A study memo on implicit function theorem and method of Lagrange multiplier

Contents

1	Inverse function theorem	2
2	Implicit function theorem	5
3	Method of Lagrange multiplier	5

1 Inverse function theorem

Lemma 1.1. Let

(S1) $I_b := (-b, b)^{n+1}$ and $J_b := (-b, b)^n$. (S2) $a \in I_b$. (A1) $f \in C^1(\bar{I}_b, \mathbb{R})$. (A2) f(a) = 0. (A3) $\alpha := inf_{x \in I_b} \frac{\partial f}{\partial x_1}(x) > 0$.

then $r \in C^1(J_b, \mathbb{R})$ such that

$$f(r(y), y) = 0 \ (\forall y \in J_b) \tag{1}$$

Proof. By (A3), for any $y \in J_b$ there exists only one $r(y) \in (-b, b)$ such that f(r(y), y) = 0.

Let us fix arbitrary $y \in J_b$ and fix arbitrary $i \in \{2, ..., n\}$. For $z \in \mathbb{R}$ such that |z| is sufficient small,

$$0 = 0 - 0$$

= $f(r(y + ze_i), y + ze_i) - f(r(y + ze_i), y)$
+ $f(r(y + ze_i), y) - f(r(y), y)$
= $\int_0^1 \frac{d}{dt} f(r(y + ze_i), y + tze_i) dt$
+ $\int_0^1 \frac{d}{dt} f(r(y) + t(r(y + ze_i) - r(y)), y) dt$
= $z \int_0^1 \frac{\partial f}{\partial x_i} (r(y + ze_i), y + tze_i) dt$
+ $(r(y + ze_i) - r(y)) \int_0^1 \frac{\partial f}{\partial x_1} (r(y) + t(r(y + ze_i) - r(y)), y) dt$ (2)

By (2), $(r(y+z\boldsymbol{e}_i)-r(y)) \leq |z|\frac{1}{\alpha}sup_{\bar{I}_b}|\frac{\partial f}{\partial x_i}|$. So r is continuous on J_b . By (A1) and (A3), $\int_0^1 \frac{\partial f}{\partial x_1}(r(y)+t(r(y+z\boldsymbol{e}_i)-r(y)),y)dt > 0$. So, by (2),

$$\frac{(r(y+z\boldsymbol{e}_i)-r(y))}{z} = \frac{(\int_0^1 \frac{\partial f}{\partial x_i}(r(y+z\boldsymbol{e}_i),y+tz\boldsymbol{e}_i)dt}{\int_0^1 \frac{\partial f}{\partial x_1}(r(y)+t(r(y+z\boldsymbol{e}_i)-r(y)),y)dt}$$
(3)

By (A1) and continuity of r and (3),

$$\lim_{z \to 0} \frac{(r(y + z\boldsymbol{e}_i) - r(y))}{z} = \frac{\partial f}{\partial x_i}(r(y), y) \frac{\partial f}{\partial x_1}(r(y), y) \tag{4}$$

Consequently $r \in C^1(J_b, \mathbb{R})$.

Theorem 1.1 (Inverse function theorem). Let

- (S1) U is open set in \mathbb{R}^n .
- $(S2) \ a \in U.$
- (A1) $f \in C^1(U, \mathbb{R}^n)$.
- (A2) det(Jf(a)) > 0 on U.

then there is $V \subset U$ such that V and f(U) are open set and $f: V \to f(V)$ is injective and $f^{-1} \in C^1(f(V), V)$.

STEP1: case when n = 1. It is easy to show.

STEP2-1: f is locally injective(case when n > 1). Let us fix arbitrary $n_0 \in \mathbb{N}$. We assume the above theorem is true if $n \leq n_0$. Let us assume $n = n_0 + 1$. By (A2), for any $i \in \{1, 2, ..., n\}$ there is $u_i \in \mathbb{R}^n$ such that $Jf(a)u_i = e_i$. By setting for sufficient b > 0 $g : (-b, b)^n \ni t \mapsto f(\sigma_{i=1}^n t_i v_i) \in \mathbb{R}^n$, We can assume a = 0 and f(0) = 0 and $[-c, c]^n \subset U$ for some c > 0. and

$$\frac{\partial f^i}{\partial x_i} > 0 \text{ on } I_c := (-c, c)^n \ (\forall i > 0)$$
(5)

By (5), clearly f is injective on I_c .

STEP2-2: f is locally open map(case when n > 1). Next, we will show f is open map in I_c for sufficient small c > 0. And by Lemma1.1, there is $c' \in (0, c)$ and $r : C^1(J'_c, \mathbb{R})$ such that $f_1(r(y), y) = 0$ ($\forall y \in J_{c'}$). Here, $J'_c := (-c', c')^{n_0}$. By resetting c to be sufficient smaller, we can assum that c = c'.

We set $\tilde{f} = (f_2, ..., f_n)$. Let us set $g : J_c \ni y \mapsto \tilde{f}(r(y), y) \mathbb{R}^{n_0}$. $Jg(0) = \begin{pmatrix} e_2^T \\ e_3^T \\ ... \\ e_n^T \end{pmatrix} \begin{pmatrix} dr \\ e_1^T \\ ... \\ e_{n_0}^T \end{pmatrix} = E_{n_0}$. By the assumption in mathematical induction, there is

 $c'' \in (0, c)$ such that $g(J_{c''})$ is an open set in \mathbb{R}^{n_0} and g is injective on $J_{c''}$. By resetting c to be sufficient smaller, we can assum that c = c''.

Let us fix arbitrary connected open interval $(x_1, x_2) \times J \subset I_c$. We set $I := (x_1, x_2)$. We will show $f(I \times J)$ is open set. Let us fix arbitrary point $f(x_0, y_0) \in f(I \times J)$. Because (5), For any $y \in J$, $f(x_1, y) < f(x_0, y) < f(x_2, y)$. Because \overline{J} is compact, by (5), there is d_1 and d_2 such that

$$f_1(x_1, y) \le d_1 < f_1(x_0, y) < d_2 \le f_1(x_2, y) \ (\forall y \in J)$$
(6)

We set $W := (d_1, d_2) \times g(J)$. Cleary $f(x, y) \in W$. Because g is open map, W is open set. We will show $W \subset f(I \times J)$. Let us fix arbitrary $(u, g(y)) \in I \times W$. Because $f_1(\cdot, y)$ is continuous and (6), by intermediate value theorem, there is $x \in I$ such that $f_1(x, y) = u$. So $f(x, y) = (f_1(x, y), g(y)) = (u, g(y))$. This means $W \subset f(I \times J)$. Consequently, f is open map in I_c .

We replace f by $f|I_c$.

STEP2-3: For each i, $\frac{\partial f^{-1}}{\partial w_i}$ exists(case when n > 1). Let us fix arbitrary $(u_0, v_0) \in W$. Let us set $(x, y) := f^{-1}(u_0, v_0)$. By using an approach is same with one in STEP2-1, it is enough to show that for any $i \frac{\partial f^{-1}}{\partial w_i}(x_0, y_0)$ exists we can assume that $Jf(x_0, y_0) = E_n$.

Let us fix arbitrary $i \in \{1, 2, ..., n\}$. Let us pick up $j \in (\{1, 2, ..., n\} \setminus \{i\}$. By swaping x_j by x_1 and swaping f_j by f_1 , we can assume j = 1. By using an approach is same with one in STEP2-2, there is $R \in C^1(J_c, \mathbb{R})$ such that

$$f_1(R(y), y) = u \ (\forall y \in J_c) \tag{7}$$

and $G: J_c \ni y \mapsto \tilde{f}(R(y), y) \in G(J_c)$ is injective and open map and class C^1 and G^{-1} is class C^1 .

For any t such that |t| is sufficient small,

$$f^{-1}((u,v) + t\mathbf{e}_i) = (R(G^{-1}((u,v) + t\mathbf{e}_i)), G^{-1}((u,v) + t\mathbf{e}_i))$$
(8)

The right side of (8) is differentiable at t = 0.

 $\frac{\partial f^{-1}}{\partial w_i}(x_0, y_0)$ exists.

STEP2-4 f^{-1} is class C^1 (case when n > 1). Lastly, we will show $f^{-1} \in C^1(W, I_c)$. By STEP2-3,

$$ff^{-1}(w) = w \ (\forall w \in W) \tag{9}$$

So,

$$\frac{\partial f^{-1}}{\partial w_i}(w) = Jf(f^{-1}(w))^{-1}e_i \ (\forall i, \forall w \in W)$$
(10)

The right side of (10) is continuous with respect to w. So f^{-1} is class C^1 . \Box

Remark 1.1. There is a map which does not have global inverse map and has nonsingular Jacobi matrix at every point. $f : (0, \infty) \times \mathbb{R} \ni (r, \theta) \mapsto r \begin{pmatrix} r \cos(\theta) \\ r \sin(\theta) \end{pmatrix} \in \mathbb{R}^2 \setminus \{0\}$ is a example of such maps.

Remark 1.2. [1] gives a sufficient condition for existence of global inverse map.

The following proposition is easily proved by inverse mapping theorem.

Corollary 1.1. (S1) U is open set in \mathbb{R}^n . (S2) $a \in U$. (A1) $f \in C^1(U, \mathbb{R}^n)$. (S3) V is open set in \mathbb{R}^n such that $f(U) \subset V$. (A2) $g \in C^1(V, \mathbb{R}^n)$. (A3) $g \circ f = id_U$. then there is f(U) is open set.

2 Implicit function theorem

Theorem 2.1 (Implicit function theorem). Let

 $\begin{array}{l} (S1) \ U \ is \ open \ set \ in \ \mathbb{R}^{m+n}.\\ (S2) \ a := (a_1, a_2, ..., a_m) \ and \ b := (b_1, b_2, ..., b_n) \ and \ c := (a, b).\\ (S3) \ c \in U.\\ (A1) \ f \in C^1(U, \mathbb{R}^m).\\ (A2) \ f(c) = 0.\\ (A3) \ det(\{\frac{\partial f_i}{\partial x_j}(a)\}_{1 \le i,j \le m}) \neq 0. \end{array}$

then there is an open subset in \mathbb{R}^n V and $r \in C^1(V, \mathbb{R}^m)$ such that $b \in V$ and r(b) = a and

$$r(y), y) \subset U \text{ and } f(r(y), y) = 0 \ (\forall y \in V)$$

$$(11)$$

Proof. By resetting Bf for $B = \{\frac{\partial f_i}{\partial x_j}(a)\}_{1 \le i,j \le m}^{-1}$, we can assume.

Let us set $g: U \ni (x, y) \mapsto (f(x), y) \in \mathbb{R}^{m+n}$. Because $det(Jg(c)) \neq 0$, by inverse function theorem, there is an open neighborhood of $c U' := B(a, \epsilon) \times B(b, \epsilon) \subset U$ such that g(U') is open subset and $g: U' \to g(U')$ is class C^1 homeomorphisim.

We set $r: B(b, \epsilon) \ni g^{-1}(0, y) \in U'$. Clearly r satisfies the conditions in the above theorem.

3 Method of Lagrange multiplier

Theorem 3.1 (Method of Lagrange multiplier). Let

(S1) U is open set in \mathbb{R}^{m+n} . (S2) $a := (a_1, a_2, ..., a_m)$ and $b := (b_1, b_2, ..., b_n)$ and c := (a, b). (S3) $c \in U$. (S4) $g \in C^1(U, \mathbb{R})$. (A1) $f \in C^1(U, \mathbb{R}^m)$. (A2) f(c) = 0. (A3) rank(Jf(c)) = m. (A4) a is a maximum point of g in U.

then there is $\lambda \in \mathbb{R}^m$ such that

$$dg(a) = \sum_{i=1}^{m} \lambda_i df_i(a) \tag{12}$$

Proof. By swapping variables, we can assume (A3) in Theorem2.1. We pick r in Theorem2.1. We define $(s_1, s_2, ..., s_n)$ by $(s_1, s_2, ..., s_n) := \begin{pmatrix} Jr(b) \\ E_n \end{pmatrix}$ Clearly $dim < s_1, s_2, ..., s_n >= n$. So $dim < s_1, s_2, ..., s_n >^{\perp} = m$ Because $f(r(\cdot), \cdot) \equiv 0$ in $U, < df_1, df_2, ..., df_m > \subset < s_1, s_2, ..., s_n >^{\perp}$. By (A3), $< df_1, df_2, ..., df_m > = < s_1, s_2, ..., s_n >^{\perp}$. Because $g(r(\cdot), \cdot)$ achives maximum at $b, dg \in < s_1, s_2, ..., s_n >^{\perp}$. Consequently, there is $\lambda \in \mathbb{R}^m$ such that

$$dg(a) = \sum_{i=1}^{m} \lambda_i df_i(a) \tag{13}$$

References

 D. Gale, H. Nikaido, The Jacobian matrix and global univalence of mappings, Math. Annalen 159, 81-93(1965).