1) There is open neighborhood of 1G1
U such that for any x, y ∈ U xy = yx.

Then G1 is commutative.

Proof. By Proposition2.31, we can assume that for any g ∈ G1 there are g1, ..., gM ∈ U such that g = g1 · g2...gM . Let us
fix any g = g1 · g2...gM and h = h1 · h2...hN such that g1, ..., gM , h1, ..., hN ∈ U .

gh = g1 · g2...gM · h1 · h2...hN
= h1 · h2...hN · g1 · g2...gM
= hg (2.7.1)
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Proposition 2.60. Let

(S1) G1 be a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C).

(S2) G1,0 be the connected component of G1.

Then G1,0 is path-connected.

Proof. For sufficient small ϵ > 0, N(ϵ) := Exp(B(O, ϵ)) is path-connected. Clearly, finite multiple of N(ϵ) is path-
connected. So, by Proposition2.31, G1,0 is path-connected.

2.7.2 Reductive Lie group

Definition 2.24 (Reductive Lie group). Let G ⊂ GL(n,C) be a linear Lie group. We say G is a reductive Lie group if
for any g ∈ G ḡT ∈ G. Let G be a Lie group. We say G is reductive if G is locally isomorphic to a reductive linear Lie
group and G has finite connected components.

The followings clearly hold.

Proposition 2.61. Let G ⊂ GL(n,C) be a linear Lie group and G be reductive. Then

(i)
G = {ḡT |g ∈ G}

(ii)
Lie(G) = {X̄T |X ∈ Lie(G)}

Proof of (i). For any g ∈ G, g = ḡT
T

. So the above equation holds.

Proof of (ii). For any X ∈ Lie(G), exp(tX̄T ) = exp(tX)
T

. So Lie(G) = {X̄T |X ∈ Lie(G)}.

Proposition 2.62. Let g be a Lie algebra. We set

(X,Y ) := ReTr(XT Ȳ ) (X,Y ∈ g)

then

(i) (·, ·) is an inner product on g.

(ii) (ad(X)Y, Z) = (Y, ad(X̄T )Z) for any X,Y, Z ∈ g.

Proof of (i). For any X,Y ∈ g,

(Y,X) = ReTr(Y T X̄) = ReTr(X̄TY )

= ReTr(XT Ȳ ) = (X,Y ) = (X,Y )

Also,

(X,X) =
∑
i,j

|xi,j |2

So, (i) holds.

Proof of (ii). Because Tr(XTY T Z̄) = Tr(Z̄XTY T ),

(ad(X)Y, Z) = ReTr((XY − Y X)T Z̄)

= ReTr((Y TXT −XTY T )Z̄) = ReTr(Y TXT Z̄ − Y T Z̄XT )

= ReTr(Y Tad(X̄T )Z) = (Y, ad(X̄T )Z) (2.7.2)

So, (ii) holds.

Lemma 2.13. Let g be a Lie algebra and gT = g. For any h which is an ideal of g, h⊥ is also ideal. Here, we assume
the inner product of g is (·, ·).

Proof. Let us fix any X ∈ g, Y ∈ h⊥, Z ∈ h. By the assumption, ad(X̄T )Z ∈ h. By Proposition2.62,

(ad(X)Y, Z) = (Y, ad(X̄T )Z) = 0 (2.7.3)

So (ad(X)Y ∈ h⊥.
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Proposition 2.63. Let G1 is a reductive Lie group such that G1 is locally isomorphic to G2 which is linear Lie
group of GL(n,C). Then Lie(G1) is a reductive Lie algebra. And we denote the center of Lie(G1) by z and denote
〈[Lie(G1), Lie(G1)]〉 by g1. Then

Lie(G1) = z⊕ g1 (2.7.4)

and g1 is a semisimple Lie algebra or {0}.

Proof. We set g := Lie(G1). If Lie(G1) has no trivial ideal, then Lie(G1) is reductive. Otherwise, Lie(G1) has a
trivial ideal h. By Proposition2.13, g = h ⊕ h⊥. We set h1 := h and h2 := h⊥. If h1 has a subset which is a not
trivial ideal of h1, by Proposition2.13, the subset is a not trivial ideal of g. By repeating the above argument, there
are g1, ..., gr, gr+1, .., .gm such that g1, ..., gr, gr+1, .., .gm are ideals of g and g1, ..., gr are one-dimensional abelian Lie
algebras and gr+1, ..., gm are simple Lie algebras. So g is reductive. Clearly g1 ⊕ ... ⊕ gr is the center of g. Clearly
〈[g, g]〉 ⊂ 〈[gr+1, gr+1]〉 ⊕ ...⊕ 〈[gm, gm]〉. So 〈[g, g]〉 ⊂ gr+1 ⊕ ...⊕ gm. Because for each j ∈ {r + 1, ...,m} gj is simple Lie
algebra, 〈[gj , gj ]〉 = gj . So gr+1 ⊕ ...⊕ gm ⊂ 〈[g, g]〉.

Proposition 2.64. Let g be a semisimple Lie algebra and g = g1 ⊕ ... ⊕ gm = h1 ⊕ ... ⊕ hn and gi and hj are ideal of g
and simple Lie algebras. Then m = n and there is σ : {1, 2, ...,m} → {1, 2, ...,m} such that σ is bijective and gσ(i) = hi
(∀i ∈ {1, 2, ...,m}).

Proof. For each i, g1 ⊃ 〈[g1, g1]〉 = 〈[g1, h1]〉 ⊕ ... ⊕ 〈[g1, hn]〉. Because 〈[g1, g1]〉 is not zero, there is σ(1) such that⟨
[g1, hσ(1)]

⟩
is not zero. Because

⟨
[g1, hσ(1)]

⟩
⊂ h1 and hσ(1) is simple and g1 is simple, g1 =

⟨
[g1, hσ(1)]

⟩
= hσ(1). By

repeating the above argument,

2.7.3 Discrete subgroup and Abelian Lie group

Definition 2.25 (Discrete subgroup). Let G is a topological group. We call H ⊂ G a discrete subgroup of G if H is a
subgroup of G and the relative of H to G is equal to the discrete topology.

Proposition 2.65. Let

(S1) G2 is a Lie group which is locally isomorphic to a linear Lie subgroup of GL(n,C).

(S2) H is a subgroup of G1.

then the followings equivalent.

(i) H is a discrete subgroup of G1.

(ii) There is an open neighborhood of 1G1
U such that U ∩H = {1G1

}.
(iii) H is a closed subgroup of G1 and H is a Lie group which is locally isomorphic to {1G2

}. And Lie(H) =
{0}.

Proof of that (i) =⇒ (ii): Because {1G1
} is an open set of relative topology, there is an oen set U such that {1G1

} =
U ∩H.

Proof of that (ii) =⇒ that H is closed set: There is U1 such that U1 is open neighborhood of 1G1
and U−1

1 U1 ⊂ U . There
is U2 such that U2 is open neighborhood of 1G1

and U−1
2 ⊂ U1 and U2 ⊂ U1. Let us assume there is g ∈ H̄ \H. There is

u ∈ U2 and h ∈ H such that gu = h. So g ∈ hU1. Because G1 is a Housdorff space, there is U3 such that U3 is an open
neighborhood of 1G1 and U3 ⊂ U2 and h−1g /∈ U−1

3 . So h /∈ gU3. Because g ∈ H̄, there is h2 6= h such that h2 ∈ gU3. So
there is u3 ∈ U3 such that h2 = gu3. So h2u

−1
3 = hu−1. Because h−1h2 ∈ U−1

2 U3 ⊂ U . So h−1h2 ∈ U ∩H = {1G1}. This
implies h = h2. This is contradiction.

Proof of that H is a Lie group: Because of (ii), H is locally isomorphic to {1G2}. Because {1G2} is a linear Lie group of
GL(n,C), H is a Lie group.

Proof of that (ii) =⇒ that Lie(H) = {0}: By von-Neumann-Cartan’s theorem, exp is locally injective. So Lie(H) =
{0}.

Proof of that (iii) =⇒ (ii): By von Neumann-Cartan’s theorem, there is ϵ > 0 such that

exp(B(O, ϵ)) ∩ τ(H ∩ U) = exp(Lie(H) ∩B(O, ϵ)) = {1G2} (2.7.5)

So

η(exp(B(O, ϵ) ∩ V ) ∩H
= η(exp(B(O, ϵ)) ∩ τ(H ∩ U))

= exp(Lie(H) ∩B(O, ϵ)) = {1G1} (2.7.6)

This means (ii).
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Proof of that (ii) =⇒ (i): For any h ∈ H, {h} = hU ∩H. This means (i).

Proposition 2.66. Let us fix any H which is a discrete subgroup of Rn. Then there are linearly independent subset
X1, ..., Xr ⊂ Rn such that H =

∑r
i=1 ZXi. r = 0 means H = {0}.

Proof of that n = 1. We can assume H 6= {0}. There is Y ∈ H \{0}. We set t0 := inf{t > 0|tY ∈ H}. We assume t0 = 0.

There is {ti} ⊂ (0,∞) such that limi→∞ ti = 0 and tiY ∈ H (∀i). Let us fix any t > 0. tY = limi→∞d t
ti
etiY . Because H

is closed, tY ∈ H. This implies RY ⊂ H and Y 6= 0. This contradicts with H is a discrete subgroup.
So t0 > 0. We set X1 := t0Y . We assume there is X ∈ H \ ZX1. There is t ∈ H \ Z such that X = tX1.

(t− dte)t0Y = (t− dte)X1 ∈ H. This contradicts with the definition of t0.

Proof of that n > 1. We assume the Proposition is true if n < N and N ≤ 1. Let us take X1 ∈ H as in the N = 1 case.
(0, 1)X1 ∩H = ϕ.

There is X2, ..., XN ∈ RN such that X1, X2, ..., XN is a basis of RN . We set H ′ := {t′ ∈ RN−1|∃s ∈ R such that sX1 +∑N
i=2 tXi ∈ H}. Clearly H ′ is a subgroup of RN−1.
We assume H ′ is a not discrete subgroup of RN−1. By the same argument as above, there is a sequence {ti′}∞i=1 ⊂ H ′

such that lim
i→∞

ti
′ = 0. Because X1 ∈ H, there is a sequence {si}∞i=1 ⊂ [−1

2
,

1

2
] such that siX1 +

∑N
i=2 tiXi ∈ H (∀i). We

can assume there is s0 ∈ [−1

2
,

1

2
] such that lim

i→∞
si = s0. Because H is closed, s0X1 ∈ H. By the definition of X1, s0 = 0.

Because siX1 +
∑N
j=2 ti,jXj ∈ H \{0} (∀i) and lim

i→∞
siX1 +

N∑
j=2

ti,jXj = 0. This means H is a not discrete subgroup. This

is contradiction. So H ′ is a discrete subgroup.
By the assumption of the mathematical induction, there is Z1, ..., Zr ∈ RN−1 such that Z1, ..., Zr are linear independent

and H ′ =
∑r
i=1 ZZi. There are s1, ..., sr ∈ R such that X ′

i+1 := siX1 +
∑r
j=1 Zi,jXj ∈ H (∀i). Because

(X1, X
′
2, ..., X

′
r+1) = (X1, ..., XN )


1 s1 ... sr
0 z1,1 ... zr,1
... ... ... ...
0 z1,N−1 ... zr,N−1

 (2.7.7)

and the rank of


1 s1 ... sr
0 z1,1 ... zr,1
... ... ... ...
0 z1,N−1 ... zr,N−1

 is (r + 1), X1, X
′
2, ..., X

′
r+1 are linear independent.

Let us fix any X ∈ H. Because X1, X2, ..., XN is a basis of RN , there are s and t2, ..., tN such that X = sX1 + t2X2 +
....+ tNXN . Because (t2, ..., tN ) ∈ H ′, there are m2, ...,mN ∈ Z such that (t2, ..., tN )T = m2Z2 + ...+mNZN .

Because X −
∑r
i=1X

′
i ∈ RX1 ∩H = ZX1, X ∈ ZX1 +

∑r
i=1 ZX ′

i. Consequently, H = ZX1 +
∑r
i=1 ZX ′

i.

Proposition 2.67. Let

(S1) G1 is a Le group which is locally isomorphic to a Lie subgroup of GL(n,C).

(A1) G1 is connected.

Then the followings are equivalent.

(i) G1 is abelian.

(ii) Lie(G1) is abelian.

STEP1. Showing (i) =⇒ (ii). Let us fix any X,Y ∈ Lie(G1). Because

exp(t(X + Y ) + t2[X,Y ] +O(t3))

= exp(tX)exp(tY )

= exp(t(X + Y ) + t2[Y,X] +O(t3)) (2.7.8)

, [X,Y ] = [Y,X]. So Lie(G1) is abelian.
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STEP2. Showing (ii) =⇒ (i). There is ϵ > 0 such that exp(B(O, ϵ))exp(B(O, ϵ)) ⊂ V . Let us fix any g, h ∈ η(exp(B(O, ϵ))).
There is X,Y ∈ B(O, ϵ) such that g = η(exp(X)), h = η(exp(Y )0. Because X and Y are commutative,

gh = η(exp(X))η(exp(Y ))

= η(exp(X)exp(Y ))

= η(exp(X + Y )) = η(exp(Y +X))

= η(exp(Y )exp(X)) = η(exp(Y ))η(exp(X)) = hg (2.7.9)

By Proposition2.59, G1 is abelian.

Proposition 2.68. Let

(S1) G1 is a Lie group.

(A1) G1 is abelian.

(A2) G1 is connected.

(S2) N := dimLie(G1).

Then there is r ∈ {1, 2, ..., n} such that Tr × RN−r is Cω-class isomorhic as Lie group to G.

STEP1. Showing that Exp : Lie(G1) → G1 is continuous and surjective. There is ϵ > 0 such that for any g ∈ G there
are exp(X1), ..., exp(XM ) ∈ Vϵ := exp(B(O, ϵ)) which satisfies g = exp(X1)...exp(XM ). Because Lie(G1) and G1 are
commutative, Exp : Lie(G) → G1 is homomorphism of topological group.

Because Exp is a locally isomorphism from Lie(G1) ∩ B(O, ϵ) → η(exp(B(O, ϵ))) ∩ V ◦, by Proposition2.31, Exp is
surjective.

STEP2. Showing that Exp−1({1G}) is a discrete subgroup of RN . By von-Neumann-Cartan’s theorem, there is ϵ > 0
such that exp−1({1G}) ∩B(O, ϵ) = O. So exp−1({1G}) is a discrete subgroup of RN .

STEP3. exp is an open map. Because G is abelian, for any X ∈ Lie(G) exp(B(X, ϵ)) = exp(X)exp(B(O, ϵ)). Because
exp(B(O, ϵ)) is open, exp is an open map.

STEP4. Construction of a isomorphism of Lie groups. By Proposition2.66, there are X1, ..., XN ∈ Lie(G) and r such
that X1, ..., XN is a basis of Lie(G) and

exp−1({1G}) =

r∑
i=1

ZXi (2.7.10)

We set i : Tr × RN−r → G by

i(exp(i2πθ1), ..., exp(i2πθr), t) := exp(

r∑
i=1

θiXi +

N∑
i=r+1

tiXi) (2.7.11)

By STEP3, i is an open map. So i is homeomorphism and isomoriphism of topological groups. By Proposition2.2, i is a
Cω-class isomorphism of Lie groups.

2.7.4 Nilpotent Lie group

Definition 2.26 (Nilpotent Lie algebra, Lie group). Let G be a Lie group and g := Lie(G). We set

g0 := g, gi := [gi−1, g, ] (i = 1, 2, ...) (2.7.12)

We call g is a Nilpotent Lie algebra if there is n ∈ N such that gn = {0}. We call G is a Nilpotent Lie group if G is
connected and Lie(G) is a Nilpotent Lie algebra.

Proposition 2.69. Let G be a Lie subgroup of GL(nC) and G be a Nilpotent Lie group. Then Exp : Lie(G) → G is
surjective.

Proof. Let us fix any g ∈ G. By Proposition2.31, there are X1, ..., Xm ∈ Lie(G) such that g = exp(X1)exp(X2)...exp(Xm).
Let us fix any X,Y ∈ Lie(G). By Baker-Campbell-Hausdorff formula, there is a polynomial Z(t) sucht that for |t| � 1

exp(tX)exp(tY ) = exp(Z(t)) (2.7.13)

Because exp(·X)exp(·Y ) is holomorphic, the power series of exp(·X)exp(·Y ) is equal to the power series of exp(Z(t)). The
convergence radius of the power series of exp(Z(t)) is ∞. By identity theorem of holomorphic function(see [6]),

exp(X)exp(Y ) = exp(Z(1))

So exp is surjective.

62



2.8 Universal covering group of Lie group

Proposition 2.70 (Universal covering group). Let

(S1) G1 is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) G2.

(A1) G1 is path-connected.

Let
Ĝ1 := [([0, 1], {0}), (G1, {1G1})]

and for each c1, c2 ∈ Ĝ1 c1 ∼ c2 if there is a homotop Φ from c1 to c2 such that

Φ(s, 0) = e, Φ(s, 1) = c1(1) = c2(2) (∀s)

and
G̃1 := Ĝ1/ ∼

and
p : Ĝ1 3 c 7→ [c] ∈ G̃1

and
q : G̃1 3 [c] 7→ c(1) ∈ G1

and
[c1] · [c2] := [c1c2] (for c1, c2 ∈ Ĝ1)

Then

(i) There is a Lie group structure of G̃1 such that p : G̃1 → G1 is locally isomorphism of Lie groups.

(ii) Lie(G1) = Lie(G̃1)

STEP1. Showing ∼ is equivalent relationship on Ĝ1. It is easy to show by the fact homotop is equivalent relationship.

STEP2. Showing the multiple operation of G̃ is well-defined. Let us fix any c1, d1, c2, d2 ∈ Ĝ such that c1 ∼ c2 and d1 ∼
d2. Then there is Φc,Φd such that Φc is a homotopy from c1 to c2 and Φd is a homotopy from d1 to d2. Because Φc · Φd
is a homotopy from c1 · d1 to c2 · d2, c1 · d1 ∼ c2 · d2. So, the multiple operation of G̃ is well-defined.

STEP3. Showing q is surjective. This is from (A1).

STEP4. Showing G̃1 is group. This is from the group structure on G1.

STEP5. Constructing the topology of G̃1. There is ϵ > 0 such that

Exp : Lie(G1) ∩B(O, ϵ) → Exp(B(O, ϵ)) ∩G1

is Cω-class homeomorphism and
sup

X∈B(O,ϵ)

||exp(X) − E|| < 1

For each s ∈ [0, 1], we set

We,s := {[[0, 1] 3 t→ Exp(tsX)]|X ∈ Lie(G1) ∩ sB(O, ϵ)}

and for each g̃ ∈ G̃1

Wg̃,s := g̃We,s

We will show {Wg̃,s}g̃∈G̃1,s∈[0,1] satisfies the axiom of system of fundamental neighborhoods.

Let us fix any [c][d] ∈ [c]We,s, [d] ∈We,s. Clearly, there is s1 ∈ [0, 1] such that for any t ∈ [0, 1]

d(t)Exp(s1B(O, ϵ)) ⊂ Exp(sB(O, ϵ))

Let us fix any X ∈ s1B(O, ϵ). We set Z := d(1)Exp(X). Because Exp(sB(O, ϵ)) is simply connected, d(·)Exp(·X) ∼
Exp(·Z). This implies that

c(·)d(·)Exp(·X) ∼ c(·)Exp(·Z)

So,
[cd]We,s1 ⊂ [c]We,s
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Let us fix any [c1][d1] = [c2][d2] ∈ [c1]We,s1 ∩ [c2]We,s2 , [d1] ∈We,s1 and [d2] ∈We,s2 . By the argument in the previous
paragraph, there is s3 ∈ [0, 1] such that

[c1d1]We,s3 ⊂ [c1]We,s1 , [c2d2]We,s3 ⊂ [c2]We,s2

So,
[c1d1]We,s3 ⊂ [c1]We,s1 ∩ [c2]We,s2

STEP6. Showing that G̃ is a topological group. Firstly, we will show G̃ is Housdorff space. Let [c]G̃ \ {e}. Because G is
Housdorff space, there is s ∈ (0, 1] such that

e /∈ c(1)Exp(Bm(O, sϵ))

So,
[e] /∈ [c]We,s

Consequently, G̃ is Housdorff space.

STEP7. Showing that q is a local isomorphism. Because ExpBm(O, ϵ) is simply connected,

q|We,1
: We,1 3 [c] → c(1) ∈ Exp(Bm(O, ϵ))

is injective. And clearly q|We,1 is surjective. Because ExpBm(O, ϵ) is simply connected, for any s ∈ [0, 1] and [c] ∈ We,1

such that [c]We,s ∈We,1,
q([c]We,s) = c(1)ExpBm(O, sϵ)

So, q|We,1
is continuous and open map. Because Exp is continuous, there is s0 ∈ [0, 1] such that

Exp(Bm(O, s0ϵ)Exp(Bm(O, s0ϵ) ⊂ Exp(Bm(O, s0ϵ))

Because ExpBm(O, ϵ) is simply connected,

[c1][c2] ∈We,s0 ⇐⇒ c1(1)c2(1) ∈ Exp(Bm(O, s0ϵ))

Consequently, q is a local isomorphism.

Showing that G̃ is path-connected. Let us fix any [c] ∈ G̃. We set, for each s ∈ [0, 1],

C(s) := [c(s·)]

Then, clearly, C is a continuous path from [{e}] to c.

Proposition 2.71. Let G be a path-connected topological group and G̃ be a universal covering group of G. Let us assume
∗ be the operation of π(G). Then for any c1 ∈ C([0, 1], G) such that c(0) = e and c2 ∈ π(G),

[c1] · [c2] = [c1] ∗ [c2] = [c2] · [c1]

Proof. We set
Φ1(s, t) := c1(L(s(2t− 1)) + (1 − s)t)c2(L(2st) + (1 − s)t)

and
Φ2(s, t) := c2(L(s(2t− 1)) + (1 − s)t)c1(L(2st) + (1 − s)t)

Here,

L(u) :=

 0 (u ≤ 0)
u (0 ≤ u < 1)
1 (u ≥ 1)

Clearly, Φ1 is a homotop from c1 · c2 to c1 ∗ c2 and Φ2 is a homotop from c2 · c1 to c1 ∗ c2.

By Proposition2.71, the following holds. We will show another proof using adjoint representation of Lie group.

Proposition 2.72. Let G be a path-connected Lie group and G̃ be a universal covering group of G. Then q−1(e) is
contained in the center of G̃. In special, π(G) is commutative group.
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STEP1. Showing that Ad(g) = id (∀g ∈ q−1(e)). Let us fix any g0 ∈ q−1(e) and Y ∈ Lie(G̃). By the definition of Ad,

g0Exp(tY )g−1
0 = Exp(tAd(g0)Y ) (|t| � 1)

So,
Exp(tι(Y )) = q(Exp(tY )) = q(g0Exp(tY )g−1

0 ) = q(Exp(tAd(g0)Y )) = Exp(tι(Ad(g0)Y ))

This implies
ι(Y ) = ι(Ad(g0)Y )

Because q is a local isomorphism, ι is an isomorphism. So, Y = Ad(g0)Y .

STEP2. Showing that q−1(e) is contained in the center of G̃. Because (̃G) is path-connected, it is enough to show g0 is
commutative with Exp(B(O, ϵ)) for sufficient small ϵ > 0.

g0Exp(Y ) = g0Exp(Y )g−1
0 g0 = Exp(Ad(g0)Y )g0 = Exp(Y )g0

Theorem 2.9. Let

(S1) Gi,1 is a Lie group which is locally isomorphic to a Lie subgroup of GL(n,C) Gi,2 (i = 1, 2).

(A1) Lie(G1,1) and Lie(G2,1) are isomorphic as Lie algebras.

then G1,1 and G2,1 are isomorphic as Lie groups.

2.9 Compact Lie group

Definition 2.27 (Killing form). Let g be a Lie algebra. We set

[X,Y ] := Trace(ad(X)ad(Y ))
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3 Irreducible decomposition of unitary representation

3.1 Some facts admitted without proof

In this subsection, We will present some facts that we will use without proof in the pages that follow.
For the following Proposition, see [?].

Proposition 3.1 (Shur LemmaII). Let G be a topological group and (π, V ) be an continuous irreducible representation
of G and A : V → V be a continuous intertwining operator with respect to G such that A 6= 0. Then there is λ ∈ C such
that A = λI.

Definition 3.1 (Extreme point). Let

(S1) V is a vector space on C.
(S2) A is a convex set of V .

(S3) x ∈ A.

We say x is an extreme point of A if for any y, z ∈ A and λ ∈ [0, 1] such that x = λy + (1 − λ)z x = y = z. We denote
the set of all extreme points of A by Ex(A).

Definition 3.2 (Extreme set). Let

(S1) V is a vector space on C.
(S2) A is a convex set of V .

(S3) B ∈ A.

We say B is an extreme set of A if for any y, z ∈ A and λ ∈ [0, 1] such that x = λy + (1 − λ)z ∈ B then y, z ∈ B.

For the following three Propositions, see [5].

Theorem 3.1 (S.Mazur Theorem). Let

(S1) (V, {pn}n∈N) is a semi-normed space on R.
(S2) x0 ∈ V .

(S3) A ⊂ V is a closed convex subset with x0 /∈ A.

Then there is real-valued continuous linear function f such that f(x0) = 1 and |f(x)| < 1 (∀x ∈ A).

Proposition 3.2. Let

(S1) (V, {pn}n∈N) is a semi-normed space.

(S2) f is a real-valued continuous linear functional on V .

(S3) K is a compact convex subset of V .

Then {x ∈ K|f(x) = max{f(x)|x ∈ K}} is an extreme set of K.

Proposition 3.3 (Krein-Millman Theorem). Let

(S1) (V, {pn}n∈N) is a semi-normed space.

(S2) K is a compact convex subset of V .

(S3) Ex(K) is the set of all extreme ompact convex subset of V .

Then

(i) Ex(K) is not empty.

(ii) K is the closure of the convex full of Ex(K).

Theorem 3.2 (Stone Weierstrass Theorem, lattice version). Let

(S1) X is a compact metric space.

(S2) V is a R-vector subspace of C(X,R).

(A1) ∨ means the pointwise maximum. Then f ∨ g ∈ V (∀f, g ∈ V ).

(A2) For any x, y ∈ X such that x 6= y, there is f ∈ V such that f(x) 6= f(y).

Then V is dense in C(X,R).
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3.2 Continuity of representation

3.2.1 Baire Category Theorem

Theorem 3.3 (Baire Category Theorem). Let

(S1) X is a complete metric space.

(S2) {An}∞n=1 is a sequence of closed sets of X such that An ⊂ An+1 (∀n ∈ N).

(A1) X = ∪∞
n=1An.

Then there is n ∈ N such that A◦
n 6= ϕ.

Proof. Let us assume
A◦
n = ϕ (∀n ∈ N) (3.2.1)

Let us fix x0 ∈ A1. In this proof, for each x ∈ X and ϵ > 0 we denote D(x, ϵ) := {y ∈ X|d(x, y) ≤ ϵ}. Then there

is x1 ∈ B(x0, 1) \ A1. Because Ac1 is an open set, there is φ(1) ∈ N > 1 such that D(x1,
1

φ(1)
) ⊂ Ac1 ∩ B(x0, 1). If

you repeat this procedure in the same way below, there is φ : N → N and {xn}∞n=1 ⊂ X such that φ is narrow sense

monotonically increasing and D(xn,
1

φ(n)
) ⊂ Acn ∩ B(xn−1,

1

φ(n− 1)
) (∀n ∈ N). Because clearly {xn}∞n=1 is a cauchy

sequence, x∞ := lim
n→∞

xn exists. By (A1), there is n ∈ N such that x∞ ∈ An. Because xm ∈ D(n,
1

φ(n)
) ⊂ Acn (∀m ≥ n),

x∞ ∈ D(n,
1

φ(n)
) ⊂ Acn. This is contradiction.

3.2.2 Uniform boundedness principle

Theorem 3.4 (Uniform boundedness principle). Let

(S1) X is a banach space.

(S2) Y is a normed space.

(S3) {Tλ}λ∈Λ ⊂ B(X,Y ).

(A1) For any v ∈ X, {||Tλv||}λ∈Λ is bounded.

Then {||Tλ||}λ∈Λ is bounded.

Proof. We set An := {v ∈ X| ||Tλv|| ≤ n (∀λ ∈ Λ)} (n ∈ N). {An}∞n=1 satisfies the assumptions in Baire category thereom.
By Baire category thereom, there is n ∈ N such that A◦

n 6= ϕ. So there is v0 ∈ X and ϵ > 0 such that B(v0, 2ϵ) ⊂ An. For
any λ ∈ Λ and w ∈ X such that ||w|| = 1,

||Tλw|| = ||1
ϵ
Tλ(ϵw + v0) − 1

ϵ
Tλv0||

because v0, w + v0 ∈ B(v0, ϵ)

= ||1
ϵ
Tλ(ϵw + v0) − 1

ϵ
Tλv0|| ≤ ||1

ϵ
Tλ(ϵw + v0)|| + ||1

ϵ
Tλv0|| ≤

n

ϵ
+
n

ϵ
=

2n

ϵ

So, ||Tλ|| ≤
2n

ϵ
(∀λ ∈ Λ)

3.2.3 Weakly continuity of representation

Theorem 3.5. Let

(S1) G is a local compact topological group.

(S2) (π, V ) is a representation of G.

(A1) For any u ∈ V , G 3 g 7→ π(g)u ∈ C is continuous.

Then (π, V ) is continuous.
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Proof. Let us fix U0 which is a local compact neighborhood of e. By (A1) and uniform boundedness principle,

sup
g∈U0

||π(g)|| <∞

Let us fix any ϵ > 0 and g0 ∈ G and u0 ∈ V . By (A1), there is U1 which is an open neighborhood of e such that
U1 ⊂ U0

||π(g0U1)u0 − u0|| <
ϵ

2

So, for any x ∈ U1 and u ∈ B(u0,
ϵ

2(supg∈U0
||π(g)|| + 1)

)(||π(g0)|| + 1),

||π(g0x)u− π(g0)u0|| ≤ ||π(g0x)u− π(g0x)u0|| + ||π(g0x)u0 − π(g0)u0|| < ||π(g0)||op||π(x)||op||u− u0|| +
ϵ

2
< ϵ

In speciality, the following holds. However, this theorem can be proved without using Theorem3.5. The proof is given
below.

Theorem 3.6. Let

(S1) G is a topological group.

(S2) (π, V ) is a unitary representation of G.

(A1) For any u, v ∈ V , G 3 g 7→ (π(g)u, v) ∈ C is continuous.

Then (π, V ) is continuous.

Proof. Let us fix any u ∈ V and g ∈ G. Let us fix any v ∈ B(u,
ϵ

12(2||u|| + 1)
). There is U which is an open neighborhood

of e such that
|(π(g−1h)u, u) − ||u||2| ≤ ϵ

2

By (S2), for any h ∈ gU and v ∈ B(u,
ϵ

2(||u|| + 1)
),

||π(h)u− π(g)v||2 = ||u||2 − 2Re(π(g−1h)u, v) + ||v||2 = ||u||2 − 2Re(u, v) + ||v||2 + 2Re(u, v) − 2Re(π(g−1h)u, v)

= ||u− v||2 + 2Re(u− π(g−1h)u, v) = ||u− v||2 + 2Re(u− π(g−1h)u, u) + 2Re(u− π(g−1h)u, v − u)

≤ ϵ

3
+
ϵ

3
+ 2||u− π(g−1h)u||||v − u|| ≤ 2ϵ

3
+ 2(||u|| + ||π(g−1h)u||)||u− v|| =

2ϵ

3
+ 2(||u|| + ||u||)||u− v||

=
2ϵ

3
+ 4||u||||u− v|| ≤ 2ϵ

3
+
ϵ

3
= ϵ

So, (π, V ) is continuous.

3.3 Cyclic representation and Unitary dual

Definition 3.3 (Cyclic representation). Let G be a topological group and (π, V ) be a continuous representation of G. We
say (π, V ) is a cyclic representation of G if there is v ∈ V such that

{
N∑
i=1

π(gi)v|g1, ..., gN ∈ G} = V

Clearly the following holds.

Proposition 3.4. Let G be a topological group. Any continuous irreducible representation of G is a cyclic representation.

By Proposition2.31, the following holds.

Proposition 3.5. Let G be a Lie group and (π, V ) be a continuous cyclic representation of G. Then V is countable. In
speaciality, if π is unitary representation and dimπ = ∞, then V ' l2 as Hilbert space.

By Proposition3.5, we can set of all continuous irreducible unitary representations of a Lie group.
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Notation 3.1. Let G be a Lie group. We set

Ωc := {(π, V )| V is closed subspace of l2 and (π, V ) is a continuous cyclic representation of G}

Definition 3.4 (Unitary dual). Let G be a Lie group. We set

Ĝ := {(π, V )| V is closed subspace of l2 and (π, V ) is a continuous irreducible representation of G}/ '

Here, ' is the isomorphic relation as unitary representations. We call Ĝ the unitary dual of G.

Proposition 3.6. Let

(S1) G is a Lie group.

(S2) (πi, Vi) is a continuous unitary cyclic representation of G with cyclic vector vi such that ||vi|| = 1 (i = 1, 2).

(A1) (π1(g)v1, v1) = (π2(g)v2, v2) (∀g ∈ G).

Then (π1, V1) and (π2, V2) are isomorphic as continuous unitary representation of G.

STEP1. Construction of orthonormal basis of V1. Let {gi}∞i=1 is a dense subset of G. We set {hi}∞i=1 is a subgroup of G
generated by {gi}∞i=1. There is a {fi}∞i=1 ⊂ {hi}∞i=1 such that {π1(fi)v1}∞i=1 is a basis of the vector space W1 which is
generated by {π1(hi)v1}∞i=1. We take {wi}∞i=1 which is the orthonormal basis of W1 by Gram-Schmit orthogonalization.

At the end of this step, we will show {π2(fi)v2}∞i=1 is a basis of the vector space W2 which is generated by {π2(hi)v2}∞i=1.
For showing this proposition, it is enough to show for each a1, ..., aN ∈ C

N∑
i=1

aiπ1(fi)v1 = 0 ⇐⇒
N∑
i=1

aiπ2(fi)v2 = 0 (3.3.1)

Because of (S2) and (A1),

N∑
i=1

aiπ1(fi)v1 = 0 ⇐⇒ (

N∑
i=1

aiπ1(fi)v1, π1(g)v1) = 0 (∀g ∈ G) ⇐⇒
N∑
i=1

ai(π1(g−1fi)v1, v1) = 0 (∀g ∈ G)

⇐⇒
N∑
i=1

ai(π2(g−1fi)v2, v2) = 0 (∀g ∈ G) ⇐⇒ (

N∑
i=1

aiπ2(fi)v1, π2(g)v1) = 0 (∀g ∈ G) ⇐⇒
N∑
i=1

aiπ2(fi)v2 = 0

So, (3.3.1) holds.

STEP2. Construction of orthonormal basis of V2. By (A1), clearly

||
N∑
i=1

aiπ1(fi)v1||V1
= ||

N∑
i=1

aiπ2(fi)v2||V2
(∀a1, ..., aN ∈ C) (3.3.2)

We set, for each wi =
∑Ni

j=1 ai,jπ1(fj)v1,

w′
i :=

Ni∑
j=1

ai,jπ2(fj)v2

We will show {w′
i}∞i=1 is an orthonormal basis of V2. By (A1), {w′

i}∞i=1 is clearly orthonormal. Let us fix any k ∈ N. Then
there are a1, ..., aN ∈ C such that

π1(fk)v1 =

N∑
i=1

aiwi

Because wi ∈W1, by (3.3.1),

π2(fk)v2 =

N∑
i=1

aiw
′
i

So, {w′
i}∞i=1 is an orthonormal basis of V2.
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STEP3. Construction of isomorphism. We set

Φ(

N∑
i=1

aiwi) :=

N∑
i=1

aiw
′
i (a1, ..., aN ∈ C)

Clearly Φ is an unitary isomorphism between Hilbert spaces. We will show Φ is G-linear. Because w1 = v1 and w′
1 = v2,

Φ(v1) = v2

Let us fix any i ∈ N. Then there are a1, ..., an ∈ N such that

π1(gi)v1 =

n∑
j=1

ajwj

Because wi ∈W1, by (3.3.1),

π2(gi)v2 =

n∑
j=1

ajw
′
j

So,
Φ(π1(gi)v1) = π2(gi)Φ(v1)

Because W1 is dense in V1 and Φ is unitary, Φ is G-linear.

Proposition 3.7. Let (π, V ) be a continuous unitary representation of a topological groupG. Then there is a subset of
G-invariant cyclic subspaces D such that

V =
⊕
W∈D

W

Proof. We denote the all of nonzero invariant closed cyclic subspaces by D. Clearly D 6= ϕ. We set

T := {D ⊂ D|vi ∈Wi(i = 1, 2, ..., N), {Wi}Ni=1 is a distinct subset of D,

N∑
i=1

vi = 0 =⇒ vi = 0 (∀i)}

Let us fix any every totally ordered subset of T, T . Clearly ∪D∈TD ∈ T. So, by Zorn’s lemma, T has a maximum element
D. We set V0 :=

⊕
W∈DW . Let us assume V ⊥

0 is nonzero. Then V ⊥
0 has a nonzero invariant closed cyclic subspace W .

Clearly, D ∪ {W} ∈ T. This contradicts that D is a maximum element. So, V ⊥
0 = {0} and V = V̄0.

3.4 ∗-weak topology of L1(G)

Definition 3.5 (∗-weak topology). Let V be a normed space. We denote the weakest topology in which for any x ∈ V
V ∗ 3 f 7→ f(x) ∈ C is continuous by Ow(V ∗). We call this topology ∗-weak topology of V ∗.

Clearly the following two propositions holds.

Proposition 3.8. Let V be a normed space. Ow(V ∗) is induced by the family of seminorms {·(x)}x∈V .

Proposition 3.9. Let V be a separable normed space and {xn}n∈N be a dense subset of V . Then

d : V ∗ × V ∗ 3 (f, g) 7→
∞∑
n=1

|f(xn) − g(xn)|
1 + |f(xn) − g(xn)|

∈ [0,∞)

is a metric on V ∗ and Ow(V ∗) is induced by d.

Theorem 3.7 (Banach-Alaoglu theorem). Let V be a separable normed space and {xn}n∈N be a dense subset of V . Then
B := {f ∈ V ∗|||f || ≤ 1} is a compact subset in Ow(V ∗).

Proof. Because (V ∗,Ow) is metrizable, it is enough to show (V ∗,Ow) is sequencial compact. Let us fix any {fn}n∈N ⊂ B.
By the same argument as the proof of Proposition1.19, there is a subsequence {gn}nN = {fφ(n)}n∈N such that for any
i ∈ N lim

n→∞
gn(xi) exists.

Let us fix x ∈ V and ϵ > 0. Let us fix xi such that ||x− xi|| <
ϵ

3
. Because {gn(xi)}n∈N is a cauchy sequence, there is

n0 ∈ N such that |gn(xi) − gm(xi)| <
ϵ

3
(∀m,n ≥ n0). Then for any m,n ≥ n0

|gm(x) − gn(x)| ≤ |gm(x) − gm(xi)| + |gm(xi) − gn(xi)| + |gn(x) − gn(xi)| ≤ 2||x−x i|| +
ϵ

3
≤ ϵ
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So {gn(x)}n∈N is a cauchy sequence. This implies lim
n→∞

gn(x) exists. We set

g(x) := lim
n→∞

gn(x) (x ∈ V )

Cearly ||g|| ≤ 1 and w − lim
n→∞

gn = g.

3.5 Positive definite function on a group

3.5.1 Definition and Basic properties

Definition 3.6 (Positive definite function on a group). Let G be a group and φ ∈ C(G,C). We say φ is positive definite
if for any n ∈ C and g1, g2, ..., gn ∈ G and c1, c2, ..., cn ∈ C∑

j,k

cj c̄kφ(g−1
j gk) ≥ 0 (3.5.1)

Example 3.1. Let G be a group and (π, V ) be a unitary representation of G and v ∈ V . Then the following is a positive
definite function.

(π(·)v, v) (3.5.2)

Proof. For any n ∈ C and g1, g2, ..., gn ∈ G and c1, c2, ..., cn ∈ C∑
j,k

cj c̄k(π(g−1
j gk)v, v) =

∑
j,k

cj c̄k(π(gk)v, π(gj)v) = (
∑
k

c̄kπ(gk)v,
∑
j

c̄jπ(gj)v) = ||
∑
k

c̄kπ(gk)v||2 ≥ 0

Proposition 3.10. Let G be a group and φ is a positive definite function on G. Then

(i) φ(e) ≥ 0

(ii) φ(g−1) = φ(g)

(iii) |φ(g)| ≤ φ(e)

(iv) |φ(g1) − φ(g2)|2 ≤ 1

2
φ(e)|φ(e) −Reφ(g−1

1 g2)|

Proof of (i). We succeed in the notation of Definition3.1. By setting n = 1 and g1 = e and c1 =, (i) holds.

Proof of (ii). By setting n = 2 and g1 = e and g2 = g and c1 = 1 and c2 = a,

(1 + |a|2)φ(e) + aφ(g) + āφ(g−1) ≥ 0

By setting a = 1,
Imφ(g) = −Imφ(g−1)

By setting a = i,
Reφ(g) = Reφ(g−1)

So, (ii) holds.

Proof of (iii). By the above proof of (ii),
(1 + |a|2)φ(e) ≥ −2Re(aφ(g))

By setting a = −exp(−iarg(a)),
2φ(e) ≥ 2|φ(g)|

So, (iii) holds.

Proof of (iv). We set n = 3, c3 = 1, g3 = 3 in (). Then we get

0 ≤ c1c̄2φ(g1g
−1
2 ) + c2c̄1φ(g2g

−1
1 ) + c1φ(g1) + c2φ(g2) + c̄1φ(g−1

1 ) + c̄2φ(g−1
2 ) + φ(e) + |c1|2φ(e) + |c2|2φ(e)

By (ii),
0 ≤ 2Re(c1c̄2φ(g1g

−1
2 )) + 2Re(c1φ(g1) + c2φ(g2)) + φ(e) + |c1|2φ(e) + |c2|2φ(e)
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Moreover, we set c1 = −c2 = α. Then

0 ≤ −2|α|2Re(φ(g1g
−1
2 )) + 2Re(α(φ(g1) − φ(g2)) + φ(e) + 2|α|2φ(e)

= 2|α|2(φ(e) −Re(φ(g1g
−1
2 ))) + 2Re(α(φ(g1) − φ(g2)) + φ(e)

We can assume φ(g1) 6= φ(g2). We set α = −φ(e)
φ(g1) − φ(g2)

2|φ(g1) − φ(g2)|2
. Then 2Re(α(φ(g1) − φ(g2)) + φ(e) = 0 and

2|α|2(φ(e) −Re(φ(g1g
−1
2 ))) =

φ(e)(φ(e) −Re(φ(g1g
−1
2 )))

2|φ(g1) − φ(g2)|2
. So, we get (iv).

The following is clear.

Proposition 3.11. Let G be a group and φ is a positive definite function on G. Then

(i) φ1, φ2 are positive definite functions on G and α1, α2 are positive numbers. Then α1φ1+α2φ2 is a positive
definite function on G.

(ii) We set
P1 := {φ|φ is a continuous positive definite function on G such that φ(e) = 1}

and
P0 := {φ|φ is a continuous positive definite function on G such that φ(e) ≤ 1}

and
P := {φ|φ is a continuous positive definite function on G }

Then P1 and P2 and P are convex.

Theorem 3.8 (Schur product theorem). Let M := {mi,j}i,j and N := {ni,j}i,j be nonnegative definite m-th Hermitian
matrices. Then M ◦N := {mi,jni,j}i,j is nonnegative definite. We call M ◦N the Hadamard product of M and N .

Proof. There are A := {ai,j}i,j and A := {bi,j}i,j such that

M = A∗A, N = B∗B

This means

mi,j =

m∑
i=1

¯ai,jai,k, ni,j =

m∑
l=1

¯bl,jbl,k

So,

mi,jni,j =

m∑
i,l=1

ai,kbl,k ¯ai,j ¯bl,j

For each i, l, we set the (m, 1)-matrix vi,l by

vi,l = t(ai,1bi,1, ..., ai,mbi,m)

Then vi,lv
∗
i,l is a m-th nonnegative definite Hermite matrix and

M ◦N =
∑
i,l

vi,lv
∗
i,l

So, M ◦N is nonnegative definite.

Proposition 3.12. Let φ1, φ2 are positive definite functions on a group G. Then φ1φ2 is a positive definite function on
a group G.

Proof. Let us fix any g1, ..., gm ∈ G. By Proposition3.10, {(φ1φ2)(g−1
i gj)}i,j is an Hermite matrix. By Theorem3.8,

{(φ1φ2)(g−1
i gj)}i,j is nonnegative definite. So, φ1φ2 is a positive definite function on a group G.
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3.5.2 GNS construction for unitary representation

We introduce the following notation.

Notation 3.2. Let G be a Lie group and f ∈ C(G). Then

f∗(x) := ∆R(x)f(x−1) (x ∈ G)

Clearly the following holds.

Proposition 3.13. Let G be a Lie group and f ∈ C(G).

(i) f∗ ∈ C(G).

(ii) f∗∗ = f .

Theorem 3.9 (GNS construction). Let G is a Lie group.

(S1) G is a Lie group.

(S2) φ is a continuous positive definite function on G.

(S3) We set (f, g) := φ ∗ f ∗ g∗(e) f, g ∈ Cc(G).

(S4) We set H0 := Cc(G) \N . Here, N := {f ∈ Cc(G)|||f || = 0}.
(S5) Tg[f ] := [f(·g)] ([f ] ∈ H0, g ∈ G)

Then

(i) (f, g) =

∫
G

φ(x−1y)f∗(y)g∗(x)dxRdyR =

∫
G

φ(xy−1)f(y)g(x)dxRdyR

(ii) H0 is a pre-Hilbert space.

(iii) T is well-defined continuous unitary representation on H0 of G.

(iv) We set H be the completion of H0. Then T is well-defined continuous unitary representation on H of G.

(iv) H is separable.

(v) Let us assume {fn}n∈N ⊂ Cc(G) and f ∈ Cc(G) and supn∈N||fn||∞ < ∞ and lim
n→∞

fn = f (pointwise

convergense). Then lim
n→∞

||fn − f || = 0.

(vi) ||f || ≤ supx,y∈supp(f) |φ(xy−1)| 12 ||f ||L1(G) (∀f ∈ Cc(G))

(vii) (H, T ) is cyclic.

(viii) φ(g) = (Tgv, v) (∀g ∈ G).

(ix) If φ(·) = (π(·)u, u) for (π, V ) which is a continuous cyclic unitary representation of G with cyclic vector
u. Then (π, V ) and (T,H) are isomorphic as continuous unitary representations.

STEP1. Proof of (i).

(f, g) = (φ ∗ f∗∗) ∗ g∗(e) =

∫
G

φ ∗ f∗∗(x−1)g∗(x)dxR =

∫
G

∫
G

φ(x−1y−1)f∗∗(y)dyRg
∗(x)dxR

=

∫
G

∫
G

φ(x−1y−1)f∗(y−1)∆(y)dyRg
∗(x)dxR

By Proposition2.55,

=

∫
G

∫
G

φ(x−1y)f∗(y)g∗(x)dyRdxR =

∫
G

∫
G

φ(x−1y)f(y−1)g(x−1)∆(y)∆(x)dyRdxR

=

∫
G

∫
G

φ(xy−1)f(y)g(x)dyRdxR

STEP2. Proof of (f, f) ≤ 0 (∀f ∈ Cc(G)). By the same argument as in the proof of Proposition4.2, there is {En,i}n∈N,1≤i≤φ(n)
and {xn,i}n∈N,1≤i≤φ(n) such that

{En,i}n∈N,1≤i≤φ(n) ⊂ B(G):disjoint (∀n ∈ N)

and
xn,i ∈ En,i (∀n ∈ N, 1 ≤ ∀i ≤ φ(n))
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and

||f(x) − f(xn,i)|| ≤
1

n
(∀x ∈ En,i, ∀n ∈ N, , 1 ≤ ∀i ≤ φ(n))

and

||φ(x−1y) − φ(x−1
n,ixn,y)|| ≤ 1

n
(∀x ∈ En,i, ∀y ∈ En,j , ∀n ∈ N, , 1 ≤ ∀i ≤ φ(n))

We set
Fn(x, y) :=

∑
i,j

φ(x−1
n,ixn,y)f(xn,i)f(xn,j)χEn,i(x)χEn,i(y) (x, y ∈ G,n ∈ N)

and
F (x, y) := φ(x−1y)f(x)f(y) (x, y ∈ G)

Then clearly
lim
n→∞

Fn(x, y) = F (x, y) (∀x, y ∈ G)

and
||F ||∞ ≤ ||φ||∞||f ||2∞

So, by Lebesugue convergence theorem,

lim
n→∞

∫
G

∫
G

Fn(x, y)dxRdyR =

∫
G

∫
G

F (x, y)dxRdyR = ||f ||2

Because φ is positive definite, ∫
G

∫
G

Fn(x, y)dxRdyR =
∑
i,j

φ(x−1
n,ixn,j)f(xn,i)f(xn,j) ≥ 0

STEP3. Proof of (g, f) = (f, g) (∀f ∈ Cc(G)). By Proposition3.10, φ(yx−1) = φ(xy−1) (∀x, y ∈ G). So, by (i), (g, f) =
(f, g) (∀f ∈ Cc(G))

STEP4. Proof of (ii). By STEP2,
|(f, g)| ≤ ||f ||||g|| (∀f, g ∈ Cc(G))

So, (·1, ·2) is well-defined on H0 by this inequality. Consequently, (ii) holds.

STEP5. Proof of that (Tzf, Tzg) = (f, g) (∀f, g ∈ Cc(G), ∀z ∈ G).

(Tzf, Tzg) =

∫
G

∫
G

φ(xy−1)Tzf(x)Tzf(y)dxRdyR =

∫
G

∫
G

φ(xy−1)f(xz)f(yz)dxRdyR

=

∫
G

∫
G

φ(xz(yz)−1)f(xz)f(yz)dxRdyR =

∫
G

∫
G

φ(xy−1)f(x)f(y)dxRdyR = (f, g)

STEP6. Proof of that T is well-defined and unitary. It is clear from STEP5.

STEP7. Proof of (iii). By STEP6, it is enough to show T is continuous. Let us fix any f, g ∈ Cc(G). By Theorem3.6, it
is enough to show G 3 z → (Tzf, g) ∈ C is continuous. Let us fix any ϵ > 0 and fix any z ∈ G. Let us fix U such that U is
a compact neighborhood of e and U−1 = U . For x ∈ supp(f)U , there is Vx and Ux such that Vx is an open neighborhood
of x and Ux is a compact neighborhood of e and Ux ⊂ U and U−1

x = Ux

|f(yz) − f(y)| ≤ ϵ

(
∫
G

∫
supp(f)U0

|φ(xy−1)Tz−1g(x)|dxRdyR + 1)
(∀y ∈ Vx, ∀z ∈ Ux)

Because supp(f)U is compact, there is Vx1 , ..., Vxn which is a covering of supp(f)U . U0 := Ux1 ∩ ...∩Uxn . For any w ∈ zU0,

|(Twf, g) − (Tzf, g)| = |(Tz−1wf, Tz−1g) − (f, Tz−1g)| ≤
∫
G

∫
supp(f)U0

|φ(x−1y)g(x)||f(yz) − f(y)|dyRdxR ≤ ϵ

STEP8. Proof of (iv). By Proposition5.7, H′ is clearly separable. Because H′ is dense in H, H is separable.
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STEP9. Proof of (v). (v) is proved by Lebesgue convergence theorem.

STEP10. Proof of (vi). This is followed by

||f ||2 ≤ sup
x,y∈supp(f)

|φ(xy−1)|(
∫
G

|f(g)|dg)2 (∀f ∈ Cc(G))

STEP11. Constructing a cyclic vector. There is {fn}∞n=1 ⊂ Cc(G) such that supp(fn) ⊂ exp(B(O,
1

n
) and fn ≥ 0 and∫

G
fndg = 1 (∀n ∈ N). Then for any n ∈ N

||fn||2 ≤ ||φ||∞
∫
G

f(x)f(y)dxdy = ||φ||∞

So, there is subsequence {fα(n)}∞n=1 and v ∈ H such that

w − lim
n→∞

fα(n) = v

Then for any f ∈ Cc(G)

(f, v) = lim
n→∞

(f, fn) = lim
n→∞

∫
supp(f)

∫
supp(fn)

φ(xy−1)f(y)fn(x)dxdy

By the same argument as in the proof of STEP7,

lim
n→∞

|
∫
supp(f)

∫
supp(fn)

φ(xy−1)f(y)fn(x)dxdy −
∫
supp(f)

φ(y−1)f(y)dy|

= lim
n→∞

|
∫
supp(f)

∫
supp(fn)

φ(y−1)f(yx)fn(x)dxdy −
∫
supp(f)

φ(y−1)f(y)dy|

= lim
n→∞

∫
supp(f)

∫
supp(fn)

φ(e)|f(yx) − f(y)|fn(x)dxdy

≤
∫
supp(f)

sup
z∈supp(fn)

φ(e)|f(yz) − f(y)|dy = 0

So,

(f, v) = φ ∗ f(e)

STEP12. Calculas of f ∗ k∗. Let us fix any f, k ∈ Cc(G). By Proposition4.2,
∫
G
Ty−1fk∗(y)dy exists. By the same

argument as in the proof of STEP2 and STEP7, there is {En,i}n∈N,1≤i≤φ(n) and {xn,i}n∈N,1≤i≤φ(n) such that

{En,i}n∈N,1≤i≤φ(n) ⊂ B(G):disjoint (∀n ∈ N)

and
yn,i ∈ En,i (∀n ∈ N, 1 ≤ ∀i ≤ α(n))

and

||k∗(y) − k∗(yn,i)|| ≤
1

n
(∀y ∈ En,i, ∀n ∈ N, , 1 ≤ ∀i ≤ α(n))

and

||f(xy−1) − f(xy−1
n,i)|| ≤

1

n
(∀x ∈ supp(f)supp(k), ∀y ∈ En,j , ∀n ∈ N, , 1 ≤ ∀i ≤ α(n))

We set for n ∈ N

Fn(x) :=

∫
G

α(n)∑
i=1

f(xy−1
n,i)k

∗(yn,i)χEn,i
(y)dy (x ∈ G)

Then
lim
n→∞

Fn = f ∗ k∗ (pointwise convergence)
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and
||Fn||∞ ≤ ||f ||∞||k∗||∞dg(supp(f)supp(k))dg(supp(k∗)) (∀n ∈ N)

So, by (v),
lim
n→∞

Fn = f ∗ k∗ (in H)

Also,

Fn =

α(n)∑
i=1

Ty−1
n,i
fk∗(yn,i)

By Proposition4.2 and (vi),

lim
n→∞

Fn =

∫
G

Ty−1fk∗(y)dy (in H)

So, ∫
G

Ty−1fk∗(y)dy = f ∗ k∗

STEP13. Proof of (vii). Let us fix any f, k ∈ Cc(G).

(f, k) = φ ∗ (f ∗ k∗)(e) = (f ∗ k∗, v) = (

∫
G

Ty−1fk∗(y)dy, v) =

∫
G

(Ty−1fk∗(y), v)dy =

∫
G

(fk∗(y), Tyv)dy

=

∫
G

(f, k(y−1)Tyv)δR(y)dy = (f,

∫
G

k(y−1)TyvδR(y)dy)

So,

k =

∫
G

k(y−1)Tyv∆R(y)dy

By the same argument as in the proof of Proposition4.2, k ∈ {
∑m
i=1 ciπ(gi)v|ci ∈ C, gi ∈ G, i = 1, 2, ...,m,m ∈ N} So, v is

a cyclic vector of H.

STEP14 Proof of (viii). For any f ∈ Cc(G),∫
G

φ(g−1f(g)dg = φ ∗ f(e) = (f, v) = (

∫
G

f(y−1)Tyv∆R(y)dy, v) =

∫
G

f(y−1)(Tyv, v)∆R(y)dy

=

∫
G

f(y)(Ty−1v, v)dy

So, for any y ∈ G,

φ(g−1) = (Ty−1v, v)

STEP15 Proof of (ix). This is clearly followed by Proposition3.6.

By the proof of Theorem3.9, the following holds.

Proposition 3.14. Let G is a Lie group. We will succeed in notations of Theorem3.9.

(S1) G is a Lie group.

(S2) φ is a bounded borel measurable function on G.

(A1) (f, f) := φ ∗ f ∗ f∗(e) ≥ 0 (∀f ∈ Cc(G)).

Then by the same method to Theorem3.9, we can construct a cyclic continuous unitary representation (T,H) with a cyclic
vector v and φ(g) = (Tgv, v) (a.e. g ∈ G).
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3.5.3 The topology of positive definite functions

Definition 3.7 (The topology of P1). Let G be a Lie group. We denote the minimal topology of P1 in which

P1 3 φ 7→
∫
G

φ(g)f(g)dgr ∈ C is continuous for every f ∈ L1(G) (3.5.3)

by τ1.
By Proposition2.31, there are {Un}∞n=1 ⊂ O(G) such that Un is relative compact and Un ⊂ Un+1 (∀n ∈ N) and

G = ∪∞
n=1Un.

d(f1, f2) :=

∞∑
i=1

||f1 − f2||L∞(Ūi)

2i(1 + ||f1 − f2||L∞(Ūi))
(f1, f2 ∈ P1)

By Proposition3.10, d is a metric on P1. We call this topology the pontryagin topology of P1 and denote this by τ2.

The following is clear.

Proposition 3.15. Let G be a Lie group and {φn}n∈N ⊂ P and φ be a complex-value function on G and {φn}n∈N compact
converges to φ. Then φ ∈ P.

Proposition 3.16. Let G be a Lie group. Then there is {fn}n∈N ⊂ Cc(G) such that for every f ∈ Cc(G) and ϵ > 0 there
is n ∈ N such that ||f − fn||∞ < ϵ.

Proof. By Proposition2.31, there is a sequence of compact subsets of G {Kn}n∈N such that Kn ⊂ K◦
n+1 (∀n ∈ N) and

G = ∪n∈NKn. Then there is {gn}n∈N ⊂ Cc(G) such that

gn|Kn ≡ 1 and supp(gn) ⊂ K◦
n+1 (∀n ∈ N)

Because C(Kn) is separable for every n ∈ N(see [14]), for each n ∈ N there is {hn,m}m∈N which is a dense subset of C(Kn).
We set fn+1,m := gnhn+1,m (m,n ∈ N). Clearly {fn,m}n,m∈N ⊂ Cc(G).

Let us fix any f ∈ Cc(G) and ϵ > 0. Then there is nN such that supp(f) ⊂ Kn. Because f ∈ C(Kn+1), there
is m ∈ N such that ||f |Kn+1 − hn+1,m|Kn+1||∞ < ϵ. Because g|Kn ≡ 1 and supp(f) ⊂ Kn, ||f − fn+1,m|Kn+1||∞ =
||gf |Kn+1 − ghn+1,m|Kn+1||∞ = ||f |Kn+1 − hn+1,m|Kn+1||∞ < ϵ.

Proposition 3.17. Let G be a Lie group. Then τ1 satisfies the first countable axiom.

Proof. Let us assume {fn}n∈N be in Proposition. Let us fix any φ0 ∈ P1. We set

V (φ0, fn,
1

m
) := {φ ∈ P1||

∫
G

(φ− φ0)fndgr| <
1

m
} (n,m ∈ N)

Let us fix any ϵ > 0 and f ∈ L1(G). Because Cc(G) is dense in L1(G)(Proposition5.7), by Proposition, there is n, l ∈ N
such that ||f − fn||L1(G) <

ϵ

4
. Let us fix m ∈ N such that

1

m
<
ϵ

4
. Let us fix any φ ∈ V (φ0, fn,

1

m
).

|
∫
G

(φ(g)−φ0(g))f(g)dgr| ≤ |
∫
G

(φ(g)−φ0(g))fn(g)dgr|+
∫
G

|φ(g)−φ0(g)||f(g)−fn(g)|dgr ≤
ϵ

4
+2

∫
G

|f(g)−fn(g)|dgr < ϵ

So, V (φ, fn,
1

m
) ⊂ V (φ, f, ϵ). Because {V (φ0, f, ϵ)}f∈L1(G),ϵ>0 is a neighborhood basis at φ0, {V (φ0, fn,

1

m
)}m,n∈N is also

a neighborhood basis at φ0.

Proposition 3.18. Let

(i) X1 and X2 are topological spaces.

(ii) f : X1 → X2 satisfies

If {xn}n∈N converges x in X1 then {f(xn)}n∈N converges f(x) in X2

(iii) X1 satisfies the first countable axiom.

then f is continuous.

Proof. Let us assume f is not continuous. Then there is an open set of X2 O such that f−1(O) is not open set of X1.
Then there is x ∈ f−1(O) such that for any neighborhood of x N , N * f−1(O). By (iii), we can take {Vx,n}n∈N which
is a countable neighborhood basis at x. Then there is {xn}n∈N ⊂ X1 such that xn ∈ Vx,n \ f−1(O) (∀n ∈ N). Because
{xn}n∈N converges x, by (ii), {f(xn)}n∈N converges f(x) ∈ O. Because f(xn) ∈ Oc (∀n ∈ N), f(x) ∈ Ōc = Oc. This is
contradiction.
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Notation 3.3. Let G be a topological group. We denote the set of all continuous positive definite functions by P. And we
set

P1 := {φ ∈ P|φ(e) = 1}

Example 3.2. Let G be a group and (π, V ) is a unitary representation of G. Then Φπ(v⊗v) is a positive definite function.

Proof. For any n ∈ C and g1, g2, ..., gn ∈ G and c1, c2, ..., cn ∈ C∑
j,k

cj c̄kΦπ(v ⊗ v)(g−1
j gk) =

∑
j,k

cj c̄k(π(gk)v, π(gj)v) = (
∑
k

ckπ(gk)v,
∑
j

cjπ(gj)v) ≥ 0

Lemma 3.1. Let

(i) G be a Lie group.

(ii) f ∈ Cc(G).

(iii) {ϕn}n∈N ⊂ P0.

(iv) ϕ ∈ P0.

(v) {ϕn}n∈N converges to ϕ in τ1.

Then {ϕn ∗ f}n∈N compact converges to ϕ ∗ f .

STEP1. Showing that {ϕn ∗ f}n∈N pointwise converges to ϕ ∗ f . Let us fix any g ∈ G. Then

ϕn ∗ f(g) =

∫
G

ϕn(gh−1)f(h)dgr(h) =

∫
G

ϕn((hg−1)−1)f((hg−1)g)dgr(h) =

∫
G

ϕn(h−1)f(hg)dgr(h)

=

∫
G

ϕn(h)f(h−1g)∆r(h)dgr(h)

by (v)

→
∫
G

ϕ(h)f(h−1g)∆r(h)dgr(h) = ϕ ∗ f(g) (n→ ∞)

STEP2. Showing that {ϕn ∗ f}n∈N are equicontinuous. We will show that for each g0 ∈ G and ϵ > 0 there is a neighbor-
hood of e V such that

|ϕn ∗ f(g) − ϕn ∗ f(g0)| < ϵ (∀g ∈ g0V, ∀n ∈ N)

Let us fix any g0 ∈ G and ϵ > 0. Because f ∈ Cc(G), f∆r is uniformly continuous. So, there is a neighborhood of e V
such that

|f(g) − f(h)| < ϵ

2(dgr(supp(f)) + 1)(||∆r(g)||L∞(supp(f)) + 1)
(∀g, h ∈ G s.t g−1h ∈ V )

Then, for any g ∈ g0V ,

|ϕn ∗ f(g) − ϕn ∗ f(g0)| = |
∫
G

ϕn(h−1)(f(hg) − f(hg0)dgr(h)| ≤
∫
G

|f(hg) − f(hg0)|dgr(h) < ϵ

STEP3. Showing that {ϕn ∗ f}n∈N compact converges to φ. Let us fix any K is a compact subset of G and ϵ > 0. Because
φ is uniformly continuous on K, there is V which is a neighborhood of e such that

|φ(g1) − φ(g2)| < ϵ

3
(∀g1, g2 ∈ K s.t g−1

1 g2 ∈ V )

By STEP2, for each g ∈ K, there is Vg ⊂ V which is a neighborhood of e such that

|φn(g) − φn(h)| < ϵ

3
(∀h ∈ gVg, n ∈ N)

Because K ⊂ ∪g∈KgV and K is compact, there is g1, g2, ..., gn such that K ⊂ ∪ni=1giVgi .
By STEP1, for each i ∈ {1, 2, ..., n}, there is ki such that

|φm(gi) − φ(gi)| <
ϵ

3
(∀m ≥ ki)
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We set K := maxi∈{1,2,...,n} ki. Let us fix any g ∈ G and m ≥ K. There is i such that g ∈ giVgi .

|φm(g) − φ(g)| ≤ |φm(g) − φm(gi)| + |φm(gi) − φ(gi)| + |φ(gi) − φ(g)| < ϵ

Theorem 3.10 (D.A.Raikov-R.Godement-H.Yoshizawa Theorem). Let G be a Lie group and τ1, τ2 be topologies which
are defined in Definition3.7. Then τ1 = τ2.

Strategy for our proof. Clearly τ1 ⊂ τ2. Let us fix any {ϕn}n∈N ⊂ P0 and ϕ ∈ P0 such that ϕn → ϕ in τ1. By Proposi-
tion3.18, it is enough to show ϕn → ϕ in τ2.

Let us fix any ϵ > 0 and K which is a compact subset of G. By Proposition3.10, there is V which is a neighborhood
of e such that

|φ(g1) − φ(g2)| < ϵ

3
(∀g1, g2 ∈ K s.t g−1

1 g2 ∈ V )

Then there is f ∈ Cc(G) such that supp(f) ⊂ V and f ≤ 0 on G and
∫
G
fdgr = 1.

STEP1. Evaluation of φn ∗ f − f . For any n ∈ N and g ∈ G

|φn ∗ f(g) − φn(g)| ≤ |
∫
G

(φn(gh−1) − φn(g))f(h)dgr(h)| ≤
∫
G

|φn(gh−1) − φn(g)|f(h)dgr(h)

By Proposition3.18

≤
∫
G

1√
2

∫
G

(φn(e) −Reφn(h))
1
2 f(h)

1
2 f(h)

1
2 dgr(h) ≤ 1√

2
(

∫
G

(φn(e) −Reφn(h))f(h)dgr(h))
1
2

=
1√
2

(

∫
G

(Reφ(e) −Reφn(h))f(h)dgr(h))
1
2

Because ϕn → ϕ in τ1, there is n0 ∈ N such that∫
G

|Reφn(h)f(h) −Reφ(h)f(h)|dgr(h) <
ϵ2

9

So,

|φn ∗ f(g) − φn(g)| ≤ ϵ

3

∫
G

|φ(e) − φ(h)|f(h)dgr(h) <
ϵ

3
(∀g ∈ G,n ≥ n0)

Similarily,

|φ ∗ f(g) − φ(g)| < ϵ

3
(∀g ∈ G,n ≥ n0)

STEP2. Showing this theorem. By Lemma3.1, there is n1 ∈ N such that

|φn ∗ f(g) − φ ∗ f(g)| < ϵ

3
(∀g ∈ K,n ≥ n1)

So, by STEP1,

|φn(g) − φ(g)| < |φn(g) − φn ∗ f(g)| + |φn ∗ f(g) − φ ∗ f(g)| + |φ ∗ f(g) − f(g)| < ϵ (∀g ∈ K,n ≥ maxn0, n1)

Proposition 3.19. Let G be a Lie group. Then P1 is compact.

Proof. Let us fix any {ϕn}n∈N ⊂ P1. By Banach-Alaoglu Theorem, there is a cauchy subsequence {ϕα(n)}n∈N in ∗-weak
topology. Because L1(G)∗ = L∞(G) (see [8]), there is a bounded borel function φ such that {ϕα(n)}n∈N converges to φ in
weak-∗ topology. So, φ satisfies assumptions in Proposition3.14. By Proposition3.14, we can assume φ is continuous.
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3.5.4 Extreme points

Proposition 3.20. Let

(S1) G is a Lie group.

(S2) φ1, φ2 are continuous functions on G.

(A1) φ1 ∗ f = φ2 ∗ f (∀f ∈ Cc(G)).

Then φ1 = φ2.

Proof. Let us fix any g ∈ G. There is a sequence {fn}n∈N ⊂ C+
c (G) such that

∫
G
fndgr = 1 (∀n ∈ N). By the same

argument as the proof of Theorem3.9, φ1(g) = φ2(g).

Proposition 3.21. We will succeed in notations of Theorem3.9. Let

(S1) G is a Lie group.

(S2) φ1, φ2 are continuous positive definite functions on G.

(A1) (·1, ·2)φ1
= (·1, ·2)φ2

Then φ1 = φ2.

Proof. By Theorem3.9, φ1 ∗ f = φ2 ∗ f (∀f ∈ Cc(G)). By Proposition3.20, φ1 = φ2.

Proposition 3.22. Let

(S1) G is a Lie group.

Then Ex(P0) \ 0 = Ex(P1).

Proof of ⊂. Let us fix any φ ∈ Ex(P0) \ 0. If φ(e) < 1, then φ = φ(e)
φ

φ(e)
+ (1 − φ(e))0. This means φ /∈ Ex(P0). So,

φ(e) = 1.

Proof of ⊃. Let us fix any φ ∈ Ex(P1). Let us fix any φ1, φ2 ∈ Ex(P0) and α1, α2 ∈ [0, 1] such that φ = α1φ1 + α2φ2.
Then 1 = φ(e) = α1φ1(e) + α2φ2(e). Then φ1(e) = φ2(e) = 1. So, φ = φ1 = φ2.

Proposition 3.23. Let

(S1) G is a Lie group.

(S2) By GNS construction we set
Φ : P1 3 φ 7→ (T,Hφ) ∈ Ωc

Then Ex(P1) = P1 ∩ Φ−1(Ĝ).

Proof of ⊂. Let us fix any φ ∈ Ex(P1). Let us fix any closed G-invariant subspaces of Hφ V1, V2 such that Hφ = V1 + V2
and V1 6= 0. Let us set Pi be the orthogonal projection of Vi (i = 1, 2). Let us fix v ∈ Hφ such that φ(g) = (Tgv, v)
(∀g ∈ G). Because V1 ⊥ V2 and Pi is commutative with Tg (∀i, g ∈ G) and 1 = ||v||2 = ||P1v||2 + ||P2v||2, φ(g) =

||P1v||2
(TgP1v, P1v)

||P1v||2
+ ||P2v||2

(TgP2v, P2v)

||P2v||2
. Because φ ∈ Ex(P1), (Tgv, v) = (TgP1v, P1v) = (TgP1v, v) (∀g ∈ G). So,

(v, Tg−1v) = (P1v, Tg−1v) (∀g ∈ G). Because (T,Hφ) is cyclic, v = P1v. So, V1 = Hφ.

Proof of ⊃. Let us fix any φ ∈ P1 ∩ Φ−1(Ĝ). Let us fix φ1, φ2 ∈ P1 and α1, α2 ∈ [0, 1] such that φ = α1φ1 + α2φ2. We
set for f + {f ∈ Cc(G)|||f ||φ = 0}) ∈ Cc(G)/{f ∈ Cc(G)|||f ||φ = 0}

πi(f + {f ∈ Cc(G)|||f ||φ = 0}) := f + {f ∈ Cc(G)|||f ||φi
= 0} (i = 1, 2)

Because {f ∈ Cc(G)|||f ||φ = 0} ⊂ {f ∈ Cc(G)|||f ||φi = 0} (i = 1, 2), π1, π2 are well defined and surjective.

Let us fix any w ∈ Hφ1 . Because |(π1(u), π1(w))Hφ1
| ≤ 1

α1
|(u,w)| ≤ 1

α1
||u||||w||. So, by Riez representation theorem,

there is Aw ∈ Hφ such that (π1(u), π1(w))Hφ1
= (u,Aw) (∀u ∈ Hφ). Clearly A is continuous and linear. If A = 0, then

φ1 = 0. This is contradiction. So, A 6= 0. Because (T,Hφ) is irreducible, by Shur Lemma(see Proposition3.1), there is
λ1 ∈ C such that T = λ1I. There is w1 ∈ Hφ1 such that π1(w1) 6= 0. Then 0 < ||π1(w1)||2φ1

= λ̄||w1||2. So, λ1 > 0. And,
(·1, ·2)φ1 = λ1(·1, ·2)φ. By Proposition3.21, φ1 = λ1φ. 1 = φ1(e) = λ1φ(e) = λ1. So, φ1 = λ.
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By Proposition3.23, Krein Millman Theorem(Theorem3.3), Raikov-Godement-Yoshizawa Theorem(Theorem3.10), the
following hold.

Theorem 3.11 (I.M. Gelfand-D.A. Raikov Theorem). Let

(S1) G is a Lie group.

(S2) K is a compact subset of G.

(S3) ϵ > 0.

(S4) φ is a continuous positive definite function on G.

Then α1, ..., αm > 0 and φ1, ..., φm ∈ Ex(P1) such that

||φ−
m∑
i=1

αiφi||L∞(K) < ϵ

Theorem 3.12 (I.M. Gelfand-D.A. Raikov Theorem). Let

(S1) G is a Lie group.

(S2) g1, g2 ∈ G.

(A1) Tg1 = Tg2 (∀(T, V ) ∈ Ĝ).

Then g1 = g2.

Proof. Let us fix g1, g2 ∈ G such that g1 6= g2. We set g0 := g1g
−1
2 . There is f ∈ C+

c (G) s.t g0 /∈ supp(f)−1supp(f) and
||f ||2 = 1. We set

φ(g) := (Rgf, f) (g ∈ G)

Because the right regular representation R is continuous on L2(G), φ is continuous positive definite function on G.

φ(g0) =

∫
G

f(gg0)f(g)dgr(g) = 0

Because 1 = φ(e) = φ(e) − φ(g0), by Theorem3.11, Then α1, ..., αm > 0 and φ1, ..., φm ∈ Ex(P1) such that

m∑
i=1

αi(φi(e) − φi(g0)) 6= 0

So, there is i such that φi(g0) 6= 1. Because φi ∈ P1, by Proposition3.23, (T,Hφi) ∈ Ĝ and there is v ∈ Hφi such that
||v||φi = 1 and φi(g0) = (Tg0v, v)φi . So, Tg0 6= I. This implies that Tg1 6= Tg2 .

3.6 Topology of unitary dual

Definition 3.8 (Fell topology). By GNS construction we set

Φ : P1 3 φ 7→ (T,Hφ) ∈ Ωc

Here, we assume the topology of P1 is the pontryagin topology and Ωc is the set of all separable cyclic unitary representation
of G. We set the toplogy of Ωc by {O ⊂ Ωc|Φ−1(O) is open set}. We call this topology Fell topology of Ωc.

3.7 Direct Integral of Hilbert spaces

Definition 3.9. Let

(S1) (X,B, µ) is a measurable space.

We say X is localizable if there is N ⊂ X and {Xi}∞i=1 ⊂ B such that

(i) {Xi}∞i=1 is disjoint.

(ii) N ∩ ∪∞
i=1Xi = ϕ.

(iii) X = N ∪ ∪∞
i=1Xi.

(iv) µ(Xi) <∞ (∀i ∈ N).
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(v) µ(F ) =
∑∞
i=1 µ(F ∩Xi) ∀F ∈ B.

Because Lie group is σ-compact, the following holds.

Proposition 3.24. Let

(S1) G is a Lie group.

(S2) µ is a left invariant measure.

Then (G,B, µ) is localizable.

Notation 3.4 (Locally almost everywhere). Let

(S1) (X,B, µ) is a meaurable space.

(S2) For each x ∈ X, the proposition P (x) is given.

We denote P holds loc. a.e x ∈ X if for any YB such that µ(Y ) <∞ P holds loc. a.e x ∈ Y .

Proposition 3.25 (Direct Integral of Hilbelt spaces). Let

(S1) (X,B, µ) is a meaurable space.

(S2) {H(x)}x∈X is a family of Hilbert spaces.

(S3) Π := Πx∈XH(x).

(S4) G ⊂ Π.

(S5) R := {f ∈ G|f = 0 loc-a.e. x ∈ X}

We say G is a Direct Integral of {H(x)}x∈X if

(i) If v1, v2 ∈ G and a, b ∈ C then av1 + bv2 := {av1(x) + bv2(x)}x∈X ∈ G.

(ii) If v ∈ G then X ∈ x 7→ ||v(x)||H(x) ∈ R is measurable.

(iii) If v ∈ G then
∫
X
||v(x)||2H(x)µ(x) <∞.

(iv) Let us fix any f ∈ Π such that

(a) There is φ ∈ L2(X) such that ||f ||H(x) ≤ φ(x) (∀x ∈ X)

(b) For any g ∈ G, X 3 x 7→ (f(x), g(x))H(x) ∈ C is measurable.

Then there is h ∈ G such that for any g ∈ G

(f(x) − h(x), g(x)) = 0 for loc-a.e x ∈ X (3.7.1)

(v) Let us fix any f ∈ Π such that

(a) ||f(·)||H(·) ∈ L2(X)

(b) There is h ∈ G such that f(x) = h(x) for loc-a.e x ∈ X.

Then f ∈ G.

Then G/R is a Hilbert space. We call this Wils Direct Integral of (X,µ, {H(x)}x∈X) with respect to G and denote this by∫ G

X
H(x)dµ(x)

Proof. It is enough to show that any cauchy sequence of G has a convergent subsequence. Let us fix any cauchy sequence
of G, {vn}∞n=1. Then there is subsequence {vφ(i)}∞i=1 such that

∞∑
i=1

||vφ(i+1) − vφ(i)||2 <∞

and
∞∑
i=1

||vφ(i+1) − vφ(i)|| <∞

So, ∫
X

∞∑
i=1

||vφ(i+1)(x) − vφ(i)(x)||2H(x)dµ(x) =

∞∑
i=1

∫
X

||vφ(i+1)(x) − vφ(i)(x)||2H(x)dµ(x) =

∞∑
i=1

||vφ(i+1) − vφ(i)||2 <∞
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So,
∞∑
i=1

||vφ(i+1)(x) − vφ(i)(x)||2H(x) <∞ loc-a.e x ∈ X

So, {vφ(i)(x)}∞i=1 is cauchy sequence for loc-a.e x ∈ X. Because for any x ∈ X H(x) is Hilbert space, {vφ(i)(x)}∞i=1

converges to some v(x) ∈ H(x) for loc-a.e x ∈ X. Because ||v(x)||2H(x) = lim
n→∞

(vn(x), vn(x)) for loc-a.e x ∈ X, ||v(·)||H(·)

is measurable. For loc-a.e x ∈ X,

||vn(x)|| ≤ ||vn(x) − v1(x)|| + ||v1(x)|| ≤
n∑
i=2

||vi(x) − vi−1(x)|| + ||v1(x)||

So, for loc-a.e x ∈ X,

||v(x)|| ≤
∞∑
i=2

||vi(x) − vi−1(x)|| + ||v1(x)||

Here, ∫
X

(

∞∑
i=2

||vi(x) − vi−1(x)|| + ||v1(x)||)2dµ(x) ≤ lim
n→∞

∫
X

(

n∑
i=2

||vi(x) − vi−1(x)|| + ||v1(x)||)2dµ(x)

≤ lim
n→∞

(

n∑
i=1

||vi+1 − vi||2 + ||v1||2 + ||v1||
n∑
i=1

||vi+1 − vi|| + (

n∑
i=1

||vi+1 − vi||)2) <∞

So,
∞∑
i=2

||vi(·) − vi−1(·)|| + ||v1(·)|| ∈ L2(X,µ)

Let us fix any u ∈ G and n ∈ N.

(vn(x), u(x)) = (
1

2
||vn(x) + u(x)||2 − 1

2
||vn(x)||2 − 1

2
||u(x)||2) + i(

1

2
||vn(x) + iu(x)||2 − 1

2
||vn(x)||2 − 1

2
||iu(x)||2)

So, (vn(·), u(·)) is measurable. This implies that (v(·), u(·)) is measurable. By (iv), there is v0 ∈ G such that for u ∈ G
and for loc-a.e x ∈ X

(v(x) − v0(x), u(x)) = 0

So, for any n ∈ N, (v(x) − v0(x), vn(x) − v0(x)) = 0. This implies that for loc-a.e x ∈ X (v(x) − v0(x), v(x) − v0(x)) = 0.
So,

v(x) = v0(x) loc-a.e x ∈ X

By (v), v ∈ G.
For loc-a.e x ∈ X and nN,

||v(x) − vn(x)|| ≤ 2(

∞∑
i=2

||vi(x) − vi−1(x)|| + ||v1(x)||)

and
∑∞
i=2 ||vi(·) − vi−1(·)|| + ||v1(·)|| ∈ L2(X). So, by Lebesgue convergence theorem,

lim
n→∞

||v − vn||2 = lim
n→∞

∫
X

||v(x) − vn(x)||2dµ(x) = 0

By Theorem3.6, the following holds.

Proposition 3.26 (Direct Integral of Unitary representations). Let

(S1) (X,B, µ) is a meaurable space.

(S2) {H(x)}x∈X is a family of Hilbert spaces.

(S3) Π := Πx∈XH(x).

(S4) G ⊂ Π.

(S5)
∫ G

X
H(x)dµ(x) is the direct integral of (X,µ, {H(x)}x∈X) with respects to G.
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(S6) G is a topological group.

(S7) πx is a continuous unitary representation on H(x) (x ∈ X).

(A1) For any g ∈ G and v := {v(x)}x∈X ∈ G, π(g)v := {πx(g)v(x)}x∈X ∈ G

(A2) For any v := {v(x)}x∈X ∈ G, G 3 g 7→ π(g)vG is continuous.

Then (π,
∫ G

X
H(x)dµ(x)) is continuous unitary representation. We call this direct integral representation of (X,µ, {π(x),H(x)}x∈X)

and denote this by
∫ G

X
π(x)dµ(x).

3.8 Decomposition of an affine type function

Definition 3.10 (Baire Set). Let X be a locally compact topological space. We denote the minimal borel family in which
any element of Cc(X) is measurable by B0. We call the elemant of B0 Baire set.

Definition 3.11 (Support of measure). Let

(S1) X is a locally compact topological space.

(S2) B is the minimal borel set family containing all relative compact open sets.

(S3) µ is a nonnegative measure on B.

(S4) F ⊂ X.

We say F supports µ if for any AB such that A ∩ F = ϕ, µ(A) = 0.

Definition 3.12 (Regular borel measure). Let

(S1) X is a locally compact hausdorff topological space.

(S2) B is the minimal borel set family containing all relative compact open sets.

(S3) µ is a nonnegative measure on B.

(A1) For any compact set A, µ(A) <∞.

(A2) µ(A) = sup{µ(C)|C ∈ B, C ⊂ A and C is compact.}.
(A3) µ(B) = sup{µ(C)|C ∈ B, A ⊂ C and C is an open set.}.

Then we say µ is regular borel measure on X.

Definition 3.13 (Upper semicontinuous function). Let

(S1) X is a topological space.

We say f ∈Map(X,R) is upper continuous for any c ∈ R f−1((−∞, c)) is an open set.

Definition 3.14 (Affine type function). Let D be a vector space and X be a convex subset of D and f be a real valued
function on D. We say f is affine type if

f(λx+ (1 − λ)y) = λf(x) + (1 − λ)f(y) (∀λ ∈ [0, 1], ∀x, y ∈ X)

We denote the set of all continuous affine type function on D by A(X).

Notation 3.5. Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

We set
B(X) := {f ∈Map(X,R|f is an upper semicontinuous and convex on X}

and
CB(X) := B(X) ∩ C(X)

and
CB0(X) := CB0(X) − CB0(X)

Definition 3.15 (Vector lattice). Let

(S1) (V,≤) is a partialy ordered vector space.
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(S2) ∨ is a binary operation on V .

We say (V,≤,∨) is vector lattice if for any x, y, z ∈ V

(i) If x ≤ y then x+ z ≤ y + z.

(ii) If x ≤ y then αx ≤ αy (∀α ≥ 0).

(iii) x ∨ y is a least upper bound.

Proposition 3.27. Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

Then

(i) If f, g ∈ CB(X) then max(f, g) ∈ CB(X).

(ii) CB0(X) is a vector lattice with the pointwise order and pointwise maximum.

(iii) CB0(X) is dense in C(X).

Proof of (i). Let us fix any x, y ∈ X and λ ∈ [0, 1]. Then

max(f(λx+ (1 − λ)y), g(λx+ (1 − λ)y)) ≤ max(λf(x) + (1 − λ)f(y), λg(x) + (1 − λ)g(y))

≤ λmax(f(x), g(x)) + (1 − λ)max(f(x), g(x))

So, max(f, g) ∈ CB(X)

Proof of (ii). Let us fix any f1, f2, g1, g2 ∈ CB(X). For each x ∈ X

f1(x) − g1(x) ≤ f2(x) − g2(x) ⇐⇒ f1(x) + g2(x) ≤ f2(x) + g1(x)

So,
max(f1 − g1, f2 − g2) = max(f1 + g2, f2 + g1) − (g1 + g2)

So, by (i), max(f1 − g1, f2 − g2) ∈ CB0(X).

Proof of (iii). By Hahn-Banach Theorem, for any x, y ∈ X such that x 6= y, there is h ∈ CB0(X) such tat h(x) 6= h(y).
So, by Stone-Weierstrass Theorem in Vector Lattice(Theorem3.2), (iii) holds.

Definition 3.16 (Order of Regular Borel measures). Let

(S1) X is a locally compact hausdorff topological space.

(S2) B is the minimal borel set family containing all relative compact open sets.

(S3) µ1, µ2 are regular borel measures on X.

We denote µ1 ≺ µ2 if
µ1(f) ≤ µ2(f) (∀f ∈ CB(X))

Proposition 3.28. Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) µ1, µ2 are regular borel measure on X.

(A1) µ1 ≺ µ2 and µ2 ≺ µ1.

Then µ1 = µ2.

Proof. This is from Proposition3.27.

Proposition 3.29. Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) µ1, µ2 are regular borel measure on X.
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(A1) µ1 ≺ µ2.

(S4) f ∈ A(X).

Then µ1(f) = µ2(f).

Proof. Because f ∈ CB(X) ∩ (−CB(X)), µ1(f) = µ2(f).

Definition 3.17 (Upper envelope function). Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) f ∈ C(X,R).

We set
f̃(x) := inf{h(x)|h ∈ A(X), h ≥ f} (x ∈ X)

Proof of {h ∈ A(X)|h ≥ f} 6= ϕ. Because X is compact and f ∈ C(X,R), ||f ||L∞(X) < ∞. Constant function with
||f ||L∞(X) is continuous affine type function. So, {h ∈ A(X)|h ≥ f} 6= ϕ.

Proposition 3.30. Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

Then

(i) For any f ∈ C(X,R), f̃ is bounded and upper semicontinuous.

(ii) For any f ∈ C(X,R), f ≤ f̃ .

(iii) For any f ∈ CB(X), f = f̃ .

(iv) For any f, g ∈ CB(X), f̃ + g ≤ f̃ + g̃.

(v) For any f, g ∈ CB(X), |f̃ − g̃| ≤ ||f − g||L∞(X).

(vi) For any f ∈ CB(X) and r ∈ (0,∞), r̃f = rf̃ .

Proof of (i). Because f̃ ≤ ||f ||L∞(X), f̃ is bounded. Let us fix any c ∈ R and x ∈ f̃−1((−∞, c)). Then there is h ∈ A(X)
such that h(x) < c. Because h is continuous, there is V which is a neighborhood of 0 such that h(x+y) < c (∀y ∈ V ∩X).
So, f̃(x+ y) < c (∀y ∈ V ∩X). This means that x+ V ⊂ f̃−1((−∞, c)). So, f̃ is upper semicontinuous.

Proof of (ii). (ii) is clear from the definition of upper envelope functions.

Proof of (iii). We set K := {(x, r) ∈ X × R|0 ≤ r ≤ f(x)}. Because X is compact and f is continuous concave, K is
compact convex subset of X × R. Aiming contradiction, let us assume f(x0) < f̃(x0) for some x0 ∈ X. (x0, f̃(x0)) /∈ K.
By Theorem3.1, there is L which is a continuous R-linear functional on D × R such that

L(x0, f̃(x0)) > 1 > L(x, f(x)) (∀x ∈ X)

This implies (f̃(x0) − f(x0))L(0, 1) > 0. So,
L(0, 1) > 0

We set

h(x) :=
1 − L(x, 0)

L(0, 1
(x ∈ D)

Then h ∈ A(X) and
L(x, h(x)) = 1 (∀x ∈ D)

So,
L(x0, f̃(x0)) > L(x, h(x)) > L(x, f(x)) (∀x ∈ X)

This implies

0 < L(x, h(x)) − L(x, f(x)) = L(0, h(x) − f(x)) = (h(x) − f(x))L(0, 1) (∀x ∈ X)

So,

f(x) < h(x) (∀x ∈ X)

Similarly,

h(x0) < f̃(x0)

These two equation contradict with each other.
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Proof of (iv). Let us fix any x ∈ X and ϵ > 0. Then there is h1, h2 ∈ A(X) such that f ≤ h1 and g ≤ h2 and

h1(x) ≤ f̃(x) + ϵ and h2(x) ≤ g̃(x) + ϵ. Because h1 + h2 ∈ A(X) and f + g ≤ h1 + h2. f̃ + g(x) ≤ h1(x) + h2(x). So,

f̃ + g(x) ≤ f̃(x) + g̃(x) + 2ϵ.

Proof of (v). By (iv), for any x ∈ X.

f̃(x) − g̃(x) ≤ ˜f − g + g(x) − g̃(x) ≤ f̃ − g(x)

Because ||f − g|| ∈ A(X), f̃ − g ≤ ||f − g||. So, (v) holds.

Proof of (vi). This is clear from the definition of upper envelope functions.

Definition 3.18 (Convex cone). Let

(S1) D is a R-vector space.

(S2) v1, v2, ..., vm ∈ D.

Then
cc(v1, v2, ..., vm) := {

∑
i=1

aivi|ai ≥ 0 (∀i)}

Proposition 3.31. Let

(S1) D is a R-vector space.

(S2) v1, v2, ..., vm ∈ D.

(A1) 0 ∈ ex(cc(v1, v2, ..., vm)).

Then there is w1, ..., wn ∈∈ D such that w1, ..., wn are linear independent and

cc(v1, v2, ..., vm) ⊂ cc(w1, w2, ..., wn)

Proof. We set n0 := dim{v1, ..., vm}. Using mathematical induction on m− n0, we prove this proposition. Let us fix any
d ∈ N. Let us assume this proposition holds for m− n0 ≤ d and m− n0 = d+ 1. Then we can assume

vm = −
k∑
i=1

aivi +

l∑
j=1

bjvk+j , k + l = m− 1

If k = 0 or vm 6= 0, then cc(v1, v2, ..., vm) = cc(v1, v2, ..., vm−1). By the assumption of mathematical induction, this

proposition holds. So, we can assume k 6= 0 and vm 6= 0. If l = 0, 0 =
1

2
(vm+

∑k
i=1 aivi). This means 0 /∈ ex(cc(v1, ..., vm)).

So, we can assume l 6= 0. Furthermore, we can assume

k := min{K ∈ N|∃σ : {1, ...,m} → {1, ...,m}:bijective, ∃c1, ..., cK > 0, ∃d1, ..., dL ≥ 0(L := m−K) s.t.

−
K∑
i=1

cσ(i)vσ(i) +

L∑
j=1

bσ(j)vσ(k+j) = 0 } − 1

We set

v′k+j =
−1

l

k∑
i=1

aivi + bjvk+j (j = 1, ..., l)

Because of the minimalism of k, 0 ∈ ex(cc(v1, ...vk, v
′
k+1, ..., , v

′
k+l)). Because vk+j =

1

bj
(
∑k
i=1 aivi + v′k+j) (∀j) and∑l

j=1 v
′
k+j = vm,

cc(v1, v2, ..., vm) ⊂ cc(v1, ..., v
′
k+l), k + l = m− 1

By the assumption of mathematical induction, this proposition holds.

Proposition 3.32. Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) x ∈ X.

87



(A1) f(x) = f̃(x) (∀f ∈ C(X,R)).

Then x ∈ ex(X).

Proof. Aiming contradiction, let us assume x /∈ ex(X). Then there is y, z ∈ X such that y 6= z and x =
y + z

2
. We set

f(·) := d(x, ·). By Proposition3.30,

0 = f(x) = f̃(x) ≥ 1

2
(f̃(y) + f̃(z)) =

1

2
(f(y) + f(z)) > 0

This is contradiction.

Proposition 3.33. Let

(S1) X is a locally compact hausdorff topological space.

(S2) B is the minimal borel set family containing all relative compact open sets.

(S3) M is the set of all regular borel measures on X.

(S4) µ ∈ M.

Then Mµ := {ν ∈ M|µ ≥ 0, µ ≺ ν} has a maximal element.

STEP1. We set
Φ := {T ⊂Mµ|T is totally ordered with ≺}

Let us fix any N which is totally ordered subset of Mµ with inclusion relationship. Clearly ∪T∈NT is totally ordered
with ≺. So, by Zorn Lemma, Φ has a maximal element F . Because F is totally ordered with ≺, for any finite elements
τ1, ..., τm ∈ F , ∩mi=1Mτi 6= ϕ.

STEP2. We set
S := {µ ∈ M|µ(1) = ν(1)}

Because S ⊂ {F ∈ C(X)∗|||F || ≤ |ν(1)|} and S is closed subset in ∗-weak topology, by Banach-Alaogrou Theorem, S is
compact subset in ∗-weak topology. For any τ ∈ F ,

Mτ = ∩f∈CB(X){µ ∈ S|µ(f) ≥ ν(f)} ∩ ∩f∈C+
c (X){µ ∈ S|µ(f) ≥ 0}

So, Mτ ⊂ S is closed subset in ∗-weak topology,

STEP3. By STEP1 and STEP2, ∩τ∈FMτ 6= ϕ. Let us take a µ0 ∈ ∩τ∈FMτ . For aiming contradiction, let us assume there
is µ ∈ Mν such that µ0 ≺ µ and µ 6= µ0. By Proposition, µ /∈ F . But F ∩ {µ} is totally ordered. This is contradiction.
So, µ0 is a maximal element of Mν .

Proposition 3.34. Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) µ is a maximal element in M.

Then
µ(f) = µ(f̃) (∀f ∈ C(X,R))

Proof. We set
ρ(g) := µ(g̃) (g ∈ C(X,R))

Clearly ρ is a seminorm on C(X,R). Let us fix any f ∈ C(X,R).

L(rf) := rµ(f̃) (r ∈ R)

By Hahn Banach Theorem, L has an extension L′ which is a R-linear functional on C(X,R) such that L′ ≤ ρ. Let us fix
any g ∈ C(X,R)+. Because −g ≤ 0, −̃g ≤ 0. So,

L(−g) ≤ ρ(−g) = µ(−̃g) ≤ µ(0) ≤ 0

This implies 0 ≤ L(g). So, by Riez representation theorem, L is a regular borel measure.
Let us fix any h ∈ CB(X). Because −h is continuous and concave, by Proposition,

L(−h) ≤ ρ(−h) = µ(−̃h) = µ(−h)

So, µ ≺ L. This implies µ = L. So,
µ(f̃) = L(f) = µ(f)
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Proposition 3.35. Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) f is continuous strictly convex function on X.

(S4) z /∈ ex(X).

Then f(z) < f̃(z)

Proof. By there are x, y ∈ X such that x 6= y and z =
1

2
(x+ y) Let us fix any h ∈ A(X) such that f ≤ h. Then

f(z) <
1

2
(f(x) + f(y)) ≤ 1

2
h(x) + h(y)) = h(z)

So,

f(z) <
1

2
(f(x) + f(y)) ≤ f̃(z)

Theorem 3.13 (Choquet Theorem). Let

(S1) (D, {|| · ||n}n∈N is a seminormed vector space.

(S2) X is a compact convex subset of D.

(S3) x0 ∈ X.

Then there are K is a borel set and µ which is a regular borel probability measure on X such that K supports µ and
X \K ⊂ ex(X) and

φ(x0) =

∫
K

φ(x)dµ(x) (∀φ ∈ A(X))

STEP1. Construction of continuous strictly convex function. We set U := {h ∈ A(X)|||h||∞ = 1}. Because X is compact
metrizable, there is a countable set {hn}n∈N ⊂ U which is dense in U . We set

f :=

∞∑
n=1

h2n
2n

We will show f is strictly convex. Let us fix any x, y ∈ X such that x 6= y and λ ∈ (0, 1). By Hahn-Banach Theorem, there is

f which is a real-valued continuous linear functional onD and satisfies f(x) > f(y). Because
f − f(x) + f(y)

2

||f − f(x) + f(y)

2
||L∞(D)

∈ U ,

there is n ∈ N such that hn(x) > 0 > hn(y).

hn(λx+ (1 − λ)y)2 = λ2hn(x)2 + (1 − λ)2hn(y)2 + λ(1 − λ)hn(x)hn(y) < λ2hn(x)2 + (1 − λ)2hn(y)2

≤ λhn(x)2 + (1 − λ)hn(y)2

This implies that f(λx+ (1 − λ)y) < λf(x) + (1 − λ)f(y). So, f is strictly convex.

STEP2. Construction of a regular borel measure. BecauseX is locally compact hausdorff space, by Riez-Markov-Kakutani
Theorem, δ : C(X) 3 g 7→ g(x) ∈ C defines a regular borel measure. So, by Proposition3.33, there is a maximal element
µ ∈ M such that δ ≺ µ. By Proposition3.29, µ(g) = δ(g) for any g ∈ A(X). Because 1 ∈ A(X), µ(X) = 1.

STEP3. Construction of K. We set

K := ∪n∈NKn,Kn := {x ∈ X|f̃(x) − f(x) >
1

n
}

Because Kn = (∩m∈N{x ∈ X|f̃(x) − f(x) <
1

n
+

1

m
})c and f̃ − f is upper continuous, Kn is measurable for any n ∈ N.

So, K is borel measurable. By Proposition3.35, X \K ⊂ ex(X). By Proposition3.34, µ(f) = µ(f̃). So µ(K) = 0. This
implies X \K supports µ.
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3.9 Mautner-Teleman’s theorem

Proposition 3.36. Let

(S1) G is a Lie group.

(S2) (π, V ) is a continuous unitary cyclic representation of G with a cyclic vector ω.

Then there is a finite mesurable space (X,M, µ) and a direct integral
∫ G
X
ω(x)dµ(x) which is isomorphic to (π, V ) as

continuous unitary representation.

STEP1. Decomposition of a matrix coefficient. We can assume

||ω|| = 1

We set
φ(g) := (π(g)ω, ω) (g ∈ G)

Because P1 is a compact convex subset of C(G) with compact convergence topology which is metrizable by countable
seminorms. By Theorem3.13, there are µ which is a probability measure on P1 and X which is a borel mesurable set such
that X ⊂ ex(P1)

F (φ) =

∫
X

F (φx)dµ(x) (∀F ∈ A(P1))

Here, φx = x. For any g ∈ G, P1 ∈ ψ 7→ Reψ(g) ∈ R and P1 ∈ ψ 7→ Imψ(g) ∈ R are continuous affine by Raikov-
Godement-Yoshizawa Theorem(Theorem3.10). So,

φ(g) =

∫
X

φx(g)dµ(x) (∀g ∈ G)

STEP2. Construction of a family of irreducible representations. We set

(T (x),H(x)) : The representation generated by the GNS construction (x ∈ X)

and
Π := Πx∈XH(x)

and
v(f, x) : The projection of f in H(x) (f ∈ Cc(G), x ∈ X)

and
D0 : The vector space generated by {λ(·)v(f, ·)|f ∈ Cc(G), λ ∈ L∞(X,µ)}

We set D by the completion of D0 with the inner product (·, ·) :=
∫
X

(·, ·)H(x)dµ(x). As we showed in the process of
proving Proposition3.25, any cauchy sequence of D0 has a subsequence which converges pointwise some element of Π.
So, we can embedded D in Π. Clearly D is C-linear subspace of Π. And, for each λ ∈ L∞(X,µ) and f ∈ Cc(G),
X 3 x 7→ ||λ(x)v(f, x)||H(x) is measurable and L2-integrable. So, forany F ∈ D, X 3 x 7→ ||F (x)||H(x) is measurable and
L2-integrable. Clearly D satisfies (v) in Proposition3.25. So, it is enough to show (iv) in Proposition3.25. Hereafter, let
us fix any u ∈ Π which satisfies (iv)(a) and (iv)(b) in Proposition3.25. There exists {vn}n∈N ⊂ D0 such that

lim
n→∞

||vn − u|| = inf
v∈D0

||v − u||

For each u, v ∈ Π,

P (u, v)(x) =


(u(x), v(x))

||v(x)||2
(v(x) 6= 0)

0 (v(x) = 0)
(x ∈ X)

We will show
||u(x) − P (u, v)(x)|| ≤ ||u(x) − v(x)|| (∀v ∈ V, ∀x ∈ X) (3.9.1)

Let us fix any v ∈ V and x ∈ X. If v(x) = 0, (3.9.1) holds. So, we can assume v(x) 6= 0. Then

||u(x) − P (u, v)(x)||2 = ||u(x)||2 − |(u(x), v(x))|2

||v(x)||2
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and
||u(x) − v(x)||2 = ||u(x)||2 − 2Re(u(x), v(x)) + ||v(x)||2

So,
||v(x)||2(||u(x) − v(x)||2 − ||u(x) − P (u, v)(x)||2) = |(u(x), v(x)) − ||v(x)||2|2 ≥ 0

This implies (3.9.1). So, by (3.9.1) and Proposition1.14, {P (u, vn)}n∈N is a cauchy sequence. So, u0 := lim
n→∞

P (u, vn) ∈ D

exists. We will show u0 u ∈ Π which satisfies (iv)(3.7.1) in Proposition3.25. Aiming contradiction, let us assume that
there are u′ ∈ D and a borel measurable set E such that µ(E) > 0 and

(u(x) − u0(x), u′(x)) 6= 0 (a.ex ∈ X)

As we showed in the process of proving Proposition3.25, any cauchy sequence of D0 has a subsequence which converges
pointwise some element of Π. So, we can assume u′ ∈ D0. We set

v := u′ − P (u′, u0)

For any x ∈ X, we will show
(v(x), u0(x)) = 0 (3.9.2)

and
(u(x) − u0(x), u0(x)) = 0 (3.9.3)

If u0(x) = 0, the both clearly holds. So, we can assume u0(x) 6= 0. Then,

(v(x), u0(x)) = (u′(x), u0(x)) − (u′(x), u0(x))

||u0(x)||2
|(u0(x), u0(x))|2 = 0

This means (3.9.2) holds. Furthermore,

(u(x), u0(x)) = (u(x),
(u(x), v∞(x))

||v∞(x)||2
v∞(x)) =

|(u(x), v∞(x))|2

||v∞(x)||2
= (u0(x), u0(x))

This means (3.9.3) holds. For any x ∈ E,

(u(x) − u0(x), u′(x)) = (u(x), u′(x)) − (u0(x), u′(x)) = (u(x), v(x)) + (u(x), P (u′, u0)(x)) − (u0(x), u′(x))

by (3.9.2)

= (u(x), v(x)) + (u(x), P (u′, u0)(x)) − (u0(x), P (u′, u0)(x))

by (3.9.3)

= (u(x), v(x))

So,
(u(x), v(x)) 6= 0 (∀x ∈ E) (3.9.4)

We will show
P (u′, u0) ∈ D (3.9.5)

Clearly,
λ ∈ L∞(X), w ∈ D =⇒ λw ∈ D

For n ∈ N, we set

λn(x) :=


(u′(x), u0(x))

||u0(x)||2
(||v(x)|| ≥ 1

n
and ||u′(x)|| ≤ n)

0 (otherwise)
(x ∈ X)

Because λn ∈ L∞(X,µ), λnu0 ∈ D. Let us fix any n0 ∈ N. If m,n ≥ n0,

||λmu0 − λnu0|| ≤
∫
||u0(x)||≤ 1

n0
,||u′(x)||≥n0

||u′(x)||2dµ(x)

The right side of this equation converges to 0 when n → ∞. So, {λmu0}m∈N is a cauchy sequence. So, P (u′, u0) =
lim
m→∞

λmu0(pointwise convergence) is in D. We set

u1 := u0 + P (u, v)
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By the way which is similar to the proof of (3.9.5), P (u, v) ∈ D. This implies u1 ∈ D.

||u− u1||2 = ||u− u0||2 − 2Re(u− u0, P (u, v)) +
|(u, v)|2

||v||2

by Proposition3.9.2

= ||u− u0||2 − 2Re(u, P (u, v)) +
|(u, v)|2

||v||2
= ||u− u0||2 −

|(u, v)|2

||v||2
< inf
v∈D0

||v − u||2

This is a contradiction. So, (X,B(X), µ,Π,D) is a direct integral of Hilbert spaces.

STEP3. Construction of continuous unitary representation. We set

Tgv(f, x) := v(Rgf, x) (f ∈ Cc(G), x ∈ X)

Because
(v(Rgf, x), v(Rgg, x)) = (v(f, x), v(g, x)) (∀f, g ∈ Cc(G), ∀x ∈ X)

Tg is a unitary operator on D0. Because D0 is dense in D, Tg has the unique extension on D. For any f ∈ Cc(G) and
g1, g2 ∈ G, ||Tg1v(f, ·) − Tg2v(f, ·)|| ≤ µ(X)||Rg1f −Rg2f ||L∞ . So,

G 3 g 7→ Tgv(f, ·) ∈ D

is continuous. Because T is unitary and D0 is dense in D, T is weak continuous. So, T is strong continuous. Let us take

{fn}n∈N ⊂ C+
c (G) such that

∫
G
fndgr = 1 and supp(fn) ⊂ exp({X ∈ M(n,C| ||X|| ≤ 1

n
}) (∀n ∈ N). Then {v(fn, ·)}n∈N

has a subsequence which converges some v ∈ D. By the same way as the proof of Theorem3.9, we can show the following.

(v(f, ·), v(g, ·)) = (v(f, ·),
∫
G

g(y−1)T−1
y v(g, ·))∆r(y)dgr(y)) (∀f, g ∈ Cc(G))

v(g, ·) =

∫
G

g(y−1)T−1
y v(g, ·))∆r(y)dgr(y) (∀g ∈ Cc(G))

By the same way as the proof of Theorem3.9, g is in the closed subspace generated by T (G)v. Because D0 is dense in D,
T is cyclic with cyclic vector v. Clearly the following holds.

(Tgv)(x) = T xg v(x) (∀x ∈ X)

Here, T x is the representation by GNS construction for x ∈ X. So,

φ(g) =

∫
X

φx(g)dµ(x) =

∫
X

(T xg v(x), v(x))dµ(x) =

∫
X

(Tgv(x), v(x))dµ(x) = (Tgv, v) (∀g ∈ G)

By Proposition3.6, (π, V ) and (T,
∫D

X
H(x)dµ(x)) are isomorphic as continuous unitary representations.

By Proposition3.7 and Proposition3.36, the following holds.

Theorem 3.14 (mautner-Teleman’s theorem). Let

(S1) G is a Lie group.

(S2) (π, V ) is a continuous unitary representation of G.

Then there is a a family of direct integral of continuous unitary representations {
∫ Dλ

Xλ
ω(x)dµλ(x)}λ∈Λ such that

(i) (Xλ, µλ) is a finite measurable space (∀λ ∈ Λ).

(ii)
∫ Dλ

Xλ
ωλ(x)dµλ(x) is a continuous cyclic unitary representation of G.

(iii) (π, V ) and
⊕

λ∈Λ

∫ Dλ

Xλ
ωλ(x)dµλ(x) are isomorphic as continuous unitary representations of G.

92



3.10 Review

Please note that the statements in this subsection are generally inaccurate. In this chapter, the following mautner-Teleman
theorem is the main theorem(Theorem3.14).

Theorem (mautner-Teleman theorem). Let

(S1) G is a Lie group.

(S2) (π, V ) is a continuous unitary representation of G.

Then there is a a family of direct integral of continuous unitary representations {
∫ Dλ

Xλ
ω(x)dµλ(x)}λ∈Λ such that

(i) (Xλ, µλ) is a finite measurable space (∀λ ∈ Λ).

(ii)
∫ Dλ

Xλ
ωλ(x)dµλ(x) is a continuous cyclic unitary representation of G.

(iii) (π, V ) and
⊕

λ∈Λ

∫ Dλ

Xλ
ωλ(x)dµλ(x) are isomorphic as continuous unitary representations of G.

This theorem states that any continuous unitary representation of Lie group is decomposed into irreducible continuous
unitary representations. The direct integral of continuous unitary representations {X,D, µ, Tx,H(x)} is a subset of
Π := Πx∈XH(x) which satisfies the following main conditions.

(i) For any u, v ∈ D, (u(·), v(·)) is measurable and integrable.

(ii) {Tx}x∈X defines T which is a continuous and unitary action on D.

(iii) If v ∈ Π and ||v(·)|| is measurable and bounded by a L2 function and (v(·), u(·)) is measurable, v can be
seen as the element of D in a sense.

In special, (T,D) is a continuous unitary representation of G.
I also think that the following Gelfand-Raikov Theorem(Theorem3.12) obtained in the process of showing mautner-

Teleman theorem is also a very significant theorem. This theorem states that we can distinguish any two element of Lie
group G by the unitary dual Ĝ of G. The definition of a unitary dual is the set of all continuous irreducible unitary
representation of G.

Theorem (I.M.Gelfand-D.A.Raikov Theorem). Let

(S1) G is a Lie group.

(S2) g1, g2 ∈ G.

(A1) Tg1 = Tg2 (∀(T, V ) ∈ Ĝ).

Then g1 = g2.

Below, I would like to review the process of obtaining these two theorems with my personal opinions and impressions.
We begin by examining the cyclic representation rather than directly examining the irreducible representation. The
definition of the cyclic representation (π, V ) with a cyclic vector v is the representation space is spanned by π(G)v.
The definition of the cyclic representation is the representation whose any vector is a cyclic vector. One of the reasons
for focusing on cyclic representations is to investigate the Jordan normal form with respect to matrices that cannot be
diagonalized in matrix decomposition theory. Supposing (π, V ) is a representation of Z, π(1) is similar a jordan block if
and only if (π, V ) is cyclic[15].

By Zorn lemma and the same argument as the diagonalization of unitary matrices, we can show that any continuous
unitary representation of Lie group is decomposed into cyclic continuous unitary representations (Proposition3.7). So, the
proof of mautner-Teleman theorem is attributed to the case for cyclic representations.

We focus on matrix coefficients whose form is φ := (π(·)v, v) from a continuous cyclic representation (π, V ) with a
cyclic vector v. φ satisfies the following condition.

N∑
i=1

aiπ(gi)v = 0 ⇐⇒
∑
i=1

aiφ(ggi) = 0 (∀g ∈ G)

This implies if (π1(·)v1, v1) = (π2(·)v2, v2) then π1 and π2 are isomorphic as continuous unitary representations (Proposi-
tion3.6). So, this is the kicker to investigate φ := (π(·)v, v). This function satisfies the following conditions.

(i) φ(e) ≥ 0

(ii) φ(g−1) = φ(g)
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(iii) |φ(g)| ≤ φ(e)

(iv) |φ(g1) − φ(g2)|2 ≤ 1

2
φ(e)|φ(e) −Reφ(g−1

1 g2)|

(v) If (f, g)φ :=
∫
G
φ(xy−1)f(y) ¯g(x)dgr(x)dgr(y) (f, g ∈ Cc(G)), then (·, ·)φ satisfies a nonnegative Hermitian

semibilinear form.

We call functions which satisfies these conditions positive definite functions even if they don’t have a form (π(·)v, v). The
right regular action R preserves this nonnegative Hermitian semibilinear form and continuos. So, we construct continuous
unitary representation (T,Hφ). Taking a sequence of C+

c (G) {fn}n∈N such that ||fn||L1(G) = 1 (∀n), by Banach-Alaogrou
Theorem (Theorem3.7), {fn}n∈N has a convergent subsequence which converges to some v ∈ Hφ in ∗-weak topology.
Banach-Alaoglu Theorem states the unit sphere on of dual of a separable normed space is sequencial compact in ∗-weak
topology. v likes a dirac delta function whose support {e}. For any g ∈ G, Tgv likes a dirac delta function whose support
{g−1}. So, v is a cyclic vector of Hφ. Assigning f = Tgv and g = v in (v), we see φ = (T·v, v). In special φ can been seen
as a continuous positive definite function. This method of obtaining a continuous and cyclic unitary representation from
a positive definite function is the GNS construction.

The GNS construction is a powerful technique that will be used with great success throughout this chapter. For
example, if g1 6= g2 in G, there is f ∈ C+

c (G) such that g1g
−1
2 /∈ supp(f) and f(e) = 1. So, the continuous cyclic unitary

representation by GNS construction for (R·f, f) separates e and g1g
−1
2 . So, by GNS construction, the claim is established

with the ‘irreducible‘ part in Gelfand-Raikov replaced by ‘cyclic‘.
We see GNS construction gives a map from the space of continuous positive definite functions to the set of all cyclic

continuous unitary representations. So, we focus on P1 which is the set of all normalised continuous positive definite
functions whose value at e is 1. There are two possible ways to set a topology in P1. One is the topology from compact
convergence(Pontryagin topology). Another one is the ∗-weak topology. By the strong continuity (iv), these topology is
the same. This is Raikov-Godement-Yoshizawa Theorem(Theorem3.10). A sketch of the proof of this theorem is shown
below. Let us assume {φn}n∈N ⊂ P1 converges to φ ∈ P1 in ∗-weak topology. Then for any f ∈ Cc(G), {f ∗ φn}n∈N
converges to f ∗ φ ∈ P1 pointwise. Because of (iv), {f ∗ φn}n∈N is equicontinuous on any compact subset. By the same
argument of the proof of AscoliArzel theorem, {f ∗φn}n∈N converges to f ∗φ. Because of (iv), taking f such that supp(f)
is sufficient small, ||φn−{f ∗φn||∞}n∈N and ||φ−{f ∗φ||∞}n∈N are uniformly small. So, {φn}n∈N ⊂ P1 compact converges
to φ ∈ P1.

By this powerfull theorem, we can show important properties of the topology of P1. ∗-weak convergence preserves (iii)
and (iv) and boundedness of positive definite functions. By GNS construnction, ∗-weak convergence preserves continuity of
positive definite functions. So, P1 is closed subset of ∗-weak topology. By Banach-Alaoglu theorem and L1(G)∗ = L∞(G),
P1 is compact. Because P1 is convex, by Krein-Millman theorem, any φ ∈ P1 can be uniformly approximated by some
convex combination of {φn}Nn=1 ⊂ ex(P1) on any compact subset.

We see
ex(P1) = P1 ∩ Φ−1(Ĝ)

Here, Φ is the map defined by GNS construction. Because by orthogonal projections we can get a convex combination
decomposition of positive definite function from a decomposition of a representation space of GNS construction, the ⊂
part is shown. By Shur Lemma, we can obtain a decomposition of a representation space of GNS construction from a
decomposition of a element of P1. The above discussion show Gelfand-Raikov theorem.

Next step, we elaborate Krein-Millman theorem. I mean for each φ ∈ P1, there is a probability measure µ ∈ P (P1)
such that there is Y ⊂ ex(P1) which supports µ and

φ =

∫
Y

φxdµ(x)

This is from Choquet Theorem(Theorem3.13).
I think our first step is to interpret the value φ(g) in terms of inverted space and function. I mean for each g ∈ G, we

interpret g as
fg : P1 3 φ 7→ φ(g)

By Raikov-Godement-Yoshizawa Theorem, fg is continuous. Because fg is convex and concave, if we define

µ1 ≺ µ2 : ⇐⇒ µ1(f) ≤ µ2(f) (for any f which is a continuous convex function on P1)

then

φ =

∫
P1

φxdµ(x)

for any µ such that δφ ≺ µ. As shown below, we find a mesurable subset of P1 which is defined by continuous strictly
convex functions. If f ∈ C(P1,R) is strictly convex, for any affine(convex and concave) function h which satisfies f ≤ h,

{x ∈ P1|f(x) < h(x)} ⊂ ex(P1)
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It is rational to obtain the minimam function. So, we define the following upper envelope function f̃ .

f̃(x) := inf{h(x)|f ≤ h, h ∈ A(P1)} (x ∈ P1)

Here, A(P1) is the set of all continuous affine functions on P1. Becuase f̃(x) is upper semicontinuous, {x ∈ P1|f(x) < f̃(x)}
is measurable. Because convex combination of countable dense subset of {h ∈ A(P1)|||h||∞ = 1} is continuous strictly
convex by Hahn-Banach theorem, there is a continuous strictly convex function on P1. So, we find µ such that δφ ≺ µ

and µ(f) = µ(f̃).
If h ∈ C(P1,R) is convex, then −̃h = −h by applying Hahn-Banach theorem to a convex set {(x, r) ∈ P|‖0 ≤ r ≤ h(x)}.

This can be inferred by drawing a graph of h in the 1-dimensional case. By this fact and Hahn-Banach extension theorem
and Riez-Markov-Kakutani theorem, for any µ such that δφ ≺ µ, there is a regular borel measure L such that µ ≺ L and

L(f) = µ(f̃). So, if we take µ which is a maximal element of {µ|δφ ≺ µ} by Zorn Lemma, µ(f) = µ(f̃).

We set X := {x ∈ P1|f(x) = f̃(x)}. By Theorem3.14, we can construct
∫D

X
H(x)dµ(x) which is a direct integral unitary

representations from {Φ(x)}x∈ex(X). By the same way as GNS construction, we show
∫D

X
H(x)dµ(x) is a continuous cyclic

unitary with some cyclic vector v and φ = (T·v, v). So,
∫D

X
H(x)dµ(x) and π are isomorphic as continuous unitary

repesentations.
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4 Irreducible decomposition of unitary representation of compact group

4.1 Some facts admitted without proof

Theorem 4.1 (Stone Wierstrass Theorem). Let

(S1) X be a compact metric space.

(S2) A ⊂ C(G).

(A1) A is a C-vector subspace of C(G).

(A2) 1 ∈ A.

(A3) If f ∈ A, then f̄ ∈ A.

(A4) If f, g ∈ A, then fg ∈ A.

(A5) If x 6= y ∈ X, there is f ∈ C(G) such that f(x) 6= f(y).

Then A is dense subset of C(G) in uniformly convergence topology.

4.2 General topics on Bochner Integral

Definition 4.1 (Bochner Integral). Let

(S1) (X,B, µ) is a measurable space.

(S2) Y is a Banach space.

Then

(i) We say F : X → Y is finite-value if there is S ∈ B such that F (S) is a finite set and F (X \S) = {0} and
µ(S) <∞. We set ∫

X

F (x)dµ(x) =
∑

α∈F (S)

αµ(F−1(α))

(ii) We say F : X → Y is a strong measurable if there are {Fn}∞n=1 such that for each n ∈ N Fn is a finite
valued and {Fn}∞n=1 almost everywhere pointwise converges to F .

(iii) We say F : X → Y is Bochner integrable if F is strong measurable and there are {Fn}∞n=1 such that for
each n ∈ N Fn is a finite valued and {Fn}∞n=1 almost everywhere pointwise converges to F and∫

X

F (x)dµ(x) := lim
n→∞

∫
X

Fn(x)dµ(x)

exists.

Because of the definition of Bochner integral, the following clearly holds.

Proposition 4.1. Let

(S1) (X,B, µ) is a measurable space.

(S2) Y, Z is a Banach space.

(S3) F : X → Y is Bochner integrable.

(S3) T : Y → Z is bounded linear.

Then T ◦ F is Bochner integrable and

T

∫
X

F (x)dµ(x) =

∫
X

T ◦ F (x)dµ(x)

Proposition 4.2. Let

(S1) X is a compact space.

(S2) B is a banach space.

(S3) F ∈ C(X,B).

(S4) µ is a finite borel measure on X.
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Then F is bochner integrable and

||
∫
X

F (x)dµ(x)|| ≤
∫
X

||F (x)||dµ(x)

Proof. By (S1) and (S3), F (X) is compact. So, for each n ∈ N, there is a finite open covering of F (X) O(F (xn,i)

(n = 1, 2, ..α(n)) such that O(F (xn,i) is an open neighborhood of F (xn,i) and O(F (xn,i) ⊂ B(F (xn,i),
1

n
). We can assume

that for each n ∈ N and each i ∈ {1, ..., α(n+ 1)} there is j ∈ {1, ..., α(n)} such that O(F (xn+1,i)) ⊂ O(F (xn,j)).

Fn(x) :=


F (xn,1) x ∈ F (X) ∩B(F (xn,1),

1

2n
)

F (xn,i+1) x ∈ F (X) ∩ (B(F (xn,i+1),
1

2n
) \ ∪ij=1B(F (xn,j),

1

2n
))

Clearly, for any n ∈ N, Fn is finite valued and

||Fn(x) − F (x)|| < 1

2n

and

||
∫
X

Fn(x)dµ(x) −
∫
X

Fn+1(x)dµ(x)|| < 1

2n
µ(X)

So,
lim
n→∞

Fn(x) = F (x) (∀x ∈ X)

and by (S2)

lim
n→∞

∫
X

Fn(x)dµ(x)

exists.

4.3 General topics on Compact self-adjoint Operator

Definition 4.2 (Compact operator). Let

(S1) W is a normed linear space.

(S2) V is a Banach space.

We say T : W → V is a compact operator if T is linear and T (B(0, 1)) is a relative compact. We denote the set of all
compact operator on V by B0(W,V ).

Proposition 4.3. Let

(S1) W and V and U are normed linear space.

Then

(i) If V is a Banach space, then B0(W,V ) is a closed subspace of B(W,V ).

(ii) If T ∈ B0(W,V ) and W0 which is a linear subspace of W , then TW0
is a compact operator.

(iii) If T ∈ B(W,V ) and dim(ImT ) <∞, T is a compact operator.

(iv) If T ∈ B0(W,V ) and S ∈ B(V, U), then S ◦ T is a compact operator.

(v) If T ∈ B(W,V ) and S ∈ B0(V, U), then S ◦ T is a compact operator.

Proof of (i). Let us fix any {Fn}∞n=1 ⊂ B0(W,V ) such that F := lim
n→∞

Fn exists. Let us fix any {xn}∞n=1 ⊂ B(0, 1). It is

enough to show there is a subsequence {F (xφ(n))}∞n=1 such that lim
n→∞

F (xφ(n) exists. Because {Fn}∞n=1 ⊂ B0(W,V ), there

are subsequence {xφn(k)}∞k=1 (n = 1, 2, ...) such that fo reach n ∈ N {xφn+1(k)}∞k=1 is a subsequence of {xφn+1(k)}∞k=1 and

||Fn(xφn(k)) − Fn(xφn(l))|| <
1

n
(∀k, l ≥ n)

We set
ψ(n) := φn(n) (n ∈ N)

Let us fix any ϵ > 0. There is n0 ∈ N such that

||Fk − F || < ϵ

4
(∀k ≥ n0)
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and
1

n0
<
ϵ

2
. Let us fix any k, l ≥ n0. Then ψ(k) = φk(k) and ψ(l) = φl(l) and k0 ≥ n0 and l0 ≥ n0 and ψ(k) = φn0

(k0)

and ψ(l) = φn0
(l0). So,

||F (xψ(k)) − F (xψ(l))|| ≤ ||Fn0
(xψ(k)) − Fn0

(xψ(l))|| +
ϵ

2
= ||Fn0

(xφn0
(k0)) − Fn0

(xφn0
(l0))|| +

ϵ

2
≤ ϵ

So, {F (xψ(k))}∞k=1 is a cauchy sequence. Because V is Hilbert space, lim
k→∞

F (xψ(k)) exists.

Proposition 4.4. Let

(S1) V is an inner product space.

(A1) T ∈ B0(V, V ).

(A2) There is α which is a nonzero eigenvalue of T .

Any W which is eigenspace of α is finite dimensional.

Proof. Then there is a orthonormality {vi}∞i=1 ⊂ W . Because
1

α
T is a compact operator,

1

α
TW = {w ∈ W |||w|| = 1} is

compact. By Proposition1.10, W has finite dimension.

Lemma 4.1. Let

(S1) V is a Hilbert space.

(A1) T is a self adjoint operator from V to V .

(A2) (Ku, u) = 0 (∀u ∈ V ).

Then K = 0

Proof. Let us fix any v ∈ V . We set w := v +Kv.

0 = (Kw,w) = (Kv +K2v, v +Kv) = 2||Kv||2

So, ||Kv|| = 0. This implies Kv = 0.

Lemma 4.2. Let

(S1) V is a Hilbert space.

(A1) T is a self adjoint compact operator from V to V .

(A2) λ+ := supv∈V,||v||=1(Kv, v) > 0.

Then there is a u0 ∈ V such that
λ+ = (Ku0, u0),Ku0 = λ+u0

Proof. Then there is {vi}∞i=1{v ∈ V | ||v|| = 1} such that

lim
i→∞

(Kvi, vi) = λ+

By Proposition1.19, we can assume there is v0, u0 ∈ V such that

w − lim
i→∞

vi = v0

and
lim
i→∞

Kvi = u0

We will show (Kv0, v0) = λ+.

(Kv0, v0) = (Kvi, vi) + (Kvi − u0, v0 − vi) + (u0, v0 − vi) + (Kv0, v0) − (Kvi, v0)

= (Kv0, v0) = (Kvi, vi) + (Kvi − u0, v0 − vi) + (u0, v0 − vi) + (v0,Kv0) − (vi,Kv0)

→ λ+ (i→ ∞)

Let us fix v ∈ V such that ||v|| = 1. We set

f(t) := (Kv(t), v(t)), v(t) :=
v0 + tv

||v0 + tv||
(|t| � 1)
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then

f(t) =
(Kv0, v0) + 2tRe(Kv0, v) + t2(Kv, v)

||v0||2 + 2tRe(v0, v) + t2||v||2

So,
f(t)(||v0||2 + 2tRe(v0, v) + t2||v||2) = (Kv0, v0) + 2tRe(Kv0, v) + t2(Kv, v)

Because f(0) = λ+ and f ′(0) = 0,
λ+Re(v0, v) = Re(Kv0, v)

And
λ+Re(v0, iv) = Re(Kv0, iv)

These imply
λ+(v0, v) = (Kv0, v)

This means
Kv0 = λ+v0

The following Proposition clealy holds.

Proposition 4.5. Let

(S1) T is a self-adjoint continuous linear operator of Hilbert space V .

Then

(i) Any eigenvalue of P is a real number.

(ii) If α1, α2 ∈ R are different eigenvalues of P , Vα1
⊥ Vα2

. Here Vαi
is the eigenvalue space of αi (i = 1, 2).

(iii) If (π, V ) is a continuous representation of a topological group G and W is a G-invariant subspace of V ,
then W⊥ is a G-invariant.

Lemma 4.3. Let

(S1) V is a Hilbert space.

(A1) T is a compact self adjoint operator from V to V .

(S2) σ+(T ) is the set of all positive eigenvalues of G.

Any assumulation point of σ+(T ) is zero.

Proof. If #σ+(T ) = ∞, then there is no accumulation points of σ+(T ). So, hereafter, we assume #σ+(T ) = ∞. By
Proposition4.2 and Proposition4.4, there is a sequence of positive eigenvalue λ1 > λ2 > .... > 0 and {vi}∞i=1 ⊂ V such that
vi is an eigenvector of λi (i = 1, 2, ...) and lim

i→∞
Kvi exists.

λ2i ≤ λ2i + λ2i+1 = ||Kvi −Kvi+1||2 → 0 (i→ ∞)

Lemma 4.4. Let

(S1) V is a Hilbert space.

(A1) T is a compact self adjoint operator from V to V .

(S2) V+ is the minimum closed subspace of V such that V+ contains all eigenspaces whose eigenvalue is positive.
V− is the minimum closed subspace of V such that V+ contains all eigenspaces whose eigenvalue is negative.

Then
V = V+ ⊕Ker(T ) ⊕ V−

Proof. We set V∗ := (V+ ⊕ Ker(T ) ⊕ V−)⊥. Because (V+ ⊕ Ker(T ) ⊕ V−) is T -invariant and T is self-adjoint, V∗ is
T -invariant. By Proposition4.2, (Tv, v) = 0 (∀v ∈ V∗). By Proposition4.1, T |V∗ = 0. So, V∗ = {0}.
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4.4 Matrix coefficient and Character of representation

Definition 4.3 (Character). Let G be a topological group and (π, V ) be a finite dimensional continuous representation of
G. Then

χπ(g) := Traceπ(g) (g ∈ G)

We call χπ a character of π.

Definition 4.4 (Matrix Coefficient). Let G be a topological group and (π, V ) be a finite dimensional irreducible continuous
representation of G and let v ∈ V and f ∈ V ∗.

Φπ(v, f)(g) := f(π(g)−1v)

Because π is a continuous representation, Φπ(v, f) is a continuous function on G.

The following clearly holds.

Proposition 4.6. We succeed notations in Definition4.4. Then Φπ is a bilinear form on C.

Proposition 4.7. Let

(S1) G is a topological group.

(S2) (π, V ) is a finite dimensional unitary representation of G.

(S3) {v1, v2, ..., vm} is an orthonomal basis of V .

(S4) πi,j(g) := (π(g)vj , vi) (g ∈ G, i, j ∈ {1, 2, ...,m})

then

(i) χπ =
∑m
i=1 πi,i.

(ii) πi,j(gh) =
∑m
k=1 πi,k(g)πk,j(h) (∀g, h ∈ G, ∀i, j ∈ {1, 2, ...,m}).

(iii) πi,j(g
−1) = πj,i(g) (∀g ∈ G, ∀i, j ∈ {1, 2, ...,m}).

Proof of (i). It is clear.

Proof of (ii).

πi,j(gh) = (π(gh)vj , vi) = (π(g)π(h)vj , vi) = (π(g)(

m∑
k=1

(π(h)vj , vk)vk), vi) =

m∑
k=1

(π(g)vk, vi)(π(h)vj , vk)

=

m∑
k=1

πi,k(g)πk,j(h)

Proof of (iii).
πi,j(g

−1) = (π(g−1)vj , vi) = (vj , π(g)vi) = (π(g)vi, vj) = πj,i(g)

4.5 Schur orthogonality relations

Proposition 4.8. Let

(S1) G is a compact Lie group.

(S2) (πi, Vi) is a continous unitary representation of G on C (i = 1, 2).

(S3) f ∈ HomC(V1, V2).

(S4) We set f̃ by

f̃(v) :=

∫
G

π2(g) ◦ f ◦ π1(g)−1(v)dg (v ∈ V1)

Then f̃ ∈ HomG(V1, V2).
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Proof. By Proposition4.2, f̃(v) exists and

||f̃(v)|| ≤
∫
G

||π2(g)fπ1(g−1)v||dg

Because π1 and π2 are unitary representation,∫
G

||π2(g)fπ1(g−1)v||dg ≤
∫
G

||π2(g)fπ1(g−1)||||v||dg ≤
∫
G

||f ||||v||dg ≤ ||f ||||v||

So f̃ is continuous linear map. Becuase dg is a Haar measure on G, clearly, f̃ is G-invariant.

Proposition 4.9 (Shur orthogonality relations). Let

(S1) G is a compact Lie group.

(S2) (πi, Vi) is a continous irreducible representation of G on C (i = 1, 2).

(A1) Either V1 or V2 is finite dimensional.

(S3) (ui, vi) ∈ Vi (i = 1, 2).

Then

(Φ(u1, v1),Φ(u2, v2))L2(G) =

{
0 (π1 6' π2)

dimV (Tu1, u2)(Tv1, v2) (π1 ' π2)

Here T is a unitary G-isomorphism from V1 to V2.

STEP1. Case when π1 6' π2. We set f ∈ HomC(V1, V2) by

f(v) := (v, v1)v2 (v ∈ V1)

Proposition4.8, f̃ ∈ HomG(V1, V2) exists. In this case, by Shur Lemma, f̃ = 0.

0 = (f̃(u1), u2) =

∫
G

(π2(g)fπ1(g)−1u1, u2)dg =

∫
G

(fπ1(g)−1u1, π2(g)−1u2)dg =

∫
G

(v2, π2(g)−1u2)dg

=

∫
G

(π1(g)−1u1, v1)(v2, π2(g)−1u2)dg =

∫
G

(π1(g)−1u1, v1)(π2(g)−1u2, v2)dg

STEP2. Case when π1 ' π2. In this case, by Shur Lemma, there is λ ∈ C such that T−1 ◦ f̃ = λidV1
. By the argument

in STEP1,
(Φ(u1, v1),Φ(u2, v2))L2(G) = λ(Tu1, u2)

And
Trace(T−1 ◦ f̃) = λdimV1

By Proposition4.1 and T−1 is G-invariant,
T−1 ◦ f̃ = ˜T−1f

So,

Trace(T−1 ◦ f̃) = Trace(T−1f) = T−1f(
v1

||v1||
) = (T−1(

v1
||v1||

, v1)v2,
v1

||v1||
) = ||v1||(T−1v2,

v1
||v1||

)

= (T−1v2, v1) = (v2, T v1) = (Tv1, v2)

So,
(Φ(u1, v1),Φ(u2, v2))L2(G) = (Tu1, u2)(Tv1, v2)

By Shur orthogonality Relations, the following three holds.

Proposition 4.10. Let

(S1) G is a compact Lie group.
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(S2) R(G) :=
⟨
{Φπ(u, v)| (π, V ) ∈ Ĝf , u, v ∈ V }

⟩
. Here, Ĝf is the set of all finite dimensional irreducible

continous unitary representations of G.

Then

(i) Let {ui}dimVi=1 is a orthonormality base of V . For any (π, V ) ∈ Ĝf ,

{ 1√
dimV

Φπ(ui, uj)| i, j = 1, 2, ..., dimV }

is a basis of Φ(V, V ∗).

(ii) The following is well-defined.
Φπ(u⊗ v) := Φπ(u, v)

(iiii) The following holds.
R(G) = ⊕(π,V )∈Ĝf

Φπ(V ⊗ V ∗)

Proposition 4.11. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is a finite irreducible continuos representation of G and χπ is the character of π.

Then
(χπ, χπ) = 1

Proposition 4.12. Let

(S1) G is a compact Lie group.

(S2) (πi, Vi) are two finite irreducible continuos representation of G and χπi
is the character of πi (i = 1, 2).

(A1) χπ1
= χπ2

.

Then
π1 ' π2

4.6 Orthogonal projection by character

Proposition 4.13. We succeed notations in Definition4.3.

(i) χπ is continuous.

(ii) If π1 ' π2 then χπ1
= χπ2

.

(iii) χπ(gxg−1) = χπ(x) (∀g, x ∈ G).

(iv) χπ(g−1) = χπ∗(g) (∀g ∈ G).

Proof of (i). (i) is from Proposition4.13.

Proof of (ii). Let us take T : (π1, V1) → (π2, V2) be a G-isomorphism. Then T ◦π1 = π2 ◦T . This means T ◦π1 ◦T−1 = π2.
So, χπ1

= χπ2
.

Proof of (iii). For any g, x ∈ G,

χπ(gxg−1) = Trace(π(gxg−1) = Trace(π(g)π(x)π(g)−1) = Trace(π(x)) = χπ(x)

Proof of (iv). For any g ∈ G,

χπ(g−1) = Trace(π(g−1)) = Trace(tπ(g−1)) = χπ∗(g)

Definition 4.5 (τ -component). Let

(S1) G is a topological group.

(S2) (π, V ) is a continous representation of G.
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(S3) (τ,W ) is a continous irreducible representation of G.

We set
Vτ :=

∑
A∈HomG(W,V )

ImA

We call this τ -component of V .

Proposition 4.14. We succeed settings in Definition4.5. And if dimW <∞, for any A ∈ HomG(W,V ), ImA = {0} or
A : (τ,W ) → (π|ImA, ImA) is G-isomorphism.

Proof. Let us assume ImA 6= {0}. Because W is irreducible, Ker(A) = {0}. And, because A is G-linear, Im(A) is
G-invariant. So, A is bijective and A is G-linear and A−1 is G-linear. Because Im(A) is finite dimensional, A−1 is
continuous. So, A : (τ,W ) → (π|ImA, ImA) is G-isomorphism.

Definition 4.6 (Projection by character). Let

(S1) G is a compact Lie group.

(S2) (τ, V ) is a continuous finite dimensional unitary representation of G.

We set

Pπ,τ (v) := Pτ (v) := dimτ

∫
G

χτ (g)τ(g)vdg

We call Pτ the projection by τ .

Lemma 4.5. Let

(S1) G is a compact Lie group.

(S2) (τ,W ) is a continuous finite dimensional irreducible unitary representation of G.

(S2) (π, V ) is a continuous finite dimensional unitary representation of G.

then ImPτ ⊂ Vτ .

Proof. By Proposition1.28, there is π1, ..., πn ∈ Ĝf such that

π = ⊕ni=1πi

This implies that

Pπ,τ =
∑
i

Pπi,τ

Let us fix any i ∈ {1, 2, ..., n}. By Shur orthogonality relation, if τ 6' πi, Pπi,τ = 0. If there is T : (τ,W ) → (πi, Vi) which
is an unitary map and G-isomorphism. Let us take w1, ..., wm which is a orthonomality basis of W . By Shur orthogonality
relation, for any j,

Pπi,τ (Twj) = dim τ

∫
G

χτ (g)πi(g)Twjdg = dim τ
∑
k,l

∫
G

(τ(g)wk, wk)(πi(g)Twj , Twl)Twldg

= dim τ
∑
k,l

∫
G

(πi(g)Twk, Twk)(πi(g)Twj , Twl)Twldg = Twj

So, Pπi,τ = idVi
. By this, Pπi,τ (Vi) = ImT ⊂ Vτ .

Lemma 4.6. Let

(S1) G is a compact Lie group.

(S2) (τ,W ) is a continuous finite dimensional irreducible unitary representation of G.

(S3) (τ ′,W ) is a continuous finite dimensional irreducible unitary representation of G.

(S4) (π, V ) is a continuous finite dimensional unitary representation of G.

(A1) (τ,W ) 6' (τ ′,W ).

then Pτ |V ′
τ = 0.
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4.7 Peter-Weyl theorem

4.7.1 Irreducible decomposition

Theorem 4.2. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is a continous finite dimensional representation of G.

(S3) (·, ·) is an inner product of V .

Then

(i) (π, V ) is a unitary representation with respect to the following inner product

(u, v)π :=

∫
G

(π(g)u, π(g)v)dg

Here, dg is a Haar measure on G. By Proposition2.53, this Haar measure on G.

(ii) (π, V ) is irreducible ⇐⇒ (π, V, (·, ·)π).

(ii) If π′ is a continuous representation of G such that π and π′ are equivalent as continuous representations,
(π, V, (·, ·)π) and (π′, V ′, (·, ·)π′) are equivalent as unitary representations.

Proof. Because G is unimodular and C(G) ⊂ L∞(G), (i) holds. Because (·, ·) and (·, ·)π) are equivalent, (ii) holds.

The following Proposition clealy holds.

Proposition 4.15. Let

(S1) G is a topological group.

(S2) (π, V ) is a continous finite dimensional representation of G.

(S3) P ∈ HomG(V, V ).

Then

(i) Any eigenvalue space of P is G-invariant.

(ii) ImP is G-invariant.

Proposition 4.16. Let

(S1) G is a compact Lie group.

(S2) (π, V, (·, ·)) is a unitary representation of G.

(S3) v0 ∈ V and ||v0|| = 1

(S4) P : V 3 v → (v, v0)v0 ∈ V

(S5) Φ : G 3 g → π(g)Pπ(g)∗ ∈ B0(V ).

Then

(i) Φ is a continuous. And for any g ∈ G, Φ(g) is self adjoint.

(ii) Φ is Bochner integrable with respact to a Haar measre on G.

(iii) P̃ :=
∫
G

Φ(g)dg is G-invariant.

(iv) P̃ is a self-adjoint compact operator.

(v) P̃ is a nonzero map.

(vi) There is λ 6= 0 such that eigenspace of P̃ with respect to λ is not zero.

Proof of (i). For any v ∈ V and g, h ∈ G

||π(g)Pπ(g)∗v − π(h)Pπ(h)∗v|| = ||π(g)(π(g)∗v, v0)v0 − π(h)(π(h)∗v, v0)v0||
= ||(v, π(g−1)v0)π(g)v0 − (v, π(h−1)v0)π(h)v0||
= ||(v, π(g−1)v0)π(g)v0 − (v, π(h−1)v0)π(g)v0|| + ||(v, π(h−1)v0)π(g)v0 − (v, π(h−1)v0)π(h)v0||
≤ ||v||||π(g−1)v0 − π(h−1)v0||||π(g)v0|| + ||v||||π(h−1)v0||||π(g)v0 − π(h)v0||
= ||v||(||π(g−1)v0 − π(h−1)v0|| + ||π(g)v0 − π(h)v0||)

So Φ is continuous. By Proposition, for any g ∈ G, Φ(g) is compact. Because P is self-adjoint and π(g) is unitary operator,
Φ(g) is self adjoint.
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Proof of (ii). This is from Proposition4.2 and (i).

Proof of (iii). Let us fix any h ∈ G and v, u ∈ V . By Proposition4.1,

(π(h)

∫
G

π(g)Pπ(g)∗dgv, u) =

∫
G

(π(h)π(g)Pπ(g)∗v, u)dg =

∫
G

(π(hg)Pπ(hg)−1π(h)v, u)dg

=

∫
G

(π(g)Pπ(g)−1π(h)v, u)dg = (

∫
G

π(g)Pπ(g)−1dgπ(h)v, u)

So, π(h)P̃ = P̃ π(h)

Proof of (iv). By the simila argument to the proof of (iii), P̃ is self-adjoint. By the argument of proof of Proposition4.2,
P̃ ∈ B0(V ). By Proposition4.7.1, P̃ ∈ B0(V ).

Proof of (v).

(

∫
G

π(g)Pπ(g)∗dgv0, v0) =

∫
G

(π(g)Pπ(g)∗v0, v0)dg =

∫
G

(Pπ(g)∗v0, π(g)∗v0)dg

=

∫
G

(P ∗Pπ(g)∗v0, π(g)∗v0)dg =

∫
G

(P ∗Pπ(g)∗v0, π(g)∗v0)dg =

∫
G

(Pπ(g)∗v0, Pπ(g)∗v0)dg =

∫
G

||Pπ(g)∗v0||2dg

Because ||Pπ(e)∗v0||2 = 1,
∫
G
||Pπ(g)∗v0||2dg > 0.

Proof of (vi). By (v) and Lemma4.4, (vi) holds.

In the following proposition, we give a proof for the general case as well as for the finite group case. The proof of
the finite group case shown here follows the same policy as the proof of the general case, but uses only knowledge of
linear algebra. Therefore, this proof has the advantage that the essence of the proof of the general case can be easily
understood. Note that the finite group case can be easily shown from the fact that < π(G)v > is finite dimensional
G-invariant subspace for any vector v, apart from the proof given below.

Proposition 4.17. Let

(S1) G is a compact Lie group.

(S2) (π, V, (·, ·)) is a unitary representation of G.

Then there is a finie irreducible G-subspace of V .

Proof in general case. By (v) of Proposition4.16, this Proposition holds.

We will show a proof that does not knowledge of bochner integrals and self-adjoint compact operators in the case when
G is a finite group.

Proof in the case when G is a finite group. We will succeed notations the proof of Proposition4.16 . Then

P̃ =
∑
g∈G

π(g−1) ◦ P ◦ π(g)

For any h ∈ G,

P̃ ◦ π(h) =
∑
g∈G

π(g−1) ◦ P ◦ π(gh) =
∑
g∈G

π(h) ◦ π(gh−1) ◦ P ◦ π(gh) = π(h) ◦ P̃

So, P̃ is G linear.
For each g ∈ G, π(g−1) ◦ P ◦ π(g) is finite rank operator. So, P̃ is G finite rank operator. Then {v1, .., vm} such that∑m
i=1 CP̃ (vi) = Im(P̃ ). Let us fix {w1, ..., wn} which is an orthonormal basis of Im(P̃ ) +

∑n
i=1 wi. Because P̃ |

∑m
i=1 wi

is not zero, P̃ |
∑n
i=1 wi has nonzero eiggenvalue λ 6= 0.

For any u ∈ Ker(P̃ − λI),

u =
1

λ
(P̃ u) =

1

λ

m∑
i=1

(P̃ u, ui)ui

So,

Ker(P̃ − λI) ⊂
n∑
i=1

Cui

These imply that Ker(P̃ − λI) is finite dimensional G-invariant subspace.
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By Proposition4.17 and the same argument as the proof of Proposition3.7, the following holds.

Theorem 4.3 (Peter-weyl theorem I). Let (π, V ) be a continuous unitary representation of a compact Lie group G. Then
there is W which is a subset of G-invariant finite dimensional irreducible subspaces such that

V =
⊕
W∈W

W

In specail, if π is irreducible, dim(π) <∞.

4.7.2 Orthonormal basis of L2(G)

Proposition 4.18. Let

(S1) G is a compact Lie group.

(S2) (π, V, (·, ·)) is a finite dimensional unitary representation of G.

Then
{Φπ(u, v)|u, v ∈ V }

is G×G-invariant subspace of L2(G).

Proof. For any x, y, g ∈ G,

Lx ×RyΦπ(u, v)(g) = (π(xgy−1)−1u, v) = (π(g)−1π(x)−1u, π(y)−1v) = Φπ(π(x)−1u, π(y)−1v)(g)

So,
{Φπ(u, v)|u, v ∈ V }

is G×G-invariant subspace of L2(G).

By Proposition4.10, the following two holds.

Proposition 4.19. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is a finite dimensional G-invariant space of L2(G).

Then V ⊂ Φπ(V ⊗ V ∗).

Proof. Let us fix {f1, ..., fm} which is an orthonormal basis of V . Let us fix any i. Then for any g ∈ G

L(g−1)fi =

m∑
j=1

(L(g−1)fi, fj)fj

So,

fi(g) = L(g−1)fi(e) =

m∑
j=1

Φ(fi, fj)(g)fj(e)

This means

fi =

m∑
j=1

fj(e)Φ(fi, fj)

So, V ⊂ Φπ(V ⊗ V ∗).

Proposition 4.20. Let

(S1) G is a compact Lie group.

(S2) R(G) := ⊕(π,V )∈ĜΦπ(V ⊗ V ∗). Here Ĝ is the set of all equivalent classes of irreducible representation of
G.

Then R(G) is dense in L2(G).
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Proof. Be Proposition4.18, R(G)⊥ is G-invariant. Let us assume R(G)⊥ 6= {0}. By Proposition4.17 and Proposition4.19,
there are {f1, ..., fm} ⊂ L2(G) such that {f1, ..., fm} is an orthonormality and 〈f1, ..., fm〉 is a irreducible G-invariant
subspace and 〈f1, ..., fm〉 ⊂ R(G). So,

1 = (fi, fi) = 0

This is contradiction.

Theorem 4.4 (Peter-Weyl Theorem II). Let

(S1) G is a compact Lie group.

Then
Φ : (L,⊕τ∈ĜV ⊗ V ∗) → (L,L2(G))

is an isomorphism as continuous unitary representaions. And (L, V ⊗ V ∗) is isomorphic to a direct sum of dimτ of V .

Proof. The first part is directly followed from Proposition4.20. Let us take an orthonormal basis {v1, ..., vm} of V . Then
V ⊗ V ∗ = ⊕mi=1V ⊗ (vi)

∗ since V ⊗ (vi)
∗ ⊥ V ⊗ (vj)

∗ for any i 6= j. Clearly V ⊗ (vi)
∗ is isomorphic to V as continuous

unitarly representations for any i. The latter half part holds.

Notation 4.1. Let

(S1) G is a compact Lie group.

(S2) (τ,W ) is an irreducible unitary representation of G.

then we define Φτ , Φ′
τ , Φ̃τ

(i) Φτ : W ⊗W ∗ 3 v ⊗ w 7→ (G 3 g 7→ (τ(g)v, w) ∈ C) ∈ C(G).

(ii) Φ′
τ := dimWΦτ .

(iii) Φ̃τ :=
√
dimWΦτ .

Proposition 4.21. Let

(S1) G is a compact Lie group.

(S2) (τ,W ) ∈ Ĝf .

Then

(τi,j , τk,l) =
1

dimτ
δi,jδk,l

Proof. Because for any i, j ∈ {1, ..., dimτ} and g ∈ G

τi,j(g) = Φτ (vi, vj)(g
−1)

by Proposition2.54 and Shur orthognality relation,

(τi,j , τk,l) = (Φτ (vi, vj),Φτ (vk, vl)) =
1

dimτ
δi,jδk,l

By Proposition4.20 and Shur orthogonality relations and Proposition4.21, the following holds.

Theorem 4.5 (Peter Weyl Theorem II, matrix coefficient version). Let

(S1) G is a compact Lie group.

(S2) (τ,W ) ∈ Ĝf .

Then

(i) The following is a completely orthonomal system of L2(G).

{
√

dim ττi,j |i, j = 1, 2, .., dim τ, (τ,W ) ∈ Ĝf}

(ii) Ĝ is at most countable.

(iii) For any f ∈ L2(G),

f = dimτ
∑

τ∈Ĝf ,i,j=1,...,dimτ

(f, τi,j)τi,j (L2-convergence)

Proof of (i). This is followed by Proposition4.20 and Shur orthogonality relations and Proposition4.21.

Proof of (ii). Because L2(G) is separable, L2(G) has a countable complete orhonormal basis. So, this is followed by (i)
and Peter-Weyl I and Proposition1.12(iii).

Proof of (iii). This is followed by (i) and (ii) and Proposition1.12(ii).
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4.7.3 Uniform approximate of continuous function

Theorem 4.6 (Peter-Weyl Theorem III). Let G be a compact Lie group. Then the C-vector space generated by the
following set is dense subset of C(G) in uniformly convergence topology.

{(τ(·)v, v)|(τ, V ) is a continuous finite dimensional irreducible unitary representation of G, v ∈ V such that ||v|| = 1}

Proof. By Peter-Weyl I and Proposition3.23,

ex(P1) = {(τ(·)v, v)|(τ, V ) is a continuous finite dimensional irreducible unitary representation of G, v ∈ V such that ||v|| = 1}

Because the trivial representation of G is finite dimensional irreducible, ex(P1) contains 1 which is (A2) in Theorem4.1.
Because φ ∈ ex(P1) =⇒ φ̄ ∈ ex(P1), ex(P1) satisfies (A3) in Theorem4.1. By Proposition3.12, ex(P1) satisfies (A4) in
Theorem4.1. By Gelfand-Raikov Theorem, ex(P1) satisfies (A5) in Theorem4.1. So, by Theorem4.1, the C-vector space
generated by ex(P1) is dense subset of C(G) in uniformly convergence topology.

Definition 4.7 (Class function). Let G be a group and f be a function on G. We say f is a class function if

f(x−1gx) = f(g) (∀x, g ∈ G)

We denote the set of all squared integrable class functions by L2(G)Ad. We denote the set of all continuous class functions
by C(G)Ad.

Clearly the following holds.

Proposition 4.22. Any character of compact Lie group is a class function.

Proposition 4.23. Let G be a compact group. Then L2(G)Ad is closed subset of L2(G) and C(G)Ad is closed subset of
C(G).

Proof. Because f(x−1gx) = Lx ◦Rxf (∀x, g ∈ G, ∀f ∈ C(G)) and Lx ◦Rx is continuous operator of L2(G) and C(G). So,
this Proposition holds.

Proposition 4.24. Let G be a compact Lie group. We set

P (f)(g) :=

∫
G

f(x−1gx)dg(x) (g ∈ G)

then

(i) P is the orthogonal projection of L2(G)Ad.

(ii) P (C(G)) = C(G)Ad.

(iii) P : C(G) → C(G)Ad is surjective continuous in uniform convergence topology.

Proof of (i). Clearly P (L2(G)) ⊂ L2(G)Ad, and P ◦ P = P and P is linear. For any g, f ∈ L2(G),

|(g, P (f))| = |
∫
G

g(x)

∫
G

f(y−1xy)dg(y)dg(x)| = |
∫
G

∫
G

g(x)f(y−1xy)dg(x)dg(y)|

≤
∫
G

||g||L2 ||Ly ◦Ryf ||L2dg(y) =

∫
G

||g||L2 ||f ||L2dg(y) = ||g||L2 ||f ||L2

and

(g, P (f)) =

∫
G

g(x)

∫
G

f(y−1xy)dg(y)dg(x) =

∫
G

∫
G

g(x)f(y−1xy)dg(y)dg(x)

=

∫
G

∫
G

g(yxy−1)f(x)dg(x)dg(y) =

∫
G

∫
G

g(yxy−1)dg(y)f(x)dg(x) =

∫
G

∫
G

g(y−1xy)dg(y)f(x)dg(x)

= (P (g), f)

So, P is continuous and self adjoint. Because of these result, (i) holds.

Proof of (ii). Clearly P (C(G)) ⊂ C(G)Ad and and P |C(G)Ad = id|C(G)Ad.

Proof of (iii). For any f ∈ C(G), f is uniformly continuous. So, P |C(G) is continuous in uniformy convergence topology.
By (ii), P |C(G) is surjective. So (iii) holds.
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Proposition 4.25. We will succeed notations in Proposition4.24. And let (τ, V ) ∈ Ĝf . then for any i, j ∈ {1, 2, ..., dimτ}

P (τi,j) =
δi,j
dimτ

χτ

Proof. For any g ∈ G,

P (τi,j)(g) =

∫
G

τi,j(x
−1gx)dg(x)

by Proposition4.7

=
∑
a,b

∫
G

τi,a(x−1)τa,b(g)τb,j(x)dg(x)

by Proposition4.7

=
∑
a,b

∫
G

τa,i(x)τa,b(g)τb,j(x)dg(x) =
∑
a,b

τa,b(g)

∫
G

τa,i(x)τb,j(x)dg(x)

by Shur orthogonality relations

= δi,j
1

dimτ

dimτ∑
i=1

τi,i(g) = δi,j
1

dimτ
χτ

Theorem 4.7. Let

(S1) G is a compact Lie group.

(S2) (τ,W ) ∈ Ĝf .

Then

(i)
∑
τ∈Ĝf

Cχτ is dense in C(G)Ad.

(ii) {χτ |τ ∈ Ĝf} is an orthonomal basis of L2(G)Ad.

Proof of (i). Let us fix any f ∈ C(G)Ad, ϵ > 0. Because P is continuous, there is δ > 0 such that

g ∈ C(G) and ||g − f ||∞ < δ =⇒ ||P (g) − P (f)||∞ < ϵ.

Because f ∈ C(G)Ad, P (f) = f . By Theorem4.6, there is g ∈
∑
τ∈Ĝf

∑
i,j∈{1,2,...,dimτ} Cτi,j such that ||g − f ||∞ < δ. By

Proposition4.25, P (g) ∈
∑
τ∈Ĝf

Cχτ .

Proof of (ii). Let us fix any f ∈ L2(G)Ad \ {0}. By Theorem4.5, there is τ ∈ Ĝf and i, j ∈ {1, 2, ..., dimτ} such that
(f, τi,j) 6= 0. Because P is the orthogonal projection of L2(G)Ad, there is g ∈ (L2(G)Ad)⊥ such that τi,j = P (τi,j) + g. So,

0 6= (f, τi,j) = (f, P (τi,j)) =
δi,j
dimτ

(f, χτ )

This implies (f, χτ ) 6= 0.

4.7.4 Component of irreducible decomposition

Proposition 4.26. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is an continuous unitary representation of G.

(S3) (τ,W ) ∈ Ĝf .

(S4) A ∈ HomG(W,V ).

Then
Pτ |ImA = id|ImA
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Proof. By Proposition4.21

Pτ (Awi) = dimτ

∫
G

χτ (g)π(g)Awidg = dimτ

∫
G

χτ (g)Aτ(g)widg = dimτ

m∑
j=1

∫
G

χτ (g)A(τ(g)wi, wj)wjdg

= dimτ

m∑
j=1

∫
G

χτ (g)τi,j(g)dgAwj = dimτ

m∑
k=1

m∑
j=1

∫
G

τk,k(g)τi,j(g)dgAwj = Awi

Proposition 4.27. Let

(S1) G is a compact Lie group.

(S2) (τ,W1), (π,W2) ∈ Ĝf .

then

χτ ∗ χπ =

{
1

dimτ
χτ (τ ' π)

0 (τ 6' π)

Proof. For any h ∈ G, ∫
G

χτ (g)χπ(g−1h)dg =
∑
i,j

∫
G

τi,i(g)πj,j(g
−1h)dg

For any j,

πj,j(g
−1h) = (π(g−1h)vj , vj) = (π(h)vj , τ(g)vj) =

∑
k

πj,k(h)(vk, π(g)vj) =
∑
k

πj,k(h)πj,k(g)

So, by Shur orthogonality relations,

∑
i,j

∫
G

τi,i(g)πj,j(g
−1h)dg =

∑
i,j,k

τj,k(h)

∫
G

τi,i(g)πj,k(g)dg = δτ, π
1

dimτ

dimτ∑
i=1

τi,i(h) = δτ, π
1

dimτ
χτ (h)

Proposition 4.28. Let

(S1) G is a compact Lie group.

(S2) (τ,W ), (π, V ) ∈ Ĝ.

Then

Pτ ◦ Pπ =

{
Pτ (τ = π)
0 (τ 6' π)

Proof. Let us fix an orthonormal basis of V . For any vi ∈ V , by Shur orthogonality relations,

Pπ(Pτ (vi)) =
∑dimπ
j=1 (dimτ)(dimπ)

∫
G
χτ (g)τ(g)

∫
G
χπ(h)(π(h)vi, vj)vjdhdg

=
∑
j,k(dimτ)(dimπ)

∫
G
χτ (g)

∫
G
χπ(h)(π(h)vi, vj)(τ(g)vj , vk)vkdhdg

=
∑
j,k(dimτ)(dimπ)

∫
G
χτ (g)

∫
G
χπ(h)πj,i(h)τk,j(g)vkdhdg

=
∑
j,k,a,b(dimτ)(dimπ)

∫
G
τa,a(g)

∫
G
πb,b(h)πj,i(h)τk,j(g)dhdgvk

= (dimτ)(dimπ)
∑
j,k,a,b(τk,j , τa,a)(πk,j , πa,a) = δτ,πvi

Theorem 4.8. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is an continuous unitary representation of G.

(S3) (τ,W ) ∈ Ĝ.
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then Pτ is the orthogonal projection of Vτ .

Proof. By Proposition4.26,
Pτ |Vτ = idVτ

Let us fix any v ∈ V . We will show there is V ′ which is a finite dimensional G-invariant subspace of V such that
Pτ (v) ∈ V ′. Let us fix {v1, ..., vm} which is a orthogonality basis of (τ,W ). For any x ∈ G,

π(x)Pτ (v) =

∫
G

χτ (g)π(xg)vdg =

∫
G

χτ (x−1g)π(g)vdg =
∑
i

∫
G

τi,i(x−1g)π(g)vdg =
∑
i

∫
G

(τ(x−1g)vi, vi)π(g)vdg

=
∑
i

∫
G

(τ(x)vi, τ(g)vi)π(g)vdg =
∑
i,j

τi,j(x)

∫
G

(vj , τ(g)vi)π(g)vdg ∈
∑
i,j

C
∫
G

(vj , τ(g)vi)π(g)vdg =: V ′

By Proposition4.28 and Proposition4.5, Pτ (v) = Pτ (Pτ (v)) ∈ Pτ (V ′) ⊂ V ′
τ ⊂ Vτ .

Lastly, we will show P ∗
τ = Pτ . Let us fix any u, v ∈ V . By Proposition2.54 and Proposition4.13,

(Pτ (u), v) = (

∫
G

χτ (g)π(g)udg, v) =

∫
G

χτ (g)(π(g)u, v)dg =

∫
G

(u, χτ (g)π(g−1)v)dg

= (u,

∫
G

χτ (g−1)π(g−1)vdg) = (u, Pτ (v))

So, P ∗
τ = Pτ .

Proposition 4.29. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is an continuous unitary representation of G.

(S3) (τ, V ) is an continuous finite dimensional unitary representation of G.

then Pπ,τ is G-linear.

Proof. For any x ∈ G and v ∈ V ,

π(x)Pπ,τ (v) =
∫
G
χτ (y)π(x)π(y)vdg(y) =

∫
G
χτ (xx−1yxx−1)π(xyx−1)π(x)vdg(y)

=
∫
G
χτ (xyx−1)π(y)π(x)vdg(y) =

∫
G
χτ (y)π(y)π(x)vdg(y) = Pπ,τ (π(x)v)

Theorem 4.9. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is a continuous unitary representation of G.

then
V = ⊕τ∈Ĝf

Vτ

Proof. By Proposition4.28, Vτ ⊥ Vπ (τ 6' π). So, it is enough tho show ∩τ∈Ĝf
V ⊥
τ = {0}. Let us fix any v ∈ ∩τ∈Ĝf

V ⊥
τ .

Then for any x ∈ G and τ ∈ Ĝf , by Proposition4.29,

0 =

∫
G

(Pτ (π(x−1)π(x)w), w)dg(x) =

∫
G

(π(x−1)Pτ (π(x)w), w)dg(x) ==

∫
G

(Pτ (π(x)w), π(x)w)dg(x)

=

∫
G

∫
G

χτ (g)(π(g)π(x)w, π(x)w)dg(g)dg(x) = (f, χτ )

Here,

f(x) :=

∫
G

(π(x)π(g)v, π(g)v)dg (x ∈ G)

For any x, y ∈ G,

f(y−1xy) =

∫
G

(π(y−1xy)π(g)v, π(g)v)dg =

∫
G

(π(x)π(yg)v, π(yg)v)dg = f(x)

So, f ∈ C(G)Ad. By Theorem4.7, f = 0. So, ||w||2 = f(e) = 0.
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4.7.5 Expansion formula of L2 functions

Proposition 4.30. Let

(S1) G is a compact Lie group.

(S2) (τ,W ) is an irreducible unitary representation of G.

Then
Φτ (W ⊗W ∗) = L2(G)τ

Proof. Firstly, we will show that
Φτ (W ⊗W ∗) ⊂ L2(G)τ

For each f ∈W ∗, we set Φτ,f : W → L2(G) by

Φτ,f (w) := Φ(w, f) (w ∈W )

Let us fix any f ∈W ∗. Clearly Φτ,f is linear. By shur orthogonality relations, Φτ,f is continous. And for any h ∈ G

Φτ,f (τ(h)w) = f(τ(·)−1τ(h)w) = f(τ(h−1·)−1w) = LhΦτ,f (τ(h)w)

This means that Φτ,f is G-linear. So, Φτ (W ⊗W ∗) ⊂ L2(G)τ .
Lastly, we will show that

L2(G)τ ⊂ Φτ (W ⊗W ∗)

Let us fix w1, ..., wm ∈W which is a basis of W and A ∈ HomG(W,V ). For any i and x ∈ G,

(Awi)(x) = (Lx−1Awi)(e) = (Aτ(x−1)wi)(e) = (A(

m∑
j=1

τ(x−1)wi, wj)wj)(e) = (A(

m∑
j=1

Φi,j(x)wj)(e)

=

m∑
j=1

(Awj)(e)Φi,j(x)

So, L2(G)τ ⊂ Φτ (W ⊗W ∗).

Proposition 4.31. Let

(S1) G is a compact Lie group.

(S2) τ ∈ Ĝ.

for any f ∈ L2(G)
PL,τ (f)(x) = dimτχτ ∗ f(x) (a.e. x ∈ G)

Proof. For any f ∈ L2(G) and a.e x ∈ G,

PL,τ (f)(x) =

∫
G

χτ (g)f(g−1x)dg =

∫
G

χτ (g−1)f(gx)dg =

∫
G

χτ (xg−1)f(g)dg = χτ ∗ f(x)

Proposition 4.32 (Operator Valued Fourier Transform). Let

(S1) G is a compact Lie group.

(S2) (τ,W ) is a continuous unitary representation of G.

(S3) f ∈ L2(G).

Then

(i) For each w ∈W , there is the unique element I(τ, f)w such that

(u, I(τ, f)w) =

∫
G

(u, f(g)τ(g)w)dgl(g) (∀u ∈W )

(ii) I(τ, f) is bounded and ||I(τ, f)|| ≤ ||f ||L2(G).
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Without fear of misinterpretation, we denote I(τ, f) by τ(f). We call Ĝ 3 π 7→ I(π, f) the operator valued fourier
transform of f .

Proof of (i).

|
∫
G

(u, f(g)τ(g)w)dgl(g)| ≤ ||f ||L2(G)||u|| · ||w|| (∀u ∈W )

So, by Riez representation theorem, (i) holds.

Proof of (ii). (ii) is followed by the above equation.

Proposition 4.33. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is a continuous unitary representation of G.

(S3) f ∈ L2(G).

Then

(i) π(f ∗ g) = π(f)π(g) is a compact Lie group.

(ii) π(Rxf) = π(f)π∗(x) (∀x ∈ G).

(iii) π(Lxf) = π(x)π(f) (∀x ∈ G).

Proof of (i).

π(f ∗ g) =

∫
G

f ∗ g(x)π(x)dg(x) =

∫
G

∫
G

f(xy−1)g(y)dg(y)π(x)dg(x) =

∫
G

∫
G

f(y−1)g(yx)dg(y)π(y−1)π(yx)dg(x)

=

∫
G

f(y−1)π(y−1)

∫
G

g(yx)π(yx)dg(x)dg(y) =

∫
G

f(y−1)π(y−1)

∫
G

g(x)π(x)dg(x)dg(y) =

∫
G

f(y−1)π(y−1)π(g)dg(x)

=

∫
G

f(y)π(y)π(g)dg(x) = π(f)π(g)

Proof of (ii).

π(Rxf) =

∫
G

f(gx)π(g)dg(g) =

∫
G

f(gx)π(gx)π(x−1)dg(g) =

∫
G

f(gx)π(gx)dg(g)π∗(x) = π(f)π∗(x)

Proof of (iii).

π(Lxf) =

∫
G

f(x−1g)π(g)dg(g) =

∫
G

f(x−1g)π(xx−1g)dg(g) = π(x)

∫
G

f(g)π(g)dg(g) = π(x)π(f)

(i)(ii) in Proposition4.33 characterize the operator valued fourier transformation. See Theorem3.1 in [18].

Proposition 4.34. Let

(S1) G is a compact Lie group.

(S2) (τ,W ) is a continuous finite dimensional unitary representation of G.

Then
PL,τ (f) = dimWΦL,τ (τ(f)) (∀f ∈ L2(G))
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Proof. For any y ∈ G,

Φτ (τ(f))(y) =
∑
i,j

Φτ ((τ(f)vj , vi)vi ⊗ vj)(y) =
∑
i,j

∫
G

Φτ ((f(x)τ(x)vj , vi)vi ⊗ vj)dg(x)(y)

=

∫
G

∑
i,j

f(x)(τ(x)vj , vi)Φτ (vi ⊗ vj)dg(x)(y) =

∫
G

∑
i,j

f(x)τi,j(x)(τ(y−1)vj , vi)dg(x)

=
∑
i,j

∫
G

f(x)τi,j(x)dg(x)(τ(y−1)vj , vi) =
∑
i,j

∫
G

f(x)τi,j(x)dg(x)τj,i(y
−1)

=
∑
i

∫
G

f(x)τi,i(xy
−1) =

∑
i

∫
G

f(xy)τi,i(x)dg(x) =

∫
G

f(xy)χτ (x−1)dg(x)

=

∫
G

f(x−1y)χτ (x)dg(x) =

∫
G

Lxfχτ (x)dg(x)(y) =
1

dimτ
PL,τ (f)(y)

Theorem 4.10 (Plancherel formula for compact Lie group). Let

(S1) G is a compact Lie group.

(S2) f ∈ L2(G).

then
f =

∑
τ∈Ĝf

Φ′
τ (τ(f)) (L2 convergence)

We set µ by the counting measure of Ĝf . Then

f =

∫
Ĝf

Φ′
τ (τ(f))dµ(τ)

The right side is a bochner integral on the L2(G) valued function. We call µ the Plancherel measure on Ĝ.

Proof by Peter-Weyl Theorem III.. This is followed by Theorem4.8 and Proposition4.9 and Proposition.

Proof by Peter-Weyl Theorem II.. By Proposition4.30 and Theorem4.8, Pτ (L2(G)) = Φτ (V ⊗V ∗) for any (τ, V ) ∈ Ĝ. By
Proposition4.7.5, Pτ (f) = Φ′

τ (f) (∀f ∈ L2(G)). By Peter Weyl Theorem II and Proposition1.17,

f =
∑
τ∈Ĝf

Φ′
τ (τ(f)) (∀f ∈ L2(G))

Proposition 4.35. Let

(S1) G is a compact Lie group.

(S2) (π, V ) and (τ,W ) are continuous unitary representations of G.

(S3) T : V →W is an isomorphism as continuous unitary representations of G.

(S4) f ∈ L2(G).

Then
π(f) = T−1τ(f)T

Proof. For any u, v ∈ V ,

(u, π(f)v) = (Tu, Tπ(f)v) =

∫
G

(Tu, Tf(g)π(g)v)dg =

∫
G

(Tu, f(g)τ(g)Tv)dg =

∫
G

(u, T−1f(g)τ(g)Tv)dg

= (u, T−1τ(f)Tv)
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4.7.6 Example:Fourier series expansion

By Lemma2.10, the following holds.

Proposition 4.36. The following µ is a Haar measure on S1.

µ(f) :=
1

2π

∫ 2π

0

f(exp(iθ))dθ (f ∈ C(S1))

Proposition 4.37. Let

(S1) (τ,W ) is a unitary representation of T1.

Then (τ,W ) is irreducible ⇐⇒ dimτ = 1 and there is n ∈ Z such that

τ(exp(iθ2π))v = exp(inθ2π)v (∀θ ∈ R, ∀v ∈W )

We denote this irreducible representation by τn

Proof1 of =⇒ . By Shur Lemma, dimτ = 1. Since τ is unitary, τ(S1) can been seen as elements of S1. By Theorem2.2,
τ is Cω-class. We set f(θ) := τ(iθ2π) (θ ∈ R). Because f(θ + h) = f(θ)f(h) (∀θ, h ∈ R),

f ′(θ) = f ′(0)f(θ) (∀θ ∈ R)

So, taylor series of f converges on R. This implies that there is α ∈ C such that

f(θ) = exp(iαθ2π) (∀θ ∈ R)

Because Im(f) ⊂ S1, α ∈ R. Because f(1) = 1, α ∈ Z.

Proof2 of =⇒ without Theorem2.2. By Shur Lemma, dimτ = 1. Since τ is unitary, τ(S1) can been seen as elements of
S1. We set

f(θ) := τ(iθ2π) (θ ∈ R)

and
ψ(θ) := exp(iθ) (θ ∈ (−π, π))

There is δ > 0 such that f((−δ, δ)) ⊂ ψ((−π, π)) We can assume f |(−δ, δ) 6= 1. So, there is t0 ∈ (−δ, δ) \ 0 such that
f(t0) 6= 1. There is α ∈ (−π, π) such that f(t0) = exp(iα). Because ψ is injective,

f(
k

2m
t0) = exp(i

k

2m
α) (∀m ∈ Z+, ∀k ∈ Z such that | k

2m
| ≤ 1)

Because the both sides are continuous,

f(θ) = exp(i
α

t02π
θ2π) (∀θ ∈ (−|t0|, |t0|))

We set β :=
α

t02π
. Becuase f is homomorphism,

f(θ) = exp(iβθ2π) (∀θ ∈ R)

Because f(1) = 1, β ∈ Z.

Proof of ⇐= . It is clear.

By Proposition4.37, the following holds.

Proposition 4.38. Let

(S1) τn is an irreducible unitary representation of T1 for n ∈ Z.
(S2) χn is the character of τn.

(S3) τn1,1 is the matrix coefficient of τn.

Then
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(i)
τn1,1(z) = χn(z) = zn = exp(i · n · arg(z)) (∀z ∈ S1)

(ii)

(f, τn1,1) =
1

2π

∫ 2π

0

f(expiθ)exp(−inθdθ = f̂(n) (∀f ∈ L2(S1), ∀nN)

By Peter-Weyl II and Proposition4.38 and Proposition1.12, the following holds.

Theorem 4.11 (Fourier expansion formula). For any f ∈ L2([0, 2π])

f = lim
N→∞

N∑
n=−N

f̂(n)χn (L2-convergence)

By Peter-Weyl III and Proposition4.38 and Proposition1.12, the following holds.

Theorem 4.12 (Wierstrass Theorem). For any f ∈ C(S1) and ϵ > 0, there is a finite subset N ⊂ N and a−N , a−N+1, ..., aN
such that

||f −
N∑

n=−N
anχn||∞ < ϵ

4.7.7 Characterization of compact Lie group

Theorem 4.13. Let us G be a compact topological group. Then G is a Lie group ⇐⇒ G has a continuous finite
dimensional faithful unitary representation. In special, if G is a compact Lie group, then there is a Cω-class diffeomorphism
from G to some closed subgroup of U(n) for some n ∈ N.

Proof of =⇒ . By Proposition2.33, there is an open neighborhood U which does not contain subgroups without {e}. By
Peter-Weyl Theorem I, for any τ ∈ Ĝ, Ker(τ) is closed subset of G. By Gelfand-Raikov theorem, G = ∪τ∈ĜKer(τ)c ∪U .

Because G is compact, there are finite τ1, ..., τm ∈ Ĝf such that G = ∪mi=1Ker(τi)
c ∪ U . Because U does not contain

subgroups without {e}, ∩mi=1Ker(τi) = {e}. Then ⊕mi=1τi is a continuous finite dimensional faithful unitary representation
of G.

Proof of ⇐= . Then G is isomorphic to closed subgroup of U(n) ⊂ GL(n,C) as toplogical groups for some n ∈ N. So, G
is Lie group.

4.8 Review

The main theorems of this chapter are Peter-Weyl’s Theorem I-III, embedding any compact Lie group into U(n), Plancherel
formula for compact Lie groups. In this section, we review these theorems, noting their relationship to the Mautner-
Teleman theorem. We also explain how this is a generalization of the theory of Fourier series expansions. The key facts in
this chapter are various capabilities of ‘averaging‘ by Haar measure in compact Lie groups, Shur Lemma, Gelfand-Raikov
Theorem.

The Mautner-Teleman theorem guarantees that any unitary representation of a Lie group can be decomposed into
a direct integral of irreducible unitary representations. The following Peter-Weyl Theorem I guarantees that this direct
integral is a discrete direct sum of finite-dimensional irreducible unitary representations if the Lie group G is compact. In
particular, the irreducible unitary representation of a compact Lie group is always finite-dimensional. This means Ĝ = Ĝf .

Here Ĝ is the set of all equivalent classes of continuous irreducible unitary representation of G, and Ĝf is the set of all
equivalent classes of continuous finite dimensional irreducible unitary representation of G.

Theorem 4.14 (Peter-weyl theorem I). Let (π, V ) be a continuous unitary representation of a compact Lie group G.
Then there is D which is a subset of G-invariant finite dimensional irreducible subspaces such that

V =
⊕
W∈D

W

The proof of Peter-Weyl’s Theorem I, by using Zorn’s Lemma, boils down to the proof of the claim that any unitary
representation of a compact Lie group has a finite dimensional G-invariant subspace. Such an invariant subspace can be
realized as the eigenspace of a G-linear map composed by acting on all group elements in their projection onto a suitable
1-dimensional space and averaging them. If the group is a finite group, this operator is a finite-dimensional matrix, its
eigenspace will be one-dimensional. In the general case, this sum is the Bochner integral, and the operator formed by the
sum is compact operator, so its eigenspace is finite-dimensional.
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The irreducible unitary representation of S1 is, by Shur’s lemma and the real analyticity of finite dimensional represen-
tations of Lie groups(Theorem2.2), we find that it is exhausted by homomorphisms of the following form(Proposition4.37).

τn : S1 3 z 7→ zn = exp(i · n · arg(z)) ∈ S1 (n ∈ Z)

Thus, any unitary representation of S1 can be decomposed into a direct sum of these representations.
Peter-Weyl’s Theorem II gives the irreducible decomposition of L2(G) using Peter-Weyl’s Theorem I.

Theorem 4.15 (Peter-weyl theorem II).

Φ : (L,⊕τ∈Ĝf
V ⊗ V ∗) → (L,L2(G))

Here, for each (τ, V ) ∈ Ĝf and v ⊗ f ∈ V ⊗ V ∗,

Φ(v ⊗ f)(g) := f(τ(g−1)v) (g ∈ G)

Lx(v ⊗ f) = τ(x)v ⊗ f (x ∈ G)

Lxh(g) = h(x−1g) (h ∈ L2(G), g, x ∈ G)

We set

A := {
√
dimττi,j |(τ, V ) is an representative of Ĝf and {v1, ..., vdimτ} is an orthonormal basis of V and 1 ≤ i, j ≤ dimτ}

Here, τi,j is defined as bellow for each i, j.

τi,j(g) := (τ(g)vj , vi) (g ∈ G)

The Peter-Weyl Theorem III guarantees that any continuous function f on G can be uniformly approximated by elements
of a vector space B generated from the above set A.

Theorem 4.16 (Peter-Weyl Theorem III). For any ϵ > 0, there is a a1, ..., an ∈ C and τj1,j1 , ..., τjn,jn ∈ A

|f(g) −
∑

i,k=1,...,n

aiτji,jk(g)| < ϵ (∀g ∈ G)

The proof of this theorem uses Stone Wierestrass’s theorem(Theorem4.1) on uniform approximation of continuous
functions on compact metric spaces. By Gelfand Raikov’s theorem and the theory of positive definite functions, B contains
constants and is closed by products and complex conjugates. Stone wierestrass theorem, such a space is , guarantees a
uniform approximation of continuous functions on G. By applying Peter-Weyl’s Theorem III to the case G = S1, we
obtain the following approximate theorem.

Theorem 4.17 (Wierstrass Theorem). For any f ∈ C(S1) and ϵ > 0, there is a finite subset N ⊂ N and a−N , a−N+1, ..., aN
such that

|f(z) −
N∑

n=−N
anz

n| < ϵ (∀z ∈ S1)

By Peter-Weyl Theorem I and Gelfand-Raikov Theorem, the following is shown(Theorem4.13).

Theorem 4.18. Any compact Lie group is isomophic to a closed subgroup of U(n) for some n ∈ N

By Peter-Weyl Theorem II and Shur’s Lemma, the above set A of matrix coefficients corresponding to all irreducible
unitary representations is guaranteed to be an orthonormal basis of L2(G). Since L2(G) is separable, by Peter-Weyl’s
Theorem II, Ĝf is at most countable set. Due to the real analyticity of finite-dimensional representations of Lie groups,
each τi,j is real analytic. From the above, we can say that this family of functions is an easy-to-handle family of functions.
By the theory on orthonormal bases of Hilbert spaces, The square integrable function on G can be expanded by such a
tractable function as by such an easy-to-handle function.

f =
∑

τ∈Ĝf ,1≤i,j≤dimτ

dimτ(f, τi,j)τi,j (L2-convergence)

This equation has two other expression. The one is the expression by characters(Proposition4.31 and Theorem4.7).

f =
∑
τ∈Ĝf

dim τχτ ∗ f (L2-convergence)

The another one is the expression by operator valued fourier transform.

117



Theorem 4.19 (Plancherel formula for compact Lie group). Let

(S1) G is a compact Lie group.

(S2) f ∈ L2(G).

then
f =

∑
τ∈Ĝf

Φ′
τ (τ(f)) (L2 convergence)

Here,

τ(f) :=

∫
G

χτ (g)τ(g)fdg (f ∈ L1(G))

Φ′
τ (v ⊗ f)(g) := dimτf(τ(g−1)v)

We set µ by the counting measure of Ĝf . Then

f =

∫
Ĝf

Φ′
τ (τ(f))dµ(τ)

The left side is a bochner integral on the L(G) valued function. We call µ the Plancherel measure on Ĝ.

The mapping Ĝ 3 τ 7→ τ(f) is called the operator valued fourier transform of f . Operator valued fourier transform
have the following properties.

(i) π(f ∗ g) = π(f)π(g) (∀f, g ∈ L2(G)).

(ii) π(Rxf) = π(f)π∗(x) (∀x ∈ G).

It is known operator valued fourier transform is characterized by these properties[18]. In the case when G = S1, τn(f) =

f̂(n) = (f, τn) and Pτn(f)(θ) = f̂(n)exp(inθ).
By applying Peter-Weyl’s Theorem II to the case G = S1, we obtain the following Fourier series expansion formula.

Theorem 4.20 (Fourier series expansion formula). For any f ∈ L2([0, 2π])

f = lim
N→∞

N∑
n=−N

f̂(n)χn (L2-convergence)
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5 Homogeneous space

5.1 Cω-class structure

Theorem 5.1. Let

(S1) G1 is a Le group which is locally isomorphic to a Lie subgroup of GL(n,C) G2.

(A1) H is a closed subgroup of G1 such that dimLie(H) > 0.

(S2) h := Lie(H).

(S3) g1 is a complementary space of h in g := Lie(G1).

(S4) k := dimg1 and l := dimh.

Then there is a Cω-class manifold structure of G/H such that

(i) p : G1 3 g 7→ gH ∈ G1/H is a continuous map and an open map.

(ii) G1 ×G1/H 3 (g1, g2H) 7→ g1g2H is Cω-class.

(iii) For any g ∈ G and h ∈ H, there is ϵ > 0 such that

Bk(O, ϵ) ×Bl(O, ϵ) 3 (X,Y ) 7→ gExp(X)hExp(Y ) ∈ G

and
Bk(O, ϵ) 3 X 7→ π(gExp(X)) ∈ G/H

are Cω-class diffeomorphism.

We call G/H homogeneous space or homogeneous manifold.

STEP1. Definition of the topology of G/H. We set

p : G 3 g → gH ∈ G/H

and
O(G/H) := {A ⊂ G/H|p−1(A) ∈ O(G)}

Clearly, p is continuous. Also, for each O ∈ O(G),

p−1(p(O)) = ∪h∈HOh

So, p is an open map. Because p is surjective, for any O1 ∈ O(G/H), there is O2 ∈ O(G) such that

p(O2) = O1

And clearly, for any O ∈ O(G) and g ∈ G,
Lg ◦ p(O) = p ◦ Lg(O)

So, Lg is a homeomorphism of G/H.
We will show G/H is a Hausdorff space. Let us fix g1, g2 ∈ G such that g1H 6= g2H. So, g−1

2 g1 /∈ H. Because H is a
closed set, there is U which is an open neighborhood of e such that

U−1g−1
2 g1U ∩H = ϕ

This implies that
g1UH ∩ g2UH = ϕ

So, G/H is a Hausdorff space.

STEP2. Construction of a local coordinate system of G/H. There is ϵ0 > 0 and ϵ > 0 such that Exp|B(O, ϵ) is a Cω-class
homeomorphism to an open set of G and

Exp(B(O, ϵ))Exp(B(O, ϵ)) ⊂ Exp(B(O, ϵ0))

and
ρ : (g1 ∩B(O, ϵ0)) ⊕ (h ∩B(O, ϵ0)) 3 X + Y → Exp(X)Exp(Y )
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is a Cω-class homeomorphism. We set for each g ∈ G

ρg : (g1 ∩B(O, ϵ)) 3 X → gExp(X)H ∈ gExp(B(O, ϵ0))H

Clearly, gExp(B(O, ϵ0))H ∈ O(G/H) and ρg is surjective. We will show ρg is injective. Let us fix any X1, X2 ∈ g1 such
that ρg(X1) = ρg(X2). Then, becaluse Exp(B(O, ϵ))Exp(B(O, ϵ)) ⊂ Exp(B(O, ϵ0)),

Exp(−X2)Exp(X1) ∈ H ∩ Exp(B(O, ϵ0))

By von-Neumann-Cartan’s theorem, we can assume

H ∩ Exp(B(O, ϵ0)) = Exp(B(O, ϵ0) ∩ h)

So,
Exp(X1) = Exp(X2)Exp(B(O, ϵ0) ∩ h)

Because ρ is injective, X1 = X2.
We can assume for any X ∈ B(O, ϵ)g1, there is Cω-class π1 and π2 such that for any Z ∈ B(O, ϵ)g1

Exp(X2 + Z) = Exp(X2 + π1(Z))Exp(π2(Z)), π1(Z) ∈ g1, π2(Z) ∈ h

Let us fix any g1, g2 ∈ G such that

g1Exp(g1 ∩B(O, ϵ))H ∩ g2Exp(g1 ∩B(O, ϵ))H 6= ϕ

Let us fix any X1 ∈ ρ−1
g1 (g1Exp(g1 ∩B(O, ϵ))H ∩ g2Exp(g1 ∩B(O, ϵ))H). There is X2 ∈ g1 ∩B(O, ϵ) and h ∈ H such that

g−1
2 g1Exp(X1)h = Exp(X2)

So, there is δ > 0 such that
g−1
2 g1Exp(X1 +B(O, δ))h ⊂ Exp(B(O, ϵ0))

We set
ψ(Y ) := log(τ(g−1

2 g1Exp(X1 + Y )h)) −X2 (Y ∈ B(O, δ) ∩ g1)

Then ψ is Cω-class and
g1Exp(X1 + Y )h = g2Exp(X2 + ψ(Y ))

So,
g2Exp(X2 + ψ(Y )) = g2Exp(X2 + π1(ψ(Y )))Exp(π2(ψ(Y )))

This implies that
ρ−1
g2 ◦ ρg1(Y ) = π1(ψ(Y ))

Consequently, {ρg}g∈G defines the Cω-class structure of G/H.

STEP3. Showing G×G/H 3 (g1, g2H) → g1g2H is Cω-class. For any Y ∈ Lie(G) ∩B(O, ϵ) and X1 ∈ g1 ∩B(O, ϵ)

ρg1g2(g1ExpY g2Exp(X1)H) = ρg1g2(g1g2Exp(Ad(g−1Y )Exp(X1)H) = ρg1g2(g1g2Exp(ξ(Ad(g−1Y,X1))) = ξ(Ad(g−1Y,X1)

Here, ξ is Cω-class mapping such that Exp(Y ′)Exp(X ′
1) = ξ(Y ′, X ′

1) (∀Y ′ ∈ Lie(G) ∩B(O, ϵ), ∀X ′
1 ∈ g1 ∩B(O, ϵ)).

STEP4. Proof of (iii). By STEP2., there is δ > 0 such that

σ : g1 ∩Bk(O, δ) × h ∩Bl(O, δ) 3 (X,Y ) 7→ Exp(X)Exp(Y ) ∈ G

is Cω-class diffeomorphism and
g1 ∩Bk(O, δ) 3 X 7→ π(Exp(X)) ∈ G/H

is Cω-class diffeomorphism. So,
Bk(O, δ) 3 X 7→ π(gExp(X)) ∈ G/H

is Cω-class diffeomorphism. There is ϵ > 0 such that

Ad(h)Bl(O, ϵ) ⊂ Bl(O, δ)

Let us fix any g ∈ G and h ∈ H. We set

ρ : Bk(O, ϵ) ×Bl(O, ϵ) 3 (X,Y ) 7→ gExp(X)hExp(Y ) ∈ G

Then ρ is clearly Cω-class and Imρ is an open set. Because gExp(X)hExp(Y ) = gExp(X)Exp(Ad(h)Y )h,

Imρ 3 x 7→ (p1(σ−1(g−1xh−1)), Ad(h−1)p2(σ−1(g−1xh−1)) ∈ g1 ∩Bk(O, δ) × h ∩Bl(O, δ)

is the inverse of σ and Cω-class diffeomorphism.
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Definition 5.1 (Involutive automorphism). Let G be a Lie group. We call σ ∈ Auto(G) a involutive or involution if
σ ◦ σ = idG. We set Gσ := {g ∈ G|σ(g) = g}. And we denote the connected component of Gσ which contains the unit
element by Gσ0 .

Clealy the following hold.

Proposition 5.1. Gσ and Gσ0 a closed subgroup of G.

Definition 5.2 (Symmetric space). Let G be a Lie group and σ be a involution of G. If H is a closed subgroup of G such
that Gσ0 ⊂ H ⊂ Gσ. Then we call (G,H) be a symmetric pair and G/H be a symmetric space.

5.2 Invariant measure

5.2.1 Existence of Invariant measure

Definition 5.3 (Invariant measure). Here are the settings and assumptions.

(S1) G is a Lie group and m := Lie(G).

(S2) H is a closed subgroup of G.

(S3) µ is a Baire measure on G/H.

We say µ is a invariant measure on G/H if for any f ∈ Cc(G/H) and any g0 ∈ G∫
G

f(g0 · x)dµ(x) =

∫
G

f(x)dµ(x)

We say µ is a right invariant measure on G

Notation 5.1. Let G be a Lie group and g0 ∈ G. For each x ∈ G/H, τg0(x) := g0 · x.
Lemma 5.1. Here are the settings and assumptions.

(S1) G is a Lie group and g := Lie(G) and m := dimg.

(S2) H is a closed subgroup of G and h := Lie(H) and k := dimh.

(S3) π : G 3 g 7→ gH ∈ G/H.

(S4) τg : G/H 3 xH 7→ gxH ∈ G/H (g ∈ G).

(S5) q is a complement space of h in g and l := dimq.

(S6) x ∈ G.

(S7) δ > 0 such that Φx : Bl(O, δ) ∩ q 3 X 7→ xexp(X)H ∈ G/H is a local coordinate around π(x) in G/H.
We set U := Bl(O, δ) ∩ q.

(S8) ωπ(e) is a m-th antisymmetric tensor field on Tπ(e)(G/H).

(S9) For each X ∈ U ,

ωxΦx(X)(v1, ..., vl) := ωe(((dτxExp(X))π(e))
−1v1, ..., ((dτxExp(X))π(e))

−1vl) (v1, ..., vl ∈ TΦx(X)(G/H))

Then ωx is Cω-class l-form on Φx(U).

Proof. It is enough to show a representation matrix (dτxExp(X))π(e) is Cω-class. For each y ∈ G/H, we denote the local
coordinate around y defined in the proof of 5.1 by ψy. So, it is enough to show

U × U 3 (X,Y ) 7→ ψ−1
π(x)(τxExp(X)ψπ(e)(Y )) ∈ q

is Cω-class. By the proof of 5.1, there is ϵ ∈ (0, δ) such that

Θ : q ∩Bk(O, ϵ) × h ∩Bl(O, ϵ) 3 (X,Y ) 7→ exp(X)exp(Y ) ∈ G

is a Cω-class homeomorphism to an open neighborhood of e. We can assume Exp(U)Exp(U) ∈ ImΘ. For each (X,Y ) ∈
U × U , there is the unique (α(X), β(Y )) ∈ q ∩Bk(O, ϵ) × h ∩Bl(O, ϵ) such that

τxExp(X)ψπ(e)(Y ) = Exp(α(X,Y ))Exp(β(X,Y ))

and α and β are Cω-class. And for any X,Y ∈ U ,

ψ−1
π(x)(τxExp(X)ψπ(e)(Y )) = α(X,Y )

So,
U × U 3 (X,Y ) 7→ ψ−1

π(x)(τxExp(X)ψπ(e)(Y )) ∈ q

is Cω-class.
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Lemma 5.2. We will succeed notations in 5.2. And here are the settings and assumptions.

(A1) For any x, y ∈ G, there is σ ∈ {−1, 1} such that

ωx = σωy in Φx(U) ∩ Φy(U)

(S1) For any x ∈ G, there is ϕx ∈ Cω(Φx(U)) such that for any q ∈ Φx(U),

ωxq = ϕx(q)d(Ψ1
x)q ∧ ... ∧ d(Ψk

x)q

Here Ψx := Φ−1
x .

(S2) We set
ω̃q = |ϕx(q)|d(Ψ1

x)q ∧ ... ∧ d(Ψk
x)q (x ∈ G, q ∈ Φx(U))

and define ρ : G/H → {−1, 1} by

ω̃q = ρ(q)ωq(x ∈ G, q ∈ Φx(U))

Then ω̃ is C∞-class form on G/H and for any q ∈ G/H and g ∈ G there is σg,q ∈ {−1, 1}

(dτg)ω̃q = σg,qω̃q

and G/H is orientable.

Proof. Let us fix any g, x ∈ G. We set q := π(x) and p := π(e). Then for any v1, ..., vk ∈ Tq(G/H),

((dτg)ω̃)q(v1, ..., vk) = ω̃gq((dτg)qv1, ..., (dτg)qvk) = ρ(gq)ωe((dτgx)−1
e (dτg)qv1, ..., (dτgx)−1

e (dτg)qvk)

= ωe((dτx)−1
e v1, ..., (dτx)−1

e vk) = ρ(gq)ρ(q)ω̃q(v1, ..., vk)

Lemma 5.3. We will succeed notations in 5.2. Then

ωxxExp(X)H = det(dτxExp(X))
−1(dΨ1

x)xExp(X)H ∧ ... ∧ (dΨk
x)xExp(X)H (∀X ∈ U)

Proof. Let us fix any X ∈ U . We set g := xExp(X) and q := π(g).

ωxq = det({ωxq ((
∂

∂Ψj
x

)qei)}ki,j=1)(dΨ1
x)q ∧ ... ∧ (dΨk

x)q

We denote the inverse of jacobi matrix of (dτg)p with respect to {(
∂

∂Ψj
x

)q}j and {(
∂

∂Ψj
e

)p}j by {aj,r}kj,r=1. Then

(dτg)
−1
p (

∂

∂Ψj
x

)q =

k∑
r=1

aj,r(
∂

∂Ψr
e

)p

So,

ωxq ((
∂

∂Ψj
x

)qei) = aj,i

Consequently,
ωxxExp(X)H = det(dτxExp(X))

−1(dΨ1
x)xExp(X)H ∧ ... ∧ (dΨk

x)xExp(X)H

Lemma 5.4. We will succeed notations in 5.2. And here are the settings and assumptions.

(A1) For any h ∈ H,
|det((dτh)p)| = 1

Then for any x, y ∈ G, there is σ ∈ {−1, 1} such that

ωx = σωy in Φx(U) ∩ Φy(U) (5.2.1)
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Proof. Let us fix any q ∈ Φx(U) ∩ Φy(U). Then there are X,Y ∈ U such that

π(xExp(X)) = q = π(yExp(Y ))

We set x0 := xExp(X) and y0 := yExp(Y ) and h := y−1
0 x0. Then by Lemma5.3,

(5.2.1)

⇐⇒ |det((dτx0
)p)| = |det((dτy0)p)|

⇐⇒ |det((dτh)p)| = |det((dτy0)−1
p )det((dτx0

)p)| = 1

Lemma 5.5. We will succeed notations in 5.2. Then

(dτh)p = Adg/h(h) (∀h ∈ H)

and

det((dτh)p) =
det(AdG(h))

det(AdH(h))
(∀h ∈ H)

Proof. Let us fix any h ∈ H. For any t ∈ R and X ∈ g,

τhπ(exp(tX)) = hExp(tX)H = hExp(tX)h−1H = Exp(tAd(h)X)

So,
(dτh)p = Adg/h(h)

Let A,B,C be the representation matrices corresponding to AdG(h), Adg/h and AdH(h) with respect to g, respectively.
Let us fix any X ∈ g. There are Y ∈ q and Z ∈ h such that X = Y + Z. AdG(h)X − Adg/h(h)X ∈ h and AdH(h)Z ∈ h.
So,

A =

(
B O
∗ C

)
This implies det(A) = det(B)det(C).

Lemma 5.6. We will succeed notations in 5.2. And here are the settings and assumptions.

(A1) For any x, y ∈ G, there is σ ∈ {−1, 1} such that

ωx = σωy in Φx(U) ∩ Φy(U)

(S1) g ∈ G.

(S2) (Uα, ψα) and (Uβ , ψβ) are local coordinates on G/H and gUβ ∩ Uα 6= ϕ.

(S5) For any x ∈ Uα and y ∈ Uβ

ωx = Φα(x)dϕα,1 ∧ ... ∧ dϕα,m, ωy = Φβ(y)dϕβ,1 ∧ ... ∧ dϕβ,m

Then, for any x ∈ Uβ ∩ L−1
g Uα,

Φβ(x) = |det(J(ψα ◦ τg ◦ ϕβ)(ψβ(x)))|Φα(gx)

Proof. Let us fix any x ∈ Uβ ∩ τ−1
g Uα. Then

ωx = Φβ(x)(dϕβ,1 ∧ ... ∧ dϕβ,m)x

and
ωgx = Φα(gx)(dϕα,1 ∧ ... ∧ dϕα,m)gx

So,

ωx((
∂

∂ψβ,1
)x, ..., (

∂

∂ψβ,m
)x) = ωgx(dLg((

∂

∂ψβ,1
)x), ..., dLg((

∂

∂ψβ,m
)x))

and

ωgx(dLg((
∂

∂ψβ,1
)x), ..., dLg((

∂

∂ψβ,m
)x)) = |detJ(ψα ◦ τg ◦ ϕβ)(ψβ(x))|(dϕβ,1 ∧ ... ∧ dϕβ,m)x

These implies that
Φβ(x) = Φα(gx)|detJ(ψα ◦ τg ◦ ϕβ)(ψβ(x))|
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Theorem 5.2. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G.

(A1) For any h ∈ H,
|detAdG(h)| = |det(AdH(h))|

Then

(i) There is C∞-class form ω̃ on G such that for any g ∈ G there is σg ∈ C(G/H, {−1, 1})

dτgω̃ = σgω̃

(ii) G/H is orientable by ω̃.

(iii) The measure induced from ω̃ is G invariant. Specially, G/H has a invariant measure.

Proof. (i) is from Lemma5.2. (ii) is from Lemma5.4. We will show (iii). We set k := dim(G/H). Let us fix f ∈ C∞
c (G/H)

and g0 ∈ G. For x ∈ G/H,
(τg0f)(x) := f(g0x)

By (ii) and the second contable axiom, there is {Ui, ψi, Vi,Φi, ρi}∞i=1 such that {Ui, ψi}∞i=1 is a local coordinate system of
G/H and {Ui, ψi}∞i=1 is local finite and for each i Vi ∈ O(Rk)

ψi : Ui → Vi

is an homeomorphism and {Ui, ψi}∞i=1 preserves a orientation of G and for each i and x ∈ Ui

ωx = Φi(x)(dψi,1 ∧ ... ∧ dψi,k)x

and Φi > 0 and {ρi}∞i=1 is a partition of unity subordinating {Ui}∞i=1. We set for each i, fi := fρi. By Lebesgue’s
convergence theorem, ∫

G/H

fω =

∞∑
i=1

∫
G/H

fiω,

∫
G/H

τg0fω =

∞∑
i=1

∫
G/H

τg0fiω

So, it is enough to show for each i ∫
G/H

fiω =

∫
G/H

τg0fiω

By Lemma 2.12, we can assume that for each i, there is j such that supp(τg0fi) ⊂ Uj . Because supp(fi) is compact, there
is an open set U ′

i such that
supp(fi) ⊂ U ′

i ⊂ Ui

and
supp(τg0fi) = τ−1

g0 supp(fi) ⊂ τ−1
g0 U

′
i ⊂ Uj

We set ϕi := ψ−1
i and Vi := ψi(Ui) and ϕj := ψ−1

j and Vj := ψj(Uj). By change-of-variables formula for integral and
Lemma5.6, ∫

G

τg0fiω =

∫
ψj(τ

−1
g0
U ′

i)

fi(g0ϕj(x))Φj(x)dx

=

∫
ψj(τ

−1
g0
U ′

i)

fi(ϕi(ψi(g0ϕj(x))))Φj(x)dx

=

∫
ψj(τ

−1
g0
U ′

i)

fi(ϕi(ψi ◦ τg0 ◦ ϕj(x)))

×|det(J(ψi ◦ τg0 ◦ ϕj))(ψj ◦ τ−1
g0 ϕi ◦ ψi ◦ τg0 ◦ ϕj(x))))|−1

×Φj(ψj ◦ τ−1
g0 ϕi ◦ ψi ◦ τg0 ◦ ϕj(x))))

=

∫
V ′
i

fi(ϕi(y))det(J(ψi ◦ τg0 ◦ ϕj))(ψj ◦ τ−1
g0 ◦ ϕi(y))−1

×Φj(ψj ◦ τ−1
g0 ϕi(y))dy

=

∫
V ′
i

fi(ϕi(y))Φi(y)dy

=

∫
G

fiω
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Proposition 5.2. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G such that dimLie(H) > 0.

(S3) ϵ > 0.

(S4) g := Lie(G), h := Lie(H).

(S5) q is a complement subspace of h in g.

Then there are {gi}∞i=1 ⊂ G and {Ui}∞i=1 such that Ui is a open neighborhood of 0k (∀i) and Ui ⊂ Bk(O, ϵ) ∩ q (∀i) and
{π(giExp(Ui))}i∈N is an open covering of G/H and for any i ∈ N #{j ∈ N|π(giExp(Ui)) ∩ π(gjExp(Uj)) 6= ϕ} <∞.

Proof. There is V which an open neighborhood of e in G such that V 4 ⊂ Exp(B(O, ϵ)) and V̄ is compact. There are
{g0,i}N0

i=1 and {ϵ0,i}N0
i=1 ⊂ (0,∞) such that π(V̄ 4) ⊂ ∪N0

i=1π(g0,iExp(Bk(O, ϵ0,i))) and g0,iExp(Bk(O, ϵ0,i) ⊂ Exp(Bk(O, ϵ)g0,i
(∀i).

And for each s ∈ N there are {gs,i}Ns
i=1 and {ϵs,i}Ns

i=1 ⊂ (0,∞) such that π(V̄ 4+s)\π(V 3+s) ⊂ ∪Ns
i=1π(gs,iExp(Bk(O, ϵs,i)))

and gs,iExp(Bk(O, ϵs,i) ⊂ Exp(Bk(O, ϵ)gs,i (∀i).
We set {gi}∞i=1 := {gs,i|s, i ∈ N, 1 ≤ i ≤ Ns} and {Ui}∞i=1 := {Us,i|s, i ∈ N, 1 ≤ i ≤ Ns}. We will show for any i ∈ N

and s ∈ N,
π(gs,i) /∈ π(V s+2)

For aiming contradiction, let us assume s ∈ N and i ∈ N such that π(gs,i) ∈ π(V s+2). So,

π(gs,iExp(Bk(O, ϵs,i))) ⊂ π(Exp(Bk(O, ϵ))gs,i) ⊂ π(V s+3)

This contradicts with
π(gs,iExp(Bk(O, ϵs,i))) ∩ π(V s+3)c 6= ϕ

Nextly, we will show for any i ∈ N and s ∈ N,

π(gs,i) ∩ π(V s+1) = ϕ

For aiming contradiction, let us assume s ∈ N and i ∈ N such that π(gs,iExp(Bk(O, ϵ0,i)) ∩ π(V s+1) 6= ϕ. Then there
is X ∈ Bk(O, ϵ) and u ∈ V s+2 such that π(Exp(X)gs,i) = π(u). So, π(gs,i) = π(Exp(X)u) ∈ π(V s+2). This is a
contradiction. So,

(gs,iExp(Bk(O, ϵs,i))) ∩ π(V s) = ϕ

By the same argument as the proof of Proposition5.2, the following holds.

Proposition 5.3. Here are the settings and assumptions.

(S1) G be a Lie group such that dimLie(G) > 0.

(S2) ϵ > 0.

(S3) g := Lie(G) and m := dimg.

Then there are {gi}∞i=1 ⊂ G and {Ui}∞i=1 such that Ui is a open neighborhood of 0m (∀i) and Ui ⊂ Bm(O, ϵ) ∩ g (∀i) and
{giExp(Ui)}i∈N is an open covering of G and for any i ∈ N #{j ∈ N|giExp(Ui) ∩ gjExp(Uj) 6= ϕ} <∞.

Proposition 5.4. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G such that dimLie(H) > 0.

(S3) ϵ > 0.

(S4) g := Lie(G), h := Lie(H).

(S5) q is a complement subspace of h in g.

Then there are {gi}∞i=1 ⊂ G and {Ui}∞i=1 and {hj}∞j=1 ⊂ H and {Vj}∞j=1 such that Ui is a open neighborhood of 0k (∀i) and
Ui ⊂ Bk(O, ϵ) ∩ q (∀i) and Vj is a open neighborhood of 0l (∀j) and Vj ⊂ Bl(O, ϵ) ∩ h (∀j) and Vj is a open neighborhood
of 0l (∀j) and giExp(Ui)hjExp(Vj) ∈ O(G) (∀i, j) and for any i, j ∈ N

Ui × Vj 3 (X,Y ) 7→ giExp(X)hjExp(Y ) ∈ giExp(Ui)hjExp(Vj)

is a Cω-class diffeomorphism and {giExp(Ui)hjExp(Vj)}i,j∈N is a local finite open covering of G and {π(giExp(Ui))}i∈N
is a local finite open covering of G/H and {hjExp(Vj))}j∈N is a local finite open covering of H.
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Proof. Let {gi}∞i=1 and {Ui}∞i=1 be the one in Proposition5.2. Let {hj}∞j=1 and {Vj}∞j=1 be the one in Proposition5.3. By
Theomrem5.1, we can assume for each i, j ∈ N

Ui × Vj 3 (X,Y ) 7→ giExp(X)hjExp(Y ) ∈ G

is a Cω-class diffeomorphism to an open neighborhood of gihj . So, it is enough to show {giUihjVj}i,j∈N is local finite.
Let us fix any i, j ∈ N. For each i′, j′ ∈ N,

giUihjVj ∩ gi′Ui′hj′Vj′ 6= ϕ =⇒ π(giUi) ∩ π(gi′Ui′) 6= ϕ

So,
#{i′ ∈ N|∃j′ s.t giUihjVj ∩ gi′Ui′hj′Vj′ 6= ϕ} <∞

We denote this set by I. Let us fix any i0 ∈ I. Because (gi0Ūi0)−1giŪihj V̄j ∩H is compact, there are j1, ..., jM such that

(gi0Ūi0)−1giŪihj V̄j ∩H ⊂ ∪Ma=1hjaVja

This implies
{j′|giUihjVj ∩ gi0Ui0hjVj′ 6= ϕ} ⊂ ∪Ma=1{j′|hjaVja ∩ hj′Vj′ 6= ϕ}

So,
#{j′|giUihjVj ∩ gi0Ui0hjVj′ 6= ϕ} <∞

Theorem 5.3. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G such that dimLie(H) > 0.

(A1) For any h ∈ H,
|detAdG(h)| = |det(AdH(h))|

(S3) µH is a left invariant meausre induced by a left invariant form on H.

(S4) µG/H is a invariant measure induced by Theorem5.2.

(S5) µG is a left invariant meausre induced by a left invariant form ω0 on G.

Then there is c ∈ R such that for any f ∈ Cc(G)∫
G

f(g)dµG(g) = c

∫
G/H

f̄(x)dµG/H(x)

Here

f̄(gH) =

∫
H

f(gh)dµH(h) (gH ∈ G/H)

f̄ is well-defined and f̄ is continuous.

STEP1. f̄ is well-defined and f̄ is continuous. If g1H = g2H, because g−1
2 g1 ∈ H,∫

H

f(g1h)dµH(h) =

∫
H

f(g2g
−1
2 g1h)dµH(h) =

∫
H

f(g2h)dµH(h)

So, f̄ is well-defined. Because f is uniformly continuous and gExp(U)H is an open neighborhood of gH for any open
neighborhood of e U , f̄ is continuous.

STEP2. Construction of a left invariant measure µ from invariant measures on G/H and H. We set

I : C+
c (G) 3 f 7→

∫
G

f̄(x)dµG/H(x) ∈ R+

By Riez-Markov-Kakutani Theorem, I induces the baire measure µ on G.
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STEP3. Construction of a local coordinates system. We set g := Lie(G) and h := Lie(H). We fix q which is the comple-
ment of h. k := dimq and m := g and l := q. There is δ1 > 0 such that

Bk(O, δ1) ∩ q×Bl(O, δ1) ∩ h 3 (Y, Z) 7→ exp(Y )exp(Z) ∈ G

is a Cω-class diffeomorphism to an open neighborhood of e. For each g ∈ G and h ∈ H,

g(Exp(Bk(O, δ1) ∩ q)h(Bl(O, δ1) ∩ h) = gh(Exp(AdG(h−1)Bk(O, δ1) ∩ q)(Bl(O, δ1) ∩ h)

So, there is δ2 > 0 such that

Bk(O, δ2) ∩ q×Bl(O, δ2) ∩ h 3 (Y, Z) 7→ gexp(Y )hexp(Z) ∈ G

is a Cω-class diffeomorphism to an open neighborhood of gh. There are {gi}∞i=1 ⊂ G \ H ∪ {e} and {hi}∞i=1 ⊂ H and
{Ui}∞i=1 and {Vi}∞i=1 such that s Ui is an open neighborhood of 0k (∀i) and Vi is an open neighborhood of 0k (∀i) and
{π(giUi)}∞i=1 is a local finite covering of G/H and {hiVi}∞i=1 is a local finite covering of H and {giUihjVj}∞i,j=1 is a local
finite covering of G. We denote a partition of unity correspoinding to {π(giUi)}∞i=1 by {αi}∞i=1 and denote a partition
of unity correspoinding to {hjVj)}∞j=1 by {βj}∞j=1. Then clearly {αiβj}∞i,j=1 is a partition of unity correspoinding to
{giUihjVj}∞i,j=1.

STEP4. Construction of a C∞-form ω. We set for each i, j ∈ N,

ωgiExp(X)hjExp(Y ) := Φ1,i(giExp(X))Φ2,j(hjExp(Y ))dϕ11,i∧dϕ21,i∧...∧dϕk1,i∧dϕ12,j∧dϕ22,j∧...∧dϕl1,j (X ∈ Ui, Y ∈ Vj , i, j ∈ N)

We will show ω is well-defined. Let us fix any i1, j1, i2, j2 ∈ N, X1 ∈ Ui1 , Y1 ∈ Vj1 , X2 ∈ Ui2 , Y2 ∈ Vj2 such
gi1Exp(Xi1)hj1Exp(Yj1) = gi2Exp(Xi2)hj2Exp(Yj2). We set

g1 := gi1Exp(Xi1), g2 := gi2Exp(Xi2), h1 := hj1Exp(Yj1), h2 := hj2Exp(Yj2)

Because h0 := g−1
2 g1 ∈ H, π(g1) = π(g2). So, by Lemma5.2,

Φ1,i1(g1)dϕ11,i1 ∧ dϕ
2
1,i1 ∧ ... ∧ dϕ

k
1,i1 = Φ1,i(g2)dϕ11,i2 ∧ dϕ

2
1,i2 ∧ ... ∧ dϕ

k
1,i2

So, h0h1 = h2. Because µH is left invariant, by Lemma2.9,

Φ2,j2(h2)dϕ12,j2 ∧ dϕ
2
2,j2 ∧ ... ∧ dϕ

l
2,j2 = Φ2,j2(h0h1)dϕ12,j2 ∧ dϕ

2
2,j2 ∧ ... ∧ dϕ

l
2,j2

= det(J(ϕ1 ◦  Lh−1
0

◦ ψ2)(ϕ2(h1)))Φ1,j1(h1)dϕ12,j2 ∧ dϕ
2
2,j2 ∧ ... ∧ dϕ

l
2,j2

= Φ1,j1(h1)dϕ11,j1 ∧ dϕ
2
1,j1 ∧ ... ∧ dϕ

l
1,j1

So, ω is well-defined.

STEP5. The measure induced by ω is equal to µ. Let us fix any f ∈ Cc(G).∫
G

fω =

∞∑
i,j=1

∫
giUihiVi

fα1α2ω

=

∞∑
i,j=1

∫
ψ1,i(Ui)×ψ2,j(Vj)

f(giExp(X)hjExp(Y ))α1(giExp(X))α2(hjExp(Y ))Φ1,i(giExp(X))Φ2,i(hjExp(Y ))dXdY

=

∞∑
i=1

∫
ψ1,i(Ui)

Φ1,i(giExp(X))α1(giExp(X))

∞∑
j=1

∫
ψ2,j(Vj)

f(giExp(X)hjExp(Y ))α2(hjExp(Y ))Φ2,i(hjExp(Y ))dY dX

=

∞∑
i=1

α1(giExp(X))

∫
ψ1,i(Ui)

Φ1,i(giExp(X))

∫
H

f(giExp(X)h)dµH(h)dX

=

∞∑
i=1

∫
ψ1,i(Ui)

α1(giExp(X))Φ1,i(giExp(X))f̄(giExp(X))dX =

∫
G/H

f̄(x)dµG/H(x) = I(f)

So, ω introduces µ. By Proposition2.52, ω is left invariant form. Consequently, there is c ∈ R such that ω = cω0. This
implies µ = cµG.

In speciality, the following holds.

Proposition 5.5. Here are the settings and assumptions.

(S1) G be a compact Lie group.

(S2) H be a closed subgroup of G.

Then G/H has a invariant measure induced by a C∞ form.
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5.2.2 Lp(G/H)

By the same argument as the proof of Proposition2.56, the following holds.

Proposition 5.6. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G.

(A1) For any h ∈ H,
|detAdG(h)| = |det(AdH(h))|

Then Lp(G/H) is separable for any p ∈ N ∩ [1,∞).

By the proof of Proposition5.6, the following holds.

Proposition 5.7. Here are the settings and assumptions.

(S1) G be a Lie group.

(S2) H be a closed subgroup of G.

(A1) For any h ∈ H,
|detAdG(h)| = |det(AdH(h))|

Then there is at most countable subset of Cc(G/H) which is dense in Lp(G/H) for any p ∈ N ∩ [1,∞).

5.3 Homogeneous Vector Bundle

Definition 5.4 (local cross-section). Let G be a Lie group and H be a closed subgroup of G and π : G → G/H be the
projection and U be an open neighborhood of π(e). We say s : U → G is a local cross-section if s is C∞-class and
p ◦ s = id|U .

Theorem 5.4. Let G be a Lie group and H be a closed subgroup of G and π : G → G/H be the projection. Then the
followings hold.

(i) There is an open neighborhood of π(e) U such that B := {G,G/H,H, {gU}g∈G,H} is a principal bundle.

(ii) B has a local cross-section.

Proof of (i). We set h := Lie(H) and denote a complement of h by q.
By the proof of Theorem5.1, there exists r > ϵ > 0 such that

ψ : B(O, r) ∩ q×B(O, r) ∩ h 3 (X,Y ) 7→ exp(X)exp(Y ) ∈ G

is a Cω-class diffeomorphism to an open neighborhood of p := π(e) and exp(B(O, ϵ))exp(B(O, ϵ)) ⊂ exp(B(O, r).
We set U := π(exp(B(O, ϵ) ∩ q)).
We set

ϕp : U ×H 3 (π(exp(X)), h) 7→ exp(X)h ∈ G

Since ψ is a diffeomorphism, X is identified uniquely. So, ϕp is well-defined and Cω-class. And clearly π ◦ ϕp = id|U and
Imϕp ⊂ π−1(U). Let us fix any g ∈ π−1(U). Then ∃X ∈ B(O, ϵ)∩q and h ∈ H such that g = exp(X)h = ϕp(π(exp(X)), h).
So, ϕp is surjective. Let uf fix any X1, X2 ∈ q ∩ B(O, ϵ) and h1, h2 ∈ H such that exp(X1)h1 = exp(X2)h2. Then
exp(X1) = exp(X2)h2h

−1
1 and h2h

−1
1 = exp(−X2)exp(X1) ∈ exp(B(O, r). Since ψ is injective, h2h

−1
1 = e. That implies

X1 = X2. For each h ∈ H, by von-Neuman Cartan Theorem, ϕp|U × exp(h ∩ B(O, ϵ))h is a Cω-class diffeomorphism to
an open neighborhood of h. So, ϕp itself is Cω-class diffeomorphism to π−1(U).

For each g ∈ G, we set
ϕπ(g) : gU ×H 3 (π(gexp(X)), h) 7→ gexp(X)h ∈ G

As same as the above argument, ϕπ(g) is a Cω-class diffeomorphism from gU ×H to an open subset π−1(gU).
Nextly, let us fix any x ∈ g1U∩g2U . Then w1 ∈ g1exp(B(O, ϵ)∩q) and w2 ∈ g2exp(B(O, ϵ)∩q) such that π(w1) = π(w2).

Then h0 := w−1
2 w1 ∈ H. So,

ϕπ(g1)(w1, h) = w1h = w2h0h = ϕπ(g2)(w2, h0h)

This means that
ϕ−1
π(g2),x

◦ ϕπ(g1),x(h) = (w−1
2 w1)h
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and ϕ−1
π(g2),x

◦ ϕπ(g1),x = L(w−1
2 w1)

. Since

π(g1Exp(B(O, ϵ) ∩ q)) 3 π(w1) 7→ w1 ∈ g1Exp(B(O, ϵ) ∩ q)

and
π(g2Exp(B(O, ϵ) ∩ q)) 3 π(w2) 7→ w2 ∈ g2Exp(B(O, ϵ) ∩ q)

are Cω class,
g1U ∩ g2U 3 x 7→ ϕ−1

π(g2),x
◦ ϕπ(g1),x = Lw−1

2 w1
∈ H

is Cω class. Consequently, π : G→ G/H is a Cω class principal bundle whose structure group is H.

Proof of (ii). We succeed notations in the proof of (i). We set

s : π(exp(B(O, ϵ) ∩ q)) 3 π(exp(X)) 7→ exp(X) ∈ G

Then s is clearly a local cross-section.

Theorem 5.5 (Homogeneous vector bundle). The followings are settings and assumptions.

(i) G is a Lie group.

(ii) H is a closed subgroup of G.

(iii) (π, V ) is a continuous representation of H.

(iv) (g1, v1) ∼ (g2, v2) : ⇐⇒ ∃h ∈ H s.t g1 = g2h and v1 = π(h)−1v2.

(v) p : G× V 3 (g, v) 7→ [g, v] ∈ G/ ∼. Let us define O(G/ ∼) by p. We set G×H V := G/ ∼.

(vi) q : G×H V 3 [g, v] 7→ gH ∈ G/H.

Then

(i) ∼ is an equivalent relation on G× V .

(ii) q is a vector bundle whose fibre is V and whose structure group is H.

(iii) G acts on G×H V by g · [x, v] := [gx, v] g, x ∈ G, v ∈ V .

(iv) For each g ∈ G, v ∈ V , {p(gU × (v +B))}U:nei. of e, B:nei. of 0 is a basis of neiborhoods of [g, v].

Proof of (i). It is clear from the def. of ∼.

Proof of (ii):q is well-defined and continuous. We set h := Lie(H). Let q denote a complement of h. Firstly, from the
def. of ∼, q is well-defined. By the proof of Theorem5.1, there is ϵ > 0 such that for each g ∈ G ϕg : q ∩ B(O, ϵ) 3 X 7→
gexp(X)H ∈ G/H is a homeomorphism from qϵ := q ∩B(O, ϵ) to an open neighborhood of gH .

For each g ∈ G, q−1(ϕg(qϵ)) = p(B(O, ϵ)× V ). Because p−1(p(B(O, ϵ)× V )) = B(O, ϵ)H × V and B(O, ϵ)H × V is an
open set, q−1(ϕg(qϵ)) is an open set. So, q is a continuous.

Proof of (ii):Local trivializations. For each g ∈ G, we set ψg : gexp(qϵ)H × V 3 (gexp(X)H, v) 7→ [gexp(X), v] ∈ G×H V .
Clearly, ψg is well-defined and continuous and Imψg ⊂ q−1(ϕg(qϵ)) and q ◦ ψg(gexp(X)H, v) = gexp(X)H (∀X ∈ qϵ).
Let us fix any [x, v] ∈ q−1(ϕg(qϵ)). Then ∃h ∈ H and X ∈ qϵ such that xh = gexp(X). So, [x, v] = [gexp(X), π(h−1)v] =
ψg(gexp(X), π(h−1)v). Consequently, ψg is a local trivialization.

Proof of (ii):A system of coordinate transformation. Let us fix any

ψg1(g1exp(X1)H, v1) = ψg2(g2exp(ι(X1))H, v2) ∈ q−1(ϕg1(qϵ)) ∩ q−1(ϕg2(qϵ))

Then v2 = π((g2exp(X2))−1g1exp(X1))v1. So, {ψg}g∈G defines a system of coordinate transformation with the Lie group
H.

Proof of (iii). It is clear from the def. of action.

Proof of (iv). It is clear from the def. of topology of G×H V .

Theorem 5.6. The followings are settings and assumptions.

(i) G is a Lie group.

(ii) H is a closed subgroup of G.

(iii) (π, V ) is a continuous representation of H.
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(iv) Γ(G/H,G×H V ) is the set of all cross sections of q.

(v) ι : H 3 h 7→ (1, h, h) ∈ G×H ×H.

(vi) ι : H 3 h 7→ (1, h, h) ∈ G×H ×H.

(vii) (g, h1, h2) · f(x) := π(h2)f(g−1xh1) (g, h1, h2) ∈ G×H ×H,x ∈ G, f ∈ C(G,V ).

(vii) C(G,V )ι(H) := {f ∈ C(G,V )|ι(h)f = f (∀h ∈ H)}. In this note, we sometimes may denote C(G,V )ι(H)

by C(G,V )H .

Then

(i) G×H ×H acts on C(G,V ) based on the def. of (vi).

(ii) C(G,V )ιH ' Γ(G/H, V ) as purely algebraic representation of G. Remark that here we don’t care about
any topology of them and G acts on Γ(G/H, V ) by g · s(xH) := gs(g−1xH) for g, x ∈ G, s ∈ Γ(G/H, V ).

Proof of (i). It is clear from the def. of action.

Proof of (ii). Let us fix any ϕ ∈ C(G,V )ιH . And let us Φ(ϕ)(ḡ) := [g, ϕ(g)]. We will show Φ(ϕ) is well-defined. Let us fix
any g1, g2 ∈ G such that g1 ∼ g2. Then there is h ∈ H such that g1 = g2h. So,

Φ(ϕ)(g1H) = [g1, ϕ(g1)] = [g2h, ϕ(g2h)] = [g2h, π(h)−1ϕ(g2)] = [g2, ϕ(g2)] = Φ(ϕ)(g2H)

We set h := Lie(H). Let q denote a complement of h. Because Φ(ϕ)(gexp(X)H) = [gexp(X), ϕ(gexp(X))] g ∈ G,X ∈ q
such that ||X|| � 1, Φ(ϕ) ∈ C(G/H,G×H V ). Clearly q ◦ Φ(ϕ) = idG/H , therefore Φ(ϕ) ∈ Γ(G/H,G×H V ).

Let us fix any s ∈ Γ(G/H,G ×H V ). Let us fix any g ∈ G. Then there ∃!v ∈ V such that s(gH) = [g, v]. We
set Ψ(s)(g) := v. Ψ(s)(g) := v. Let us fix any ϵ > 0. By (iv) of Theorem5.5, there is δ > 0 such that for any
X ∈ qδ := q ∩B(O, δ), s(gexp(qδ)) ⊂ p(gexp(qϵ × (v +B(O, ϵ))). So, there is Y ∈ qϵ and u ∈ v +B(O, ϵ) such that

s(gexp(X)) = [gexp(Y ), u]

Because s(gexp(X)) = [gexp(X),Ψ(s)(gexp(X))], there is h ∈ H such that gexp(X)h = gexp(Y ) and π(h)−1u =
Ψ(s)(gexp(X)). Because of the proof of Theorem5.1, if we take δ to be sufficient small, then h = e. So, Ψ(s)(gexp(X)) ∈
(v +B(O, ϵ)). Therefore, Ψ(s) is continuous. And clearly Ψ(s) ∈ C(G,V )ι(H).

Clearly, Φ ◦ Ψ = idΓ(G/H,V ) and Ψ ◦ Φ = idC(G,V )ι(H) . And

Φ(g · ϕ)(x) = [x, g · ϕ(x)] = [x, ϕ(g−1x)] = [gg−1x, ϕ(g−1x)] = g · [g−1x, ϕ(g−1x)]

= gΦ(ϕ)(g−1x) = (g · Φ(ϕ))(x) (∀g, x ∈ G, ∀ϕ ∈ C(G,V )ι(H))

5.4 Induced representation

Theorem 5.7 (Induced Representation). The followings are settings and assumptions.

(i) G is a compact Lie group.

(ii) H is a closed subgroup of G.

(iii) (π, V ) is a continuous unitary representation of H.

(iv) For each f1, f2 ∈ C(G,W ), (f1, f2) :=
∫
G

(f1(g), f2(g))W dµ(g). Here, µ is the normalized Haar measre
on G.

Then

(i) C(G/H,W )ι(H) is a pre-Hilbert space and is an unitary representation space of G with the inner product.
We call the completion of it the induced representation from π and denote the completion by L2(G,W)
and denote the representation by L2-Ind(H ↑ G)(π) or L2-IndGH .

(ii) For any f1, f2 ∈ C(G/H,W )ι(H),

(f1, f2) =

∫
G/H

(f1(g), f2(g))dµ(gH)

Proof of (i). It is clear.
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Proof of (ii). It is clear from Theorem5.3.

Induced Representation can be defined with homogeneous bundle as below.

Theorem 5.8. The followings are settings and assumptions.

(i) G is a compact Lie group.

(ii) H is a closed subgroup of G.

(iii) (π, V ) is a continuous unitary representation of H.

(iv) For each g ∈ G and [g′, v1], [g′, v2] ∈ q−1(gH), we set ([g′, v1], [g′, v2]) := (v1, v2).

(v) For s1, s2 ∈ Γ(G/H,G×H V ), (s1, s2) :=
∫
G/H

(s1(gH), s2(gH))dµ(gH). Here µ is the normalized invari-

ant measure on G/H.

Then

(i) The inner product defined in (iv) is well-defined.

(ii) Γ(G/H,G×H V ) is a pre-Hilbert space and is an unitary representation space of G with the inner product
defined in (v).

(iii) The completion is isomorphic to L2(G,W) as continuous unitary representations.

Proof of (i). For each [g′, v1] = [g′′, v3], [g′, v2] = [g′′, v4] ∈ q−1(gH),

([g′, v1], [g′, v2]) = (v1, v2) = (π(g′−1g′′)−1v3, π(g′−1g′′)−1v4) = (v3, v4) = ([g′′, v3], [g′′, v4])

Therefore, the inner product is well-defined.

Proof of (ii). Clearly Γ(G/H,G ×H V ) is a C-linear space and G acts on Γ(G/H,G ×H V ). Since G is compact, the
inner product converges in any case. Since µ is G-invariant, G acts Γ(G/H,G×H V ) as unitary operator. Let denote the
isomophism from C(G,V )ι(H) to Γ(G/H,G×H V ) by Φ. Clearly, for each s ∈ Γ(G/H,G×H V ),

||s|| = 0 ⇐⇒ Φ−1(s) = 0

Consequently, (ii) holds.

Proof of (iii). It is clear from (i).

Clearly the following holds.

Example 5.1. The followings are settings and assumptions.

(i) G is a compact Lie group.

(ii) H is a closed subgroup of G.

Then L2-Ind(H ↑ G)(1) ' L2(G/H). Here, 1 is the trivial representation of H.

5.4.1 Frobenius Reciprocity

Proposition 5.8. The followings are settings and assumptions.

(i) G is a compact Lie group.

(ii) H is a closed subgroup of G.

(iii) (π, V ) is a finite dimensional continuous representation of H.

Then

(i) C(G,V ) ' C(G) ⊗ V as representation of G×G×H.

(ii) C(G,V )ι(H) ' (C(G) ⊗ V )ι(H) as representation of G.

(iii) If π is an unitary representation, L2(G/H,W)ι(H) ' (L2(G) ⊗ V )ι(H) as representation of G.
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Proof of (i). Let {vi}mi=1 denote a basis of V . Let us fix f ∈ C(G,V ). Then for each g ∈ G, there are ∃!f1(g), ..., fm(g)
such that f(g) =

∑m
i=1 fi(g)vi. We set Φ(f) :=

∑m
i=1 fi ⊗ vi.

Let us fix ϕ ∈ C(G) ⊗ V . By Proposition1.2, there exists {fi}mi=1 ⊂ C(G) such that ϕ =
∑m
i=1 ϕi ⊗ vi. We set

Ψ(ϕ) := (f1, ..., fm).
Clearly Φ,Ψ are C-linear and Φ ◦ Ψ = idC(G)⊗V and Ψ ◦ Φ = idC(G,V ).

π(h)Lg1Rg2f(g) =

m∑
i=1

Lg1Rg2fi(g)π(h)vi =

m∑
i=1

m∑
j=1

Lg1Rg2fi(g)(π(h)vi, vj)vj =

m∑
j=1

m∑
i=1

Lg1Rg2fi(g)(π(h)vi, vj)vj

So,

Φ((g1, g2, h) · f) = Φ(π(h)Lg1Rg2f) =

m∑
j=1

m∑
i=1

Lg1Rg2fi(π(h)vi, vj) ⊗ vj =

m∑
i=1

Lg1Rg2fi ⊗
m∑
j=1

(π(h)vi, vj)vj

=

m∑
i=1

Lg1Rg2fi ⊗ π(h)vi = (g1, g2, h) ·
m∑
i=1

fi ⊗ vi = (g1, g2, h)Φ(f)

Consequently, Φ is G-invariant.

Proof of (ii). (ii) is clearly from (i).

Proof of (iii). (iii) is clearly from (i).

Proposition 5.9. The followings are settings and assumptions.

(i) G is a compact Lie group.

(ii) H is a closed subgroup of G.

(iii) (π,W ) is a finite dimensional continuous representation of H.

(iv) (τ, Vτ ) is an irreducible continuous representation of G.

Then, for each π ∈ Ĝ,

HomG(Vπ, Vτ ⊗HomH(Vπ|H,W )) '
{

0 τ � π
HomH(Vπ|H,W ) τ = π

as vector spaces.

STEP1: When τ � π: By Peter-Weyl theorem, HomH(Vπ|H,W ) is finite dimensional. Let us fix a basis of HomH(Vπ|H,W )
{ψi}mi=1. Let us fix any ϕ ∈ HomG(Vπ, Vτ ⊗HomH(Vπ|H,W )). We define ϕ1, ..., ϕm by

ϕ(v) =
m∑
i=1

ϕi(g) ⊗ ψi (v ∈ Vπ).

Clearly, ϕ1, ..., ϕm ∈ HomG(Vπ, Vτ ). By Shur Lemma, ϕ1 = ... = ϕm = 0.

STEP2: When τ = π: I continue to use the notations from STEP1. In the case, by Shur Lemma, there exist c1, ..., cm ∈ C
such that ϕi = ciidVτ

(∀i). Therefore,

ϕ = idVτ
⊗

m∑
i=1

ciψi.

This means
HomG(Vπ, Vτ ⊗HomH(Vπ|H,W )) ' HomH(Vπ|H,W )

Proposition 5.10. The followings are settings and assumptions.

(i) H is a topological group.

(iii) (π,W ) is a finite dimensional continuous representation of H.

(iv) (τ, V ) is a continuous representation of H.

(v) η(H) := {(h, h)|h ∈ H}.
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Then,
(V ∗ ×W )η(H) ' HomH(V,W )

Proof. That can be proved from the same thought as the proof of Proposition5.8.

Theorem 5.9 (Frobenius Reciprocity Theorem.). The followings are settings and assumptions.

(i) G is a compact Lie group.

(ii) H is a closed subgroup of G.

(iii) (π,W ) is an irreducible continuous representation of H.

(iv) (τ, Vτ ) is an irreducible continuous representation of G.

Then,

(i)
HomH(π|H, τ) ' HomG(π, IndGHτ)

(ii)
[Vπ|H : W ] = [IndGHτ : W ]

(iii)
IndGHτ = ⊕π∈Ĝ[π|H : τ ]π

Proof of (i). By Peter-Weyl Theorem,
L2(G) ' ⊕σ∈ĜVσ ⊗ V ∗

σ

Then

L2(G/H,W)

by Proposition5.8

= L2(G) ⊗W ' (⊕σ∈ĜVσ ⊗ V ∗
σ ⊗W )ι(H) ' ⊕σ∈ĜVσ ⊗ (V ∗

σ ⊗W )η(H) ' ⊕σ∈ĜVσ ⊗HomH(Vσ,W )

So, by Proposition5.9,
HomG(π, L2(G/H,W)) ' HomH(τ |H,π)

Memo 5.1. Frobenius Reciprocity Theorem can be purely algebraicly proved. The proof needs only Peter-Weyl Theorem
and Shur Lemma and Expressing induced representation as tensor space.
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6 Classification of irreducible representations of compact classical groups

6.1 Facts without proof

Proposition 6.1. Here are settings and assumptions.

(S1) A′ = {ai,j}i,j ∈M(n,C).

(S2) A =


Re(a1,1) −Im(a1,1) ... Re(a1,n) −Im(a1,n)
Im(a1,1) Re(a1,1) ... Im(a1,n) Re(a1,n)

... ... ... ... ...
Re(an,1) −Im(an,1) ... Re(an,n) −Im(an,n)
Im(an,1) Re(an,1) ... Im(an,n) Re(an,n)

.

Then
detA = |detA′|2

6.2 Complex Analysis

Proposition 6.2. Here are settings and assumptions.

(S1) {aα}α∈Zn ⊂ C such that #{α|aα 6= 0} <∞.

(S2) P (t) :=
∑
α aαt

α (t ∈ Cn).

(A1) P = 0 in Tn.

Then P = 0 in Cn.

Proof. For aiming contradiction, le us assume aα 6= 0 for some α. Let β the biggest index of {α|aα 6= 0}. with respect to
lexicographic order. We can assume β1 6= 0. For any r > 0,

|P (r, 1, ..., 1)| = |rβ1P (1, ..., 1)| = 0

By increasing r → ∞, we get ∞ = 0. This is contradiction.

6.3 Complexification

From the definition and property of C, the following holds.

Proposition 6.3 (Complexification). Here are settings and assumptions.

(S1) g ⊂M(n,C) is a Lie algebra.

Then
g⊗R C := {X + iY |X,Y ∈ g}

is a C vector space with respect to
(a+ ib)(X + iY ) := (aX − bY )

We call g⊗R C the complexification of g.

From the definition and property of C and the definition of complexification, the following holds.

Proposition 6.4. Here are settings and assumptions.

(S1) g ⊂M(n,C) is a Lie algebra.

(S2) f : g → g is a R linear map.

If we define F : g⊗R C by
g⊗R C := {X + iY |X,Y ∈ g}

then F is a C linear map.

Clearly the following holds by Proposition6.1.

Proposition 6.5. Here are settings and assumptions.

(S1) g ⊂M(n,C) is a Lie algebra.
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(S2) f : g → g is a R linear map.

(A1) There is a basis of g which is {Xi}ni=1 ∪ {iXi}ni=1 for some {Xi}ni=1 ⊂ g.

(A2) {Xi}ni=1 is a basis of the complexification of g.

(S3) F is the complexification of f .

(A3) All eigenvalues of F are distinct.

Then
det(f) = |det(F )|2

6.4 An−1 type case

6.4.1 Main theorem

The propositions shown in this section will not be presented with proofs in this subsection, but will be presented with
proofs in the subsections that follow.

Definition 6.1 (Torus, Maximal Torus). Here are settings and assumptions.

(S1) G is a compact Lie group.

Then

(i) We say T ⊂ G is a torus of G if T is a connected commutative closed subgroup of G.

(i) We say T ⊂ G is a maximal torus of G if T is a torus and there is no torus which contains T as a proper
subset.

Notation 6.1 (Diagonal Matrix). We set

diag(t1, t2, ..., tn) :=


t1 0 ... 0
0 t2 ... 0
... ... ... ...
0 ... 0 tn


Notation 6.2 (Lexicographical order on Zn). We denote the lexicographical order on Zn by ≺.

Proposition 6.6 (Maximal torus of U(n)).

T := {diag(t1, t2, ..., tn)| |t1| = ... = |tn| = 1}

is a maximal trus of U(n).

The following is clear.

Proposition 6.7 (Irreducible representation of maximal torus of U(n)). Let us α ∈ Zn.

χα : T 3 diag(t1, t2, ..., tn) 7→ tα1
1 ...tαn

n ∈ S1

is a continuous homomoriphism.

Proposition 6.8 (Weight, Weight vector). We will succeed notations in Proposition6.7. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is a finite dimensional continuous representation of G.

(S3) For each λ ∈ Z, we denote χλ component of π|T by Vλ.

Then

(i) We say λ ∈ Z is a weight of V with respect to T if Vλ 6= {0}. We call an element of Vλ a weight vector
for each weight λ.

(ii) We say λ ∈ Z is the highest weight of V with respect to T if λ is the maximum weight with ≺.We define
the highest weight vector in the same way.

(iii) We call the multiplicity of χλ in Vλ the multiplicity of the weight λ.
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Notation 6.3 ((Zn)+). We set
(Zn)+ := {λ ∈ Zn|λ is monotone decreasing.}

The following is the main theorem in this section. In the last part of this section, we give a proof of this theorem.

Theorem 6.1 (Cartan-Weyl theorem of the highest weight). The followings hold.

(i) Let us assume (π, V ) be a continuous irreducible unitary representation of U(n) and λ be the highest
weight of π. Then λ ∈ (Zn)+ and the multiplicity of λ is 1.

(ii) Let us fix any λ ∈ (Zn)+. Then there is the unique continuous irreducible unitary representation (π, V )
whose highest weight is λ, ignoring isomorphism as continous unitary representation.

6.4.2 General topics on compact Lie group

By Zorn’s Lemma, the following holds.

Proposition 6.9 (Maximal torus of a compact Lie group). For any compact Lie group G, there is a maximal torus of G.

Proof. We set
T := {T ⊂ G|T is an abelian subgroup of G}

For any A is any totally ordered subset of T, ∪A ∈ T. So, T has a maximal element T . Because T̄ is an abelian subgroup
of G, T̄ = T . So T is a maximal torus of G.

Proposition 6.10 (Weyl group). Let

(S1) G is a compact Lie group.

(S2) T is a maximal torus of G.

(S3) We set
NG(T ) := {g ∈ G|gtg−1 ∈ T (∀t ∈ T )}

(S4) We set
ZG(T ) := {g ∈ G|gt = tg (∀t ∈ T )}

Then

(i) NG(T ) is a compact subgroup of G.

(ii) ZG(T ) = T .

(iii) ZG(T ) is a compact normal subgroup of NG(T ).

We call the quotient compact group NG(T )/ZG(T ) the weyl group of G. We define the action of the weyl group on T by

w · t := wtw−1 (w ∈ NG(T )/ZG(T ), t ∈ T )

Proof of (i). Let us fix any g1, g2 ∈ NG(T ) and t ∈ T . Because g−1
1 tg1 = (g1t

−1g−1
1 )−1 and t, g1t

−1g−1
1 ∈ T , g−1

1 tg1 ∈ T .
So, g−1

1 ∈ NG(T ). Because (g1g2)−1t(g1g2) = g−1
1 (g−1

2 tg2)g−1
1 and g−1

2 tg2 ∈ T , (g1g2)−1t(g1g2) ∈ T . So, g1g2 ∈ NG(T ).
Consequently, NG(T ) is a subgroup of G.

For each t ∈ T , we set σt(g) = gtg−1 (g ∈ G). σt is continuous for any t ∈ T . Because NG(T ) = ∩t∈Tσ−1
t (T ), NG(T )

is closed subset of G.

Proof of (ii). Clearly ZG(T ) is abelian compact subgroup of T and T ⊂ ZG(T ). So, T = ZG(T ).

Proof of (iii). For any g ∈ NG(T ), gZG(T )g−1 = ZG(T ). So, ZG(T ) is a normal subgroup of NG(T ).

Definition 6.2 (Flag variety). Let G be a compact Lie group and T be a maximal torus of G. We call G/T the flag
variety.
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6.4.3 The maximal torus and Weyl group of U(n)

Proposition 6.11 (Maximal torus of U(n)).

ZU(n)(T ) := {g ∈ U(n)|gt = tg (∀t ∈ T )}

is equal to T . In special, T is the maximal torus of U(n).

Proof. Let us fix any g ∈ U(n). We take t ∈ T such that ti 6= tj (∀i 6= ∀j).Then

gi,jtj = gi,jti (∀i, j)

So, gi,j = δi,jgi,i (∀i, j). Then g = diag(g1,1, ..., gn,n). Because g ∈ U(n), g ∈ T . So, ZU(n)(T ) = T .

By the proof of Proposition6.11, the following holds.

Proposition 6.12. We set
Treg := {t ∈ T |ti 6= tj (∀i 6= ∀j)}

Then for every t ∈ Treg, ZG(t) = T .

Proposition 6.13 (Weyl group of U(n)). Let

(S1) For compact group G and the maximal torus T , we set

NG(T ) := {g ∈ G|gtg−1 ∈ T (∀t ∈ T )}

(S2) We set
π0(w)(t) := (tw−1(1), ..., tw−1(n)) (w ∈ Gn, t ∈ Cn)

Here, Gn is the symmetric group of degree n. We set W := π0(Gn).

(S3)
Φ : W n T 3 (w, t) 7→ wt ∈ GL(nC)

Then the followings hold.

(i) For any ω ∈ Gn and t ∈ T ,

π0(ω)tπ0(ω)−1 = diag(tω−1(1), ..., tω−1(n))

So, π0(ω) ∈ NG(T ).

(ii) Φ : W × T 3 (σ, t) 7→ σt ∈ NG(T ) is a bijection.

(iii) W and NG(T )/T are isomorphic as groups.

Proof of (i). It is clear.

Proof of (ii). Let us fix any σ ∈W and t ∈ T . For any s ∈ T , σts(σt)−1 = σsσ−1 ∈ T by (i). So, Φ(W × T ) ⊂ NG(T ).
Let us fix any g ∈ NG(T ). Let us fix t ∈ Treg. We set s := gtg−1.
Because s and t have the same set of eigenvalues. So, there is ω ∈ Gn such that

s = (tω−1(1), ..., tω−1(n))

By (i), this means that s = π0(ω)tπ0(ω−1). So, t = π0(ω−1)gtg−1π0(ω). We set t1 := π0(ω−1)g. By Proposition6.12,
t1 ∈ ZG(T ). t = Φ(π0(ω), t1). So, Φ is surjective.

Let us fix any σ1, σ2 ∈W and any t1, t2 ∈ T such that σ1t1 = σ2t2. Then σ−1
2 σ1 = t2t

−1
1 ∈W ∩ T = {e}. This implies

σ1 = σ2 and t1 = t2.

Proof of (iii). We set Ψ := Φ−1 and P : W ×T 3 (w, t) 7→ w ∈W and φ := P ◦Ψ. Clearly φ is surjective and φ−1(e) = T .
So it is enough to show φ is homomorphism. For any σ1, σ2 ∈W and any t1, t2 ∈ T ,

σ1t1σ2t2 = σ1σ2σ
−1
2 t1σ2t2 = Φ(σ1σ2, σ

−1
2 t1σ2t2)

So, φ is homomorphism.

By Shur Lemma, the following clearly holds.
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Proposition 6.14. Let

(S1) G is an abelian Lie group.

(S2) C := {φ ∈ C(G,S1)|φ is a continuous homomorphism between groups.}
(S3) πφ(g)v := φ(g)z (g ∈ G, z ∈ C, φ ∈ C).

Then

(i) For any τ ∈ Ĝ, χτ ∈ C.

(ii) Φ : C 3 φ 7→ πφ ∈ Ĝ is bijective whose inverse is Ψ : Ĝ 3 π 7→ χπ ∈ C.

Hereafter, we equate φ ∈ Ĝ and Φ(φ).

Proposition 6.15. Let T be the maximal torus of U(n). Then

T̂ = {χλ|λ ∈ Zn}

Hereafter, we equate λ ∈ Zn and χλ ∈ Ĝ.

Proof. This proof is similar to the proof of Proposition4.37. We set

f(θ1, ..., θn) := τ(exp(iθ12π), ..., exp(iθn2π)) (θ1, ..., θn ∈ R)

Then
f(θ + hei) = f(θ)f(hei) (∀θ ∈ Rn, ∀h ∈ R, ∀i)

So,
∂f

∂θi
(θ) =

∂f

∂θi
(0)f(θ) (∀θ ∈ Rn, ∀h ∈ R, ∀i)

Because f(0) = 1 and Im(f) ⊂ S1, there are α1, ..., αn ∈ R such that

f(θ) = exp(iθ1α12π)...exp(iθnαn2π) (∀θ ∈ Rn)

Because f(ei) = 1 (∀i), α1, ..., αn ∈ Z. Consequently,

T̂ = {χλ|λ ∈ Zn}

We denote the inverse of
Zn 3 λ 7→ χλ ∈ C

by Ψ.

The following clearly holds.

Proposition 6.16. We succeed in notations of Proposition6.14 and Proposition6.15.

(S1) W ⊂ U(n) is the weyl group of U(n).

(S2) (w · φ)(t) := φ(w−1 · t) (w ∈W,φ ∈ C, t ∈ T ).

Then W continuously acts on C and
w · φ = w−1Ψ(φ) (∀w ∈W, ∀φ ∈ C)

Proposition 6.17. Here are the settings and assumptions.

(S1) T is the maximal torus of U(n).

(S2) (π, V ) is a continuous unitary representation of U(n).

(S3) λ ∈ ˆU(n).

Then
Vλ = {w ∈ V |π(g)w = χλ(g)w (∀g ∈ T )}

Proof. We denote the right side of the above equation by W . Let us fix any w ∈
∑
A∈HomG(χλ,π)

ImA. Then there are

A1, ..., Am ∈ HomG(χλ, π) and v1, ..., vm ∈ V such that w =
∑m
i=1Aivi. So, for any g ∈ G,

π(g)w =

m∑
i=1

π(g)Aivi =

m∑
i=1

Aiχλ(g)vi = χλ(g)

m∑
i=1

Aivi = χλ(g)w

So,
∑
A∈HomG(χλ,π)

ImA ⊂W . Because W is closed, Vλ ⊂W .
Let us fix any w ∈W . We set Pλ := Pχλ

. By Proposition6.14 ,

Pλw =

∫
G

χλ(g)π(g)wdg =

∫
G

χλ(g)χλ(g)wdg =

∫
G

wdg = w

By Theorem4.8, w ∈ Vλ.
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6.4.4 Weyl Integral Formula

Notation 6.4 (Greg, Treg). Here are the settings and assumptions.

(S1) T is the maximal torus of G := U(n).

Then Greg := {g ∈ G|g has no duplicate eigenvalues.} and Treg := T ∩Greg.

Proposition 6.18. Here are the settings and assumptions.

(S1) G := U(n).

(S2) T be the maximal torus of G.

(S3) ϵ > 0.

(S4) g := Lie(G), h := Lie(T ).

(S5) q is a complement subspace of h in g.

Then there are {gi}∞i=1 ⊂ G and {Ui}∞i=1 such that Ui is a open neighborhood of 0k (∀i) and Ui ⊂ Bk(O, ϵ) ∩ q (∀i) and
{π(giExp(Ui)w)}i∈N,w∈W is an open covering of G/H and for any i ∈ N, w0 ∈ W #{(j, w) ∈ N ×W |π(giExp(Ui)w0) ∩
π(gjExp(Uj)w) 6= ϕ} <∞.

Proof. There is V which an open neighborhood of e in G such that V 4 ⊂ Exp(B(O, ϵ)) and V̄ is compact. There
are {g0,i}N0

i=1 and {ϵ0,i}N0
i=1 ⊂ (0,∞) such that π(V̄ 4 · W ) ⊂ ∪N0

i=1π(g0,iExp(Bk(O, ϵ0,i))) and g0,iExp(Bk(O, ϵ0,i) ⊂
Exp(Bk(O, ϵ)g0,i (∀i).

And for each s ∈ N there are {gs,i}Ns
i=1 and {ϵs,i}Ns

i=1 ⊂ (0,∞) such that π(V̄ 4+sW )\π(V 3+sW ) ⊂ ∪Ns
i=1π(gs,iExp(Bk(O, ϵs,i)))

and gs,iExp(Bk(O, ϵs,i) ⊂ Exp(Bk(O, ϵ)gs,i (∀i).
We set {gi}∞i=1 := {gs,i|s, i ∈ N, 1 ≤ i ≤ Ns} and {Ui}∞i=1 := {Us,i|s, i ∈ N, 1 ≤ i ≤ Ns}. We will show for any i ∈ N

and s ∈ N,
π(gs,i) /∈ π(V s+2W )

For aiming contradiction, let us assume s ∈ N and i ∈ N such that π(gs,i) ∈ π(V s+2W ). So,

π(gs,iExp(Bk(O, ϵs,i))) ⊂ π(Exp(Bk(O, ϵ))gs,i) ⊂ π(V s+3W )

This contradicts with
π(gs,iExp(Bk(O, ϵs,i))) ∩ π(V s+3W )c 6= ϕ

Nextly, we will show for any i ∈ N and s ∈ N,

π(gs,iExp(Bk(O, ϵ0,i))W ) ∩ π(V s+1W ) = ϕ

For aiming contradiction, let us assume s ∈ N and i ∈ N such that π(gs,iExp(Bk(O, ϵ0,i))W ) ∩ π(V s+1W ) 6= ϕ. Then
there is X ∈ Bk(O, ϵ) and u ∈ V s+2 and w1, w2 ∈W such that π(Exp(X)gs,iw1) = π(uw2). So,

π(gs,i) = gs,iT = gs,iw1Tw
−1
1 = Exp(−X)uw2w

−1
1 w1Tw

−1
1 = Exp(−X)uw2w

−1
1 T ∈ π(V s+2W )

This is a contradiction.

Notation 6.5 (∆(t) (t ∈ Treg), Tσ (σ ∈ Gn)). Here are the settings and assumptions.

(S1) G := U(n).

(S2) T is the maximal torus of G.

Then

(i) ∆(t) := min{|arg(ti) − arg(tj)| |i 6= j}. Here, let us assume arg(z) ∈ [0, 2π).

(ii) For σ ∈ Gn, we set
Tσ := {t ∈ Treg|arg(tσ(i)) < arg(tσ(i+1)) (∀i)}

Theorem 6.2. Here are the settings and assumptions.

(S1) T is the maximal torus of G := U(n).

(S2) A : G/T × T 3 (gT, t) 7→ gtg−1 ∈ G.

(S3) W is the weyl group of G.
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Then

(i) A is well-defined and surjective Cω-class map.

(ii) A|G/T × Treg is a surjective map onto Treg.

(iii) For each g, g′ ∈ G and t, t′ ∈ T ,

A(gT, t) = A(g′T, t′) ⇐⇒ ∃w ∈W s.t g′T = gw−1T and t′ = w · t

Here, w · t2 := wt2w
−1.

Proof of (i). Because T is commutative, if g1, g2 ∈ G and t1, t2 ∈ T and (g1T, t1) = (g2T, t2) then

g1t1g
−1
1 = g2g

−1
2 t1(g2g

−1
2 g1)−1 = g2g

−1
2 g1t1g

−1
1 g2g

−1
2 = g2t2g

−1
2 g1g

−1
1 g2g

−1
2 = g2t2g

−1
2

So A is well-defined. And clearly A is surjective.
We take {π(giExp(Ui))}i and {hjExp(Vj)}j as the coverings in Proposition5.4. For each i, j and X ∈ Ui and Y ∈ Vj ,

A(giExp(X), hjExp(Y )) := giExp(X)hjExp(Y )Exp(−X)g−1
i

So, A is Cω-class.

Proof of (ii). Because for any g ∈ G and t ∈ T gtg−1 has no duplicate eigenvalues ⇐⇒ t has no duplicate eigenvalues,
(ii) holds.

Proof of (iii). The ⇐= part is clear. We will show the =⇒ part. Let us fix any g1, g2 ∈ G and t1, t2 ∈ Treg such that
g1t1g

−1
1 = g2t2g

−1
2 . We set g3 := g−1

2 g1. Then
t1 = g3t2g

−1
3

Because t1, t2 ∈ Treg, there is w ∈W such that

t2 = w−1g3t2(w−1g3)−1

So, w−1g3 ∈ ZG(t2). By Proposition6.10, t3 := w−1g3 ∈ T . So, g3 = wt3. Then

g2T = g1g
−1
3 T = g1w

−1wt−1
3 w−1T = g1w

−1T, t1 = wt3t2t
−1
3 w−1 = wt2w

−1 =: w · t2

By Theorem6.2 and Proposition4.12 and Proposition4.13, the following holds.

Proposition 6.19. Here are the settings and assumptions.

(S1) G := U(n).

(S2) T is the maximal torus of G.

(S3) (πi, Vi)(i=1,2) are two continuous finite dimensional representation of G.

(A1) χπ1
|T = χπ2

|T .

Then π1 ' π2.

Proposition 6.20. Here are the settings and assumptions.

(S1) G := U(n).

(S2) T is the maximal torus of G.

(S3) t := Lie(T ), g := Lie(G).

(S4) g1 := {X ∈ g|Xi,i = 0 (∀i)}

Then
g = g1 + t
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Proof. Clearly, g1 ∩ t = ϕ and g ⊃ g1 + t Let us fix any X ∈ g. Then

X = Y + diag(X1,1, ..., Xn,n)

Here,
Yi,j = (1 − δi,j)Xi,j (i, j = 1, 2, ..., n)

Then Y ∈ g1. Because X is skew-Hermitian, Xj,j ∈ iR (∀j). So, diag(X1,1, ..., Xn,n) ∈ t. So,

g ⊂ g1 + t

Proposition 6.21. Here are the settings and assumptions.

(S1) G := U(n).

(S2) T is the maximal torus of G.

Then there is {Vj}∞i=1 such that {w · Vj}j∈N,w∈W is a local finite open covering of Treg and for any i, j sup{|arg(ti) −
arg(ti)||t ∈ Vj} ≤ 1

2
inf{∆(t)|t ∈ Vj} and for any s ∈ N #{j|∆(t) ≥ 1

2s
(∃t ∈ Uj)} <∞ and Vi ⊂ Te (∀i).

Proof. We set

Ts := {t ∈ Treg|∆(t) ≤ 1

2s
}, Ts,σ := Ts ∩ Tσ (s ∈ N, σ ∈ Gn)

Because T1,e is compact, there are {U1,i}N1
i=1 which is a open covering of T1,e and N1 is the minimum numver of open

covering of T1,e. Let us fix s ∈ N ∩ [2,∞). Because Ts,e \ T ◦
s−1,e is compact, there are {Us,i}Ns

i=1 which is a open
covering of Ts,e \ T ◦

s−1,e and Ns is the minimum numver of cardinalities of all open coverings of Ts,e \ T ◦
s−1,e. Clearly,

∪w∈W ∪∞
s=1{w ·Us,i}Ns

i=1 is a local finite open covering of Treg and satisfies the condition in the claim of this Proposition.

Proposition 6.22. Here are the settings and assumptions.

(S1) G := U(n).

(S2) T is the maximal torus of G.

(S3) g := Lie(G), h := Lie(T ).

(S4) q is a complement subspace of h in g.

(S5) We set
A : G/T × T 3 (gT, t) 7→ gtg−1 ∈ T

Then there are {gi}∞i=1 ⊂ G and {Ui}∞i=1 such that Ui is a open neighborhood of 0k (∀i) and Ui ⊂ Bk(O, ϵ) ∩ q (∀i)
and {π(giExp(Ui)w

−1) × w · Vj}i∈N,w∈W,j∈N is a local finite open covering of G/H × Treg and {Aπ(giExp(Ui)w
−1) × w ·

Vj}i∈N,w∈W,j∈N is a local finite open covering of Greg.

Proof of the first part. We will succeed in notations of Propositions6.22 and Proposition6.18. Let us fix any (gT, t) ∈
G/H × Treg. There is w ∈ W such that (gwT,w−1 · t) ∈ G/H × Te. Then there are i, j such that (gwT,w−1 · t) ∈
π(giExp(Ui)) × Vj . Then t ∈ w · Vj . And there is u ∈ Exp(Ui) such that gwT = giuT . Because gwT = gTw and
giuw

−1Tw,
gT = giuw

−1T

So, (gT, t) ∈ π(giExp(Ui)w
−1) × w · Vj . Consequently, {π(giExp(Ui)w

−1) × w · Vj}i∈N,w∈W,j∈N is an open covering of
G/H × Treg.

Let us fix any i0, j0 ∈ N and w0 = π0(σ0) ∈W . Let us fix any i, j ∈ N and w = π0(σ) ∈W such that

π(gi0Exp(Ui0)w−1
0 ) × w0 · Vj0 ∩ π(giExp(Ui)w

−1) × w · Vj 6= ϕ

Because Vj0 , Vj ⊂ Te, w0 = w. So, Vj0 ∩ Vj 6= ϕ. Because gi0uw
−1
0 T = gi0uTw

−1
0 and givw

−1T = givTw
−1 for any

u ∈ Exp(Ui0) and v ∈ Exp(Ui), π(gi0Exp(Ui0)) ∩ π(giExp(Ui)) 6= ϕ. So,

(i, j, w) ∈ B := {(i, j, w)|π(giUi) ∩ π(gi0Ui0) 6= ϕ,w = w0, Vj ∩ Vj0 6= ϕ}

Because B is finite, {π(giExp(Ui)w
−1) × w · Vj}i∈N,w∈W,j∈N is a local finite open covering of Treg.
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Proof of the last part. By the first part, clearly {Aπ(giExp(Ui)w
−1)×w · Vj}i∈N,w∈W,j∈N is an open covering of Treg. We

set Xi := giExp(Ui) (i ∈ N).
Let us fix any i0, j0 ∈ N and w0 ∈W . We set

W0 := {w ∈W |∃i, ∃j s.t Aπ(Xi0w
−1
0 ) × w0 · Vj0 ∩Aπ(Xiw

−1) × w · Vj 6= ϕ}

Clearly, W0 is a finite set.
We set

J0 := {j ∈ N|∃i, ∃w s.t Aπ(Xi0w
−1
0 ) × w0 · Vj0 ∩Aπ(Xiw

−1) × w · Vj 6= ϕ}

and
ϵ := inf{∆(t)|t ∈ Vj0}

Then
∆(t) ≥ ϵ

22
(∀t ∈ Vj , ∀j ∈ J0)

So, from the definition of {Vj}j∈N, J0 is a finite set.
We set

I0 := {i ∈ N|∃j, ∃w s.t Aπ(Xi0w
−1
0 ) × w0 · Vj0 ∩Aπ(Xiw

−1) × w · Vj 6= ϕ}

From the definition of {Xi}i∈N, I0 is a finite set. Consequently, {Aπ(giExp(Ui)w
−1)×w ·Vj}i∈N,w∈W,j∈N is local finite.

Proposition 6.23. Here are the settings and assumptions.

(S1) T is the maximal torus of G := U(n).

Then

(i) T \ Treg is a zero set with respect to a Haar measure on T .

(ii) G \Greg is a zero set with respect to a Haar measure on G.

Proof of (i). Clearly, T \ Treg ⊂ ∪i,jTi,j . Here, Ti,j := {t ∈ T |ti = tj}. So, it is enough to show Ti,j is a zero set for any
i, j. We can assume i = n− 1, j = n. We set

φ : T 3 t 7→ (t1, ..., tn−1, tn−1) ∈ T,C := {t ∈ T |rank(Jφ(t)) < n}

Clearly C = T and Tn−1,n ⊂ φ(C). By Sard’s Theorem(See [10]), φ(C) is a zero set. So, Tn−1,n is a zero set.

Proof of (ii). By (i), G/T × T \ Treg is a zero set. And A : G/T × T → G is a Cω-class surjective and Greg = A(G/T ×
T \ Treg). So, by a Lemma for Sard’s Theorem(See [10]), Greg is a zero set.

Proposition 6.24. Here are the settings and assumptions.

(S1) T is the maximal torus of G := U(n).

Then for any f ∈ C(G) ∫
G

f(g)dg =
1

n!

∫
G/T

∫
T

f(gtg−1)|det(dA(gT,t))|dtd(gT )

Here,
det(dA(gT,t)) := det(dLgt−1g−1 ◦ dA(gT,t) ◦ j ◦ dτg × dLt ◦ i)

i : Te(g) = g1 ⊕ t → g1 × t is the natural isomorphism and j : TgT (G/T ) × Tt(T ) → T(gT,t)(G/T × T ) is the natural
isomorphism.

STEP1. Construction of a partition of unity. By Proposition6.23, it is enough to show∫
Greg

f(g)dg =
1

n!

∫
G/T

∫
Treg

f(gtg−1)det(dA(gT,t))dtd(gT )

Let {π(giUiw
−1)×w ·Vj}i,j∈N,w∈W be the open covering of G/T ×Treg and {fi,j,w}i,j∈N,w∈W be a partition of unity with

respect to {π(giUiw
−1) × w · Vj}i,j∈N,w∈W .

We set

gi,j,w(A(gT, t)) :=
1

n!
fi,j,w(gw−1T,w · t) ((gT, t) ∈ π(giExp(Ui)) × Vj , i, j ∈ N, w ∈W )
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We will show gi,j,w is well-defined. Let us fix any g1, g2 ∈ π(giExp(Ui)) and t1, t2 ∈ Vj and w ∈W and i, j ∈ N. such that
A(g1T, t1) = A(g2T, t2). This means that g1t1g

−1
1 = g2t2g

−1
2 . Because t1, t2 ∈ Te, by Theorem6.2, t1 = t2 and g1T = g2T .

So, w · t1 = w · t2. And
g1w

−1T = g1Tw
−1 = g2Tw

−1 = g2w
−1T

So, gi,j,w is well-defined.
We will show {gi,j,w}i,j∈N,w∈W is a partition of unity on Greg with respect to {Aπ(giUiw

−1) × w · Vj}i,j∈N,w∈W . Let
us fix any x ∈ Greg. We set

I := {(i, j) ∈ N2|x ∈ Aπ(giUi) × Vj}
Then, by Theorem6.2,

I ×W = {(i, j, w) ∈∈ N2|x ∈ Aπ(giUiw
−1) × w · Vj}

So, ∑
i,j∈N,w∈W

gi,j,w(x) =
∑

(i,j)∈I,w∈W

gi,j,w(x) =
∑
w∈W

∑
(i,j)∈I

gi,j,w(x)

Let us fix any w = π0(σ) ∈W . And let us fix any i1, i2, j1, j2 and hi1 ∈ gi1Exp(Ui1) and hi2 ∈ gi2Exp(Ui2) and tj1 ∈ Vj1
and tj2 ∈ Vj2 such that x = (π(hi1w

−1), w · tj1) = (π(hi2w
−1), w · tj2). Then, because ti1 , ti2 ∈ Te, ti1 = ti2 . And

hi1w
−1T = hi1Tw

−1 = hi2Tw
−1 = hi2w

−1T

So, there is the unique xw ∈ G/T × Tσ such that Axw = x and∑
w∈W

∑
(i,j)∈I

gi,j,w(x) =
∑
w∈W

1

n!

∑
(i,j)∈I

fi,j(xw) =
∑
w∈W

1

n!
= 1

STEP2. Proof of our integeral formula. We set Wi := giExp(Ui) (i ∈ N).∫
Greg

f(g)dg =
∑
i,j,w

∫
Aπ(Wiw−1)×w·Vj

f(g)gi,j,w(g)dg =
∑
i,j,w

∫
Aπ(Wiw−1)×w·Vj

f(g)gi,j,w(g)dg

=
1

n!

∑
i,j,w

∫
π(Wiw−1)×w·Vj

f(π(hw−1), w · t)fi,j,w(π(hw−1), w · t)|det(dA(π(hw−1),w·t))|dg

=
1

n!

∫
G/T×T

f(gT, t)|det(dA(π(hw−1),w·t))|dµG/T (gT )µT (t)

The following clearly holds.

Proposition 6.25. We succeed notations in Proposition6.20. Here are the settings and assumptions.

(S1) Xi,j = Ei,j − Ej,i (i < j).

Then B0 := {Xi,j}i<j is a basis of the complexification of g1 and B0 ∪ iB0 is a basis of g1.

Lemma 6.1. We succeed notations in Proposition6.24. Then

(i) det(dA(gT,t)) = det(Ad(t)−1|g1
− id|g1

).

(ii) det(Ad(t)−1|g1 − id|g1) = |D(t)|2.

Proof of (i). Let us fix any X ∈ g1 and Y ∈ t. Then

dA(gT,t) ◦ j ◦ dτg × dLt ◦ i(X + Y ) = dA(gT,t) ◦ j ◦ dτg × dLt(X, 0) + dA(gT,t) ◦ j ◦ dτg × dLt(0, Y )

Here,

dA(gT,t) ◦ j ◦ dτg × dLt(X, 0) =
d

ds |s=0

A(gexp(sX)T, t) =
d

ds |s=0

gexp(sX)texp(−sX)g−1

=
d

ds |s=0

gtg−1gt−1exp(sX)texp(−sX)g−1 =
d

ds |s=0

gtg−1gexp(sAd(t−1)X)exp(−sX)g−1

= dLgtg−1Ad(g)(Ad(t−1)X −X)
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and

dA(gT,t) ◦ j ◦ dτg × dLt(0, Y ) =
d

ds |s=0

A(gT, texp(sY )) =
d

ds |s=0

gtexp(sY )g−1

=
d

ds |s=0

gtg−1gt−1exp(sY )g−1 = dLgtg−1Ad(g)(Y )

So,
det(dA(gT,t)) = det(Ad(g))det(F )

Here,
F : g1 × t 3 (X,Y ) 7→ (Ad(t−1)X −X,Y ) ∈ g× t

Because clearly T · g1 ⊂ g1 and g1 · T ⊂ g1, Ad(t−1)X ∈ g1 (∀t ∈ T, ∀X ∈ g1). So, ImF ∈ g1 × t. This implies that
det(F ) = det(Ad(t−1)|g1 − idg1). And, by Proposition2.48, det(Ad(g)) = 1 (∀g ∈ G).

Proof of (ii). It is enough to show that (ii) holds for any t ∈ Treg. Let us fix any t ∈ Treg. We succeed notations in
Proposition6.25.

(Ad(t)−1 − id)Xi,j = (
tj
ti

− 1)Xi,j (∀i < ∀j)

So, by Proposition6.5,

det(Ad(t)−1 − id) = (Πi<j |(
tj
ti

− 1)|)2

by |ti| = 1 and
tj
ti

=
ti
tj

(∀i < ∀j)

= (Πi<j |(ti − tj)|)2 = |D(t)|2

Lemma6.1 and Proposition6.24 implies the following.

Theorem 6.3 (Weyl Integral Formula). For any f ∈ C(U(n)),∫
U(n)

f(g)dµU(n)(g) =
1

n!

∫
G/T

∫
T

f(gtg−1)|D(t)|2dµT tdµG/T (gT )

6.4.5 The highest weight of U(n)

Definition 6.3 (Multiplicity of weight). We will succeed notations in Proposition6.7. Let

(S1) G is a compact Lie group.

(S2) (π, V ) is a finite dimensional continuous representation of G.

(S3) λ ∈ Zn.

We call mλ := dimVλ the multiplicity of λ.

Definition 6.4 (Symmetric function). Let T be the maximal torus of U(n). We say f ∈ C(T,C) is a symmetric function
if

f(x) = f(wx) (∀x ∈ T, ∀w ∈W )

We denote the set of all symmetric functions by C(T )1.

Definition 6.5 (Alternating function). Let T be the maximal torus of U(n). We say f ∈ C(T,C) is a altenating function
if

f(x) = sign(w)f(wx) (∀x ∈ T, ∀w ∈W )

We denote the set of all symmetric functions by C(T )sgn.

Definition 6.6 (Laurant polynomial). Let T be the maximal torus of U(n). We say f ∈ C(T,C) is a Laurant function if

f(x) =
∑
K∈Zn

aKt
K (x ∈ T ),#{K ∈ Zn|aK 6= 0} <∞

We denote the set of all Laurant polynomials by R(T ). We set

RZ(T ) := {f ∈ R(T )|Every coefficient of f are in Z}

and
RZ(T )1 := RZ(T ) ∩ C(T )1
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Proposition 6.26. Here are the settings and assumptions.

(S1) T is th maximal torus of U(n).

(S2) W := π0(Gn).

(S3) (π, V ) is a finite dimensional continuous representation of G.

(S4) ∆(V, T ) := {λ ∈ T̂ |Vλ 6= {0}}.
(S5) λ ∈ Zn is the highest weight of (π, V ).

Then

(i) For any w ∈W and λ ∈ Zn, π(w)|Vλ is a bijection fo Vwλ.

(ii) W · ∆(V, T ) ⊂ ∆(V, T ).

(iii) For any σ ∈ Zn, mσ = mwσ.

(iv) ∆(V, T ) is finite set.

(v) Vλ ' mλχλ as continuous unitary representation of T . The right side is a discrete direct sum.

(vi) χπ|T =
∑
λ∈∆(V,T )mλχλ

(vii) χπ|T ∈ RZ(T )1.

(viii) λ ∈ (Zn)+.

Proof of (i). Firstly we will show π(w)|Vλ ⊂ Vw·λ (∀w ∈ W, ∀λ ∈ T̂ ). Let us fix any w ∈ W and any λ ∈ Zn and any
v ∈ Vλ and any t ∈ T .

π(t)π(w)v = π(w)π(w−1 · t)v = π(w)χλ(w−1 · t)v = χλ(w−1 · t)π(w)v = χw·λ(t)π(w)v

So, by Proposition6.16, π(w)v ∈ Vw·λ. Because π(w−1) is the inverse of π(w), π(w)|Vλ is bijective.

Proof of (ii). For any w ∈ W and any λ ∈ ∆(V, T ), by (i), Vw·λ = π(w) · Vλ. Because π(w) · Vλ 6= {0}, Vw·λ 6= {0}. So,
w · λ ∈ ∆(V, T ).

Proof of (iii). This is followed by (i).

Proof of (iv). Because χλ1
6' χλ2

(∀λ1 6= ∀λ2), by Theorem4.9, V = ⊕λ∈ZnVλ. Because dimV < ∞, ∆(V, T ) is a finite
set.

Proof of (v). Clearly Vλ is finite dimensional T -invariant space. Let us fix w1, ..., wm which is the orthonormal basis of
Vλ. We set

Piz := zwi (z ∈ C, i ∈ {1, 2, ...,m})

By Proposition6.16,

Piχλ(t)z = zχλ(t)wi = zπ(t)wi = π(t)zwi = π(t)Pi(z)

and Cwi is T -invariant. So, Pi : (χλ,C) → (π|Cwi,Cwi) is an isomorphism as continuous unitary representations of T .
Consequently, (v) holds.

Proof of (vi). (vi) is followed by (v) and Theorem4.9.

Proof of (vii). By (vi), χπ|T ∈ RZ(T ). By (i), χπ|T ∈ C(T )1. So, χπ|T ∈ RZ(T ).

Proof of (viii). (viii) is followed by (i).

Notation 6.6 (Sα, Aα). For α ∈ Zn,

Sα(t) :=
1

n!

∑
σ∈Gn

tσα

Aα(t) :=
1

n!

∑
σ∈Gn

sign(σ)tσα

Proposition 6.27.

(i) {Sα}α∈Zn is a basis of RZ(T )1.

145



(ii) {Aα}α∈Zn is a basis of RZ(T )sgn.

Proof of (i). Let us fix any
1

n!

∑
α aαt

α ∈ RZ(T )1. Let us fix any α ∈ Zn such that α1 ≥ ... ≥ αn. Then

aσα = aα (∀σ ∈ Gn)

So,
1

n!

∑
α

aαt
α =

∑
α1≥...≥αn

aαSα(t)

Proof of (ii). Let us fix any
1

n!

∑
α aαt

α ∈ RZ(T )1. If there are i, j such that αi = αj , then aα = 0 by the definition of

the altenating function. Let us fix any α ∈ Zn such that α1 > ... > αn. Then

aσα = sign(α)aα (∀σ ∈ Gn)

So,
1

n!

∑
α

aαt
α =

∑
α1≥...≥αn

aαAα(t)

Proposition 6.28.

(i) {Sα}α∈Zn is a basis of RZ(T )1.

(ii) {Aα}α∈Zn is a basis of RZ(T )sgn.

By the orthogonality of trigonometric functions, the following holds.

Proposition 6.29. For α1 > ... > αn and β1 > ... > βn,

(Aα, Aβ)L2(T ) =

{
n! α = β.
0 α 6= β.

6.4.6 Weyl Character Formula

Theorem 6.4 (Weyl character formula). Here are the settings and assumptions.

(S1) T is the maximal torus of U(n).

(S2) (π, V ) is a finite dimensional irreducible continuous representation of G.

(S3) λ is the highest weight of π.

Then

(i)

χπ(t) =

∑
σ∈Gn

sgn(σ)tσ·(λ+ρ)

Π1≤i<j≤n(ti − tj)

Here, ρ := (n− 1, n− 2, ..., 1, 0).

(ii) dim(Vλ) = 1.

Proof. We set
D(t) := Π1≤i<j≤n(ti − tj) (t ∈ T )

Then χπ(t)D(t) is an alternating laurant polynomial, there is {aα}α∈Zn such that #{α|aα 6= 0} <∞ and

χπ(t)D(t) =
∑
α

aαAα(t) (∀t ∈ T )

By Proposition6.29,

1 =
∑
α

|aα|2
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By Proposition6.26(vii), for any α aα ∈ Z. So ∃!α such that |aα| = 1. By Proposition6.2,

χπD = Aα (in Cn)

or
χπD = −Aα (in Cn)

Let mλ denote the multiplicity of λ. And we can assume α1 > ... > αn. The maximal index of D(t) with respect to
lexicographic order is (n− 1, ..., 1). And the maximal index of χπ with respect to lexicographic order is mλλ. So,

mλt
(λ1+n−1,...,λn+1) = +tα (in Cn)

and
mλt

(λ1+n−1,...,λn+1) = −tα (in Cn)

This implies that mλ = 1 and
(λ1 + n− 1, ..., λn + 1) = α

6.4.7 Cartan-Weyl Highest Weight Theory

Theorem 6.5. The followings hold.

(i) For any ϕ ∈ RZ(T )1, Φ(ϕ) := Dϕ ∈ RZ(T )sgn.

(ii) Φ : RZ(T )1 → RZ(T )sgn is surjective.

Proof of (i). It is clear.

Proof of (ii). Let us fix any ϕ ∈ RZ(T )sgn. There is N ∈ N such that p(t) =
∑
α t

α = t(N,...,N)ϕ ∈ PZ(T )sgn. For any
α ∈ Zn such that α1 = α2, aα = 0.

For any t ∈ T such that t1 = t2, p(t) = 0. By Proposition6.2, For any z ∈ Cn such that z1 = z2, p(z) = 0.
For each α ∈ Zn such that α1 > α2, aα = −aS1,2α. Here, S1,2 is the permutate of 1 and 2. So, there is q ∈ PZ(T ) such

that
p(t) = (t1 − t2)q(t)

For any t ∈ T such that t1 = t3,
q(t) = 0

So, by the same argument as the above, there is r ∈ PZ(T ) such that

q(t) = (t1 − t3)r(t)

By repeating this argument, we find that there is ψ ∈ PZ(T ) such that

ϕ = Dψ

Theorem 6.6. The followings hold.

(i) For any ϕ ∈ C(U(n))Ad, Φ(ϕ) := ϕ|T ∈ C(T )1.

(ii) Φ : C(U(n))Ad → C(T )1 is surjective.

Proof of (i). It is clear.

Proof of (ii). We set G := U(n). Let us fix any ϕ ∈ C(T )1. For each g ∈ G, let denote the set of all eigenvalues of g by
{λ1(g), ..., λn(g)}. And

ψ(g) := ϕ(λ1(g), ..., λn(g))

Because ϕ is symmetric, ψ is well-defined. We will show ψ is continuous. Let us fix any g0 ∈ G. Let denote λ1, ..., λm the
distinct set of eigenvalues of g0. Denote the degree of λi as zero point of characteristic polynomial of g by ki.

By Rouche’s Theorem(see [6]), for any ϵ > 0, there is δ > 0 such that g has just ki eigenvalues(allow multiplicity) of g
in B(λi, ϵ) for any g ∈ B(g0, δ). So, ψ is continuous. Clearly, Φ(ψ) = ϕ. So, Φ is surjective.

Theorem 6.7 (Cartan-Weyl Highest Weight Theory). The followings hold.
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(i) Let us assume (π, V ) be a continuous irreducible unitary representation of U(n) and λ be the highest
weight of π. Then λ ∈ (Zn)+ and the multiplicity of λ is 1.

(ii) Let us fix any λ ∈ (Zn)+. Then there is the unique continuous irreducible unitary representation (π, V )
whose highest weight is λ, ignoring isomorphism as continous unitary representation.

Proof of (i). (i) is from Weyl Character Formula(Theorem6.4) and Proposition6.26.

Proof of (ii). The uniqueness is from Proposition6.19. We will show the existence. For aiming contradiction, let us
assume that there exists λ ∈ Zn+ such that λ is different from the highest weight of any irreducible continuous unitary
representation of U(n). We set

ρ := (n− 1, ..., 1)

Because Aλ+ρ ∈ RZ(T )sgn, by Theorem6.5 and Theorem6.6, there is ψ ∈ C(U(n))Ad such that D(t)ψ = Aλ+ρ. For any

π ∈ ˆU(n), by Weyl Integral Formula∫
U(n)

χτ (g)ψ̄(g)dg =

∫
T

χτ (t)ψ̄(t)|D(t)|2dt =

∫
T

Aα(π)+ρ(t)Aλ+ρ(t)dt = 0

Here, α(π) is the highest weight of π. By Theorem4.7, ψ is zero function. This is contradiction.

6.4.8 Review

In this subsection, we show the result of classification of irreducible continuous unitary representations of U(n). By Peter
Weyl Theorem, it is enough to classify finite dimensional irreducible continuous unitary representation of U(n).

We focus the set of all the set of all eigenvalues of g ∈ U(n), T := Tn. We can simplify discussions about U(n) to
discussions about T in some cases. In specialty, Weyl Integral Formula is really usefull.

Theorem 6.8 (Weyl Integral Formula). For any f ∈ C(U(n)),∫
U(n)

f(g)dµU(n)(g) =
1

n!

∫
G/T

∫
T

f(gtg−1)|D(t)|2dµT tdµG/T (gT )

By this theorem, we can simply integral of class function on U(n) to simply integral of symmetric function on T . Let
recall the proof of Weyl Integral Formula.

A : G/T × T 3 (gT, t) 7→ gtg−1 ∈ G

is n!-th covering map of G and Gn acts on A−1(g) for each g ∈ G. That implies∫
U(n)

f(g)dµU(n)(g) =
1

n!

∫
G/T

∫
T

f(gtg−1)|det(dA(gT,t))|dµT tdµG/T (gT )

In the proof of this equation, we need take a good partition of unity of U(n). By focusing the decomposition

u(n) = u(n)1 ⊕ t

and action on u(n)1 and t, we get

det(dA(gT,t)) = det(Ad(t−1)|u(n)1 − id|u(n)1)

Here,
u(n)1 = {X ∈ u(n)|Xi,i = 0 (∀i)}

By complexifying u(n)1 and showing Ei,j are eigenvector of the complexification of Ad(t−1)|u(n)1 − id|u(n)1 with

respect to (
tj
ti

− 1) (∀i 6= ∀j), we get

det(Ad(t−1)|u(n)1 − id|u(n)1) = |D(t)|2

Consequently, we get Weyl Integral Formula. By Weyl Integral Formula and Shur Orthogonality Relation, we can sim-
plify the classification of continuous finite dimensional irreducible unitary representations of U(n) to the classification of
{χπ|T |π is a continuous finite dimensional irreducible unitary representations of U(n)}.
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We focus the fact Dχπ|T is an alternating Laurant polynomial on T with Z-coefficients. We can show {Aα}α1>...>αn

is an orthonomal system of L2(T ) and a basis of RZ(T )sgn. Here,

Aα =
1

n!

∑
σ∈Gn

sign(σ)tσ·α, RZ(T )sgn := {p|p is an alternating Laurant polynomial on T with Z-coefficients.}

It is important that the decompositions of Dχπ with {Aα}α1>...>αn
correspoinds to the decompositions of π|T as continuous

unitary representation of T . The last decomposition is called a branching rule. Thanks to these insight, we can classify
ˆU(n) by the highest weight of each π ∈ ˆU(n). In specialty, we get the following Weyl character formula.

Theorem 6.9 (Weyl character formula). Here are the settings and assumptions.

(S1) T is the maximal torus of U(n).

(S2) (π, V ) is a finite dimensional irreducible continuous representation of G.

(S3) λ is the highest weight of π.

Then

(i)

χπ(t) =

∑
σ∈Gn

sgn(σ)tσ·(λ+ρ)

Π1≤i<j≤n(ti − tj)

Here, ρ := (n− 1, n− 2, ..., 1, 0).

(ii) dim(Vλ) = 1.

Inversely, for each λ ∈ (Z)n+ := {α ∈ (Z)|α1 ≥ ... ≥ α}, there is ψ ∈ C(U(n))Ad such that (ψ|T )D = Aλ+ρ. Here
ρ := (n− 1, ..., 0). That facts from the correspondance

U(n) 3 g 7→ Aλ+ρ(λ1(g), ..., λn(g))

D(λ1(g), ..., λn(g))
∈ C

By completeness of character about ˆU(n), we can show there is π ∈ ˆU(n) such that the highest weight of π is λ.
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