A study memo on weak law of large numbers and crude Monte Carlo Simulation

1 Law of large numbers

Proposition 1.1 (Weak law of large numbers). Let
(S1) (Ω, \mathscr{F}, P) is a probability space.
(A1) $\left\{X_{i}\right\}_{i=1}^{\infty}$ is a sequence of independent random variables on (Ω, \mathscr{F}, P).
(A2) There is a $\mu \in \mathscr{P}(\mathbb{R})$ such that $X_{i} \sim \mu(\forall i)$.
(A3) $E[\mu]=\nu$ and $V[\mu]=\sigma^{2}$ exist.
then the followings hold.
(i) $\left\{X_{i}\right\}_{i=1}^{\infty}$ stochastic converges to μ, i.e., for any $\epsilon>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu(|\bar{X}-\mu| \geq \epsilon)=0 \tag{1}
\end{equation*}
$$

Hereafter we denote stochastic convergence by $\xrightarrow[N \rightarrow \infty]{\mathrm{p}}$ or plim.
(ii) For any $\epsilon>0$,

$$
\begin{equation*}
\mu(|\bar{X}-\mu| \geq \epsilon) \leq \frac{\sigma^{2}}{n \epsilon^{2}} \tag{2}
\end{equation*}
$$

A proof using Chebyshev's inequality. For any $n \in \mathbb{N}$,

$$
\begin{align*}
\mu(|\bar{X}-\mu| \geq \epsilon) & =\frac{\epsilon^{2} \mu\left(|\bar{X}-\mu|^{2} \geq \epsilon^{2}\right)}{\epsilon^{2}} \\
& \leq \frac{1}{\epsilon^{2}} \int_{\left\{|\bar{X}-\mu|^{2} \geq \epsilon^{2}\right\}} \epsilon^{2} d P \\
& \leq \frac{1}{\epsilon^{2}} V[\bar{X}]=\frac{\sigma^{2}}{n \epsilon^{2}} \tag{3}
\end{align*}
$$

This implies the above equation.
A proof using Central limit theorem. By resetting $X_{i} \rightarrow \frac{X_{i}-\mu}{\sigma}$, we can assume $\mu=0$ and $\sigma=1$. Let us fix arbitary $\epsilon>0$ and $\delta>0$. There is $a>0$ such that

$$
\begin{equation*}
N(0,1)((-\infty,-a) \cup(a, \infty))<\delta \tag{4}
\end{equation*}
$$

By Central limit theorem, there is $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\frac{a}{\sqrt{n_{0}}}<\delta \tag{5}
\end{equation*}
$$

and for any $n \geq n_{0}$

$$
\begin{equation*}
|\mu(|\sqrt{n} \bar{X}| \geq a)-N(0,1)((-\infty,-a) \cup(a, \infty))|<\delta \tag{6}
\end{equation*}
$$

So for any $n \geq n_{0}$

$$
\begin{align*}
\mu(|\bar{X}| \geq \epsilon) & \leq \mu\left(|\bar{X}| \geq \frac{a}{\sqrt{n}}\right)=\mu(\sqrt{n}|\bar{X}| \geq a) \\
& \leq 2 \delta \tag{7}
\end{align*}
$$

So $\varlimsup_{n \rightarrow \infty} \mu(|\bar{X}| \geq \epsilon) \leq 2 \delta$. Consequently, $\lim _{n \rightarrow \infty} \mu(|\bar{X}| \geq \epsilon)=0$.

2 Crude Monte Carlo method

Proposition 2.1. Let
(S1) $\left(S:=\{1,2, \ldots, M\}, 2^{\Omega}, H\right)$ is a probability space.
(S2) (Ω, \mathscr{F}, P) is a probability space.
(S3) $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a sequence of independet random variables on Ω such that $X_{n}(\Omega) \subset S$ for any $n \in \mathbb{N}$.
(A1) $X_{n} \sim H$ for any $\left.n \in \mathbb{N} . X_{n} \sim H\right)$ means that $P\left(\left\{X_{n}=i\right\}\right)=$ $H(i)$
(S4) g is a function on S.
(S5) $\left\{Y_{n}\right\}_{n=1}^{\infty}$ is a sequence of independet random variables on Ω such that $Y_{n}(\Omega) \subset S$ for any $n \in \mathbb{N}$.
(A2) $Y_{n} \sim C$ for any $n \in \mathbb{N}$. Here, C is the counting measure of S.
then

$$
\begin{equation*}
\operatorname{plim}_{N \rightarrow \infty} \frac{\Sigma_{i=1}^{N} g\left(X_{i}\right)}{N}=\Sigma_{s \in S} g(s) H(\{s\})=\# S \operatorname{plim}_{N \rightarrow \infty} \frac{\Sigma_{i=1}^{N} g\left(Y_{i}\right) H\left(\left\{Y_{i}\right\}\right)}{N} \tag{8}
\end{equation*}
$$

STEP1. Showing (the left side) $=\left(\right.$ the middle side) . Clearly $\left\{g\left(X_{n}\right)\right\}_{n=1}^{\infty}$ is a sequence of independet random variables on Ω. By $(A 1)$,

$$
\begin{equation*}
\int_{\Omega} g\left(X_{n}\right) d P=\Sigma_{s \in S} g(s) H(\{s\}) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} g\left(X_{n}\right)^{2} d P=\Sigma_{s \in S} g^{2}(s) H(\{s\}) \tag{10}
\end{equation*}
$$

So by weak law of large numbers (8) holds.

STEP2. Showing (the right side)=(the middle side) . We set

$$
\begin{equation*}
G: S \ni s \mapsto g(s) H(\{s\}) \# S \in \mathbb{R} \tag{11}
\end{equation*}
$$

By applying the method of STEP1 to G and C,

$$
\begin{align*}
\operatorname{plim}_{N \rightarrow \infty} \frac{\Sigma_{i=1}^{N} g\left(Y_{i}\right) H\left(\left\{Y_{i}\right\}\right) \# S}{N} & =\Sigma_{s \in S} g(s) H(\{s\}) \# S C(\{s\}) \\
& =\Sigma_{s \in S} g(s) H(\{s\}) \tag{12}
\end{align*}
$$

References

[1] Tadahisa Funaki, Probability Theory(in Japanese), ISBN-13 9784254116007.
[2] Shinichi Kotani, Measure and Probability(in Japanese), ISBN4-00-0106341.
[3] A study memo on a proof of the central limit theorem https://osmanthus.work/?p=607
[4] Tatsuya Kubota, Foundations of modern mathematical statistics(in Japanese), ISBN978-4-320-11166-0.

