A study memo on triangularisability of matricies

1 Triangularisability of matricies

Proposition 1.1. Let
(S1) $m \in \mathbb{N} \cup[2, \infty)$
(S2) $f_{1}, \ldots, f_{m} \in \mathbb{C}[X] \backslash 0$.
(A1) f_{1}, \ldots, f_{m} don't have common divisor.
then there are $h_{1}, \ldots, h_{m} \in \mathbb{C}[X]$ such that

$$
\begin{equation*}
\sum_{i=1}^{m} h_{i} f_{i}=1 \tag{1}
\end{equation*}
$$

Case when $m=2$. When $\sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)=0, \operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)=1$. In this case, the the claim in this Proposition holds. We assume the claim in this Proposition holds when $\sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<K$. We can assume $\operatorname{deg}\left(f_{1}\right)>0$ There is $q, r \in \mathbb{C}[X]$ such that $f_{1}=q f_{2}+r$ and $\operatorname{deg}(r)<\operatorname{deg}\left(f_{1}\right)$ By the assumption of our mathematical induction, there are $h_{1}, h_{2} \in \mathbb{C}[X]$ such that $h_{1} r+h_{2} f_{2}=1$. Because $r=q f_{2}-f_{1},-h_{1} f_{1}+\left(q+h_{2}\right) f_{2}=1$.
Case when $m>2$. We assume the claim in this Proposition holds when $m=K$. Let us set q is a maximum diviser of f_{1}, \ldots, f_{K} and $g_{i}:=\frac{f_{i}}{q_{i}}(i=1,2, \ldots, K)$. Clearly, g_{1}, \ldots, g_{m} don't have common divisor and f_{K+1} and q don't have common divisor. By the assumption of mathematical induction, there are $h_{1}, \ldots, h_{K}, h_{K+1}, s \in \mathbb{C}[X]$ such that

$$
\begin{equation*}
\Sigma_{i=1}^{K} h_{i} g_{i}=1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
s q+h_{K+1} f_{K+1}=1 \tag{3}
\end{equation*}
$$

Then $\Sigma_{i=1}^{K} h_{i} f_{i}=q$. Consequently,

$$
\begin{equation*}
\Sigma_{i=1}^{K} s h_{i} f_{i}+h_{K+1} f_{K+1}=1 \tag{4}
\end{equation*}
$$

Proposition 1.2. Let

$$
(S 1) \quad A \in M(n, \mathbb{C})
$$

then the followings hold.
(i) There is $P \in G L(n, \mathbb{C})$ and $\alpha_{1}, \ldots, \alpha_{K} \in \mathbb{C}$ such that

$$
P^{-1} A P=\left(\begin{array}{ccccccc}
\alpha_{1} & * & * & & & & 0 \tag{5}\\
& \ddots & * & & & & \\
& & \alpha_{1} & & & & \\
& & & \ddots & & & \\
& & & & \alpha_{m} & * & * \\
0 & & & & & \ddots & * \\
& & & & & & \alpha_{m}
\end{array}\right)
$$

(ii) If $\alpha_{i} \neq \alpha_{j}($ for any $i \neq j), A$ is diagonalizable.

STEP1. Existence of the minimal polynomial of A. Because $E, A, A^{2}, \ldots, A^{n^{2}}$ are linearly dependent, there are $a_{0}, a_{2}, \ldots, a_{n}$ such that

$$
\begin{equation*}
\Sigma_{i=0}^{n^{2}} a_{i} A^{i}=0 \tag{6}
\end{equation*}
$$

So there is a $\varphi_{A} \in \mathbb{C}[X]$ such that

$$
\begin{equation*}
\operatorname{deg}\left(\varphi_{A}\right)=\min \{\operatorname{deg}(\varphi) \mid \varphi \in \mathbb{C}[X] \text { and } \varphi(A)=0\} \tag{7}
\end{equation*}
$$

STEP2. Decomposition of \mathbb{C}^{n} into generalized eigenspaces. By fundamental theorem of algebra, there are distinct $\alpha_{1}, \ldots, \alpha_{K} \in \mathbb{C}$

$$
\begin{equation*}
\varphi_{A}(x)=\Pi_{i=1}^{K}\left(x-\alpha_{i}\right)^{m_{i}} \tag{8}
\end{equation*}
$$

We set $f_{i} \in \mathbb{C}[X]$ by $f_{i}(x):=\frac{\varphi_{A}(x)}{\left(x-\alpha_{i}\right)^{m_{i}}}(i=1,2, \ldots, K)$. By Proposition($)$, then there are $h_{1}, \ldots, h_{m} \in \mathbb{C}[X]$ such that

$$
\begin{equation*}
\Sigma_{i=1}^{K} h_{i}(A) f_{i}(A)=E \tag{9}
\end{equation*}
$$

We set $W_{i, j}:=\left\{x \in \mathbb{C}^{n} \mid\left(A-\alpha_{i} E\right)^{j} x=0\right\}$ and $W_{i}:=W_{i, m_{i}}\left(j=1,2, \ldots, m_{i}\right)$ For any $x \in \mathbb{C}^{n}, x=\Sigma_{i=1}^{K} h_{i}(A) f_{i}(A) x$. For each $i, h_{i}(A) f_{i}(A) x \in W_{i}$. So

$$
\begin{equation*}
\mathbb{C}^{n}=\Sigma_{i=1}^{K} W_{i} \tag{10}
\end{equation*}
$$

STEP3. $W_{i, k} \cap W_{j, l}=\{0\}(i \neq j)$. We assume $k=l=1$. Let us fix arbitary $x \in W_{i, 1} \cap W_{j, 1}$. Because $0=A x-A x=\alpha_{i} x-\alpha_{j} x=\left(\alpha_{i}-\alpha_{j}\right) x, x=0$. So $W_{i, 1} \cap W_{j, 1}=\{0\}(i \neq j)$. Nextly we assume if $k+l \leq K$ then $W_{i, k} \cap$ $W_{j, l}=\{0\}(i \neq j)$. Let us fix arbitary i, j, k, l such that $i \neq j$. Let us fix
arbitary $x_{0} \in W_{i, k} \cap W_{j, l}$. We set $s: \mathbb{C}^{n} \ni x \mapsto[x] \in \mathbb{C}^{n} / W_{1,1}$. Because $A W_{1,1} \subset W_{1,1}, \tilde{A}: \mathbb{C}^{n} / W_{1,1} \ni[x] \mapsto[A x] \in \mathbb{C}^{n} / W_{1,1}$ is well-definied and linear. We set $\tilde{W}_{i, k}:=\tilde{A} s\left(W_{i, k}\right)$ and $\tilde{W}_{i, l}:=\tilde{A} s\left(W_{i, l}\right)$ We can assume $k>1$. Clearly $\tilde{W}_{i, k} \subset\left\{[x] \in \tilde{W}_{i, k} \mid\left(\tilde{A}-\alpha_{i}\right)^{k-1}[x]=0\right\}$. So by the assumption of mathematical induction, $\tilde{W}_{i, k} \cap \tilde{W}_{j, l}=\{0\}$. This implies that $W_{i, k} \cap W_{j, l} \subset W_{i, 1}$. Similarly, $W_{i, k} \cap W_{j, l} \subset W_{j, 1}$. So $W_{i, k} \cap W_{j, l} \subset W_{i, 1} \cap W_{j, 1}=\{0\}$.
STEP4. $\Sigma_{i=1}^{K} W_{i}=\oplus_{i=1}^{K} W_{i}$. By STEP3, $\Sigma_{i=1}^{2} W_{i}=\oplus_{i=1}^{2} W_{i}$. We assume if $K \leq$ K_{0} then $\Sigma_{i=1}^{K} W_{i}=\oplus_{i=1}^{K} W_{i}$. We will show if $K=K_{0}+1$ then $\Sigma_{i=1}^{K} W_{i}=$ $\oplus_{i=1}^{K} W_{i}$. By the assumption of mathematicalinduction,

$$
\begin{equation*}
\Sigma_{i=1}^{K_{0}} W_{i} / W_{K_{0}+1}=\oplus_{i=1}^{K} W_{i} / W_{K_{0}+1} \tag{11}
\end{equation*}
$$

Let us fix arbitary $w_{i} \in W_{i}\left(i=1,2, \ldots, K_{0}+1\right)$ such that $\Sigma_{i=1}^{K_{0}+1} w_{i}=0$. By (11), $w_{i} \in W_{i} \cap W_{K_{0}+1}\left(i=1, \ldots, K_{0}\right)$. By STEP3, $w_{i}=0\left(i=1, \ldots, K_{0}\right)$. So $w_{K}=0$.

STEP5. Basis of W_{i}. Let us fix i. We pick up $w_{1,1}, w_{1,2}, \ldots, w_{1, n_{1}}$ which is a basis of the eigenspace $W_{i, 1}$ corresponding to α_{i}. We set $s_{1}: W_{i} \ni w \mapsto[w] \in$ $W_{i} / W_{i, 1}$. Because $A W_{i, 1} \subset W_{i, 1}$, if we set $A_{1}: W_{i} / W_{i, 1} \ni[w] \mapsto[A w] \in$ $W_{i} / W_{i, 1}$ then A_{1} is well-defined and linear. We denote V_{1} by the eigenspace of A_{1} correspondig to α_{i}. Clearly $s_{1}^{-1}\left(V_{1}\right)=W_{i, 2}$. So there are $w_{1, n_{1}+1}, \ldots, w_{1, n_{2}}$ such that $s_{1}\left(w_{1, n_{1}+1}\right), \ldots, s_{1}\left(w_{1, n_{2}}\right)$ is a basis of V_{1}. Clearly $w_{1,1}, w_{1,2}, \ldots, w_{1, n_{2}}$ is a basis of $W_{i, 2} . A w_{i}-\alpha_{i} w_{i} \in W_{i, 1}$.

Similarly, we can take $w_{i, 1}, \ldots, w_{i, n_{1}}, \ldots, w_{i, n_{2}}, \ldots, w_{i, n_{m_{i}}}$ such that $w_{i, 1}, \ldots, w_{i, n_{1}}, \ldots, w_{i, n_{2}}, \ldots, w_{i, m_{i}}$ is a basis of W_{i} and $A w_{i}-\alpha_{i} w_{i} \in W_{i, k}(i=$ $\left.1,2, \ldots, K-1, n_{k}<i \leq n_{k+1}\right)$. So the representation matrix of $A \mid W_{i}$ is an upper triangular matrix if $w_{i, 1}, \ldots, w_{i, n_{1}}, \ldots, w_{i, n_{2}}, \ldots, w_{i, m_{i}}$ is a basis of W_{i}.

STEP6. Showing (i). By STEP4, $\left\{w_{i, j}\right\}_{\left\{i=1, \ldots, K, j=1,2, . ., \operatorname{dim}\left(W_{i}\right)\right\}}$ is a basis of \mathbb{C}^{n}. Clearly the representation matrix of A is an upper triangular matrix if $\left\{w_{i, j}\right\}_{\left\{i=1, \ldots, K, j=1,2, . ., \operatorname{dim}\left(W_{i}\right)\right\}}$ is a basis of \mathbb{C}^{n}.

STEP6. Showing (ii). (i) implies (ii).

References

[1] Ichiro Satake, LINEAR ALGEBRA, ISBN-0 8247-1596-9.

