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1 Inverse function theorem

Lemma 1.1. Let

(S1) Ib := (−b, b)n+1 and Jb := (−b, b)n.

(S2) a ∈ Ib.

(A1) f ∈ C1(Īb,R).
(A2) f(a) = 0.

(A3) α := infx∈Ib
∂f
∂x1

(x)) > 0.

then r ∈ C1(Jb,R) such that

f(r(y), y) = 0 (∀y ∈ Jb) (1)

Proof. By (A3), for any y ∈ Jb there exists only one r(y) ∈ (−b, b) such that
f(r(y), y) = 0.

Let us fix arbitary y ∈ Jb and fix arbitary i ∈ {2, , ..., n}.
For z ∈ R such that |z| is sufficient small,

0 = 0− 0

= f(r(y + zei), y + zei)− f(r(y + zei), y)

+f(r(y + zei), y)− f(r(y), y)

=

∫ 1

0

d

dt
f(r(y + zei), y + tzei)dt

+

∫ 1

0

d

dt
f(r(y) + t(r(y + zei)− r(y)), y)dt

= z

∫ 1

0

∂f

∂xi
(r(y + zei), y + tzei)dt

+(r(y + zei)− r(y))

∫ 1

0

∂f

∂x1
(r(y) + t(r(y + zei)− r(y)), y)dt (2)

By (2), (r(y + zei)− r(y)) ≤ |z| 1αsupĪb |
∂f
∂xi

|. So r is continuous on Jb.

By (A1) and (A3),
∫ 1

0
∂f
∂x1

(r(y) + t(r(y + zei)− r(y)), y)dt > 0. So, by (2),

(r(y + zei)− r(y))

z
=

(
∫ 1

0
∂f
∂xi

(r(y + zei), y + tzei)dt∫ 1

0
∂f
∂x1

(r(y) + t(r(y + zei)− r(y)), y)dt
(3)

By (A1) and continuity of r and (3),

lim
z→0

(r(y + zei)− r(y))

z
=

∂f

∂xi
(r(y), y)

∂f

∂x1
(r(y), y) (4)

Consequently r ∈ C1(Jb,R).
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Theorem 1.1 (Inverse function theorem). Let

(S1) U is open set in Rn.

(S2) a ∈ U .

(A1) f ∈ C1(U,Rn).

(A2) det(Jf(a)) > 0 on U .

then there is V ⊂ U such that V and f(U) are open set and f : V → f(V ) is
injective and f−1 ∈ C1(f(V ), V ).

STEP1: case when n = 1. It is easy to show.

STEP2-1: f is locally injective(case when n > 1). Let us fix arbitary n0 ∈ N.
We assume the above theorem is true if n ≤ n0. Let us assume n = n0 + 1.
By (A2), for any i ∈ {1, 2, ..., n} there is ui ∈ Rn such that Jf(a)ui = ei. By
setting for sufficient b > 0 g : (−b, b)n ∋ t 7→ f(σn

i=1tivi) ∈ Rn, We can assume
a = 0 and f(0) = 0 and [−c, c]n ⊂ U for some c > 0. and

∂f i

∂xi
> 0 on Ic := (−c, c)n (∀i > 0) (5)

By (5), clearly f is injective on Ic.

STEP2-2: f is locally open map(case when n > 1). Next, we will show f is open
map in Ic for sufficient small c > 0. And by Lemma1.1, there is c′ ∈ (0, c) and
r : C1(J ′

c,R) such that f1(r(y), y) = 0 (∀y ∈ Jc′). Here, J ′
c := (−c′, c′)n0 . By

resetting c to be sufficient smaller, we can assum that c = c′.
We set f̃ = (f2, ..., fn). Let us set g : Jc ∋ y 7→ f̃(r(y), y)Rn0 . Jg(0) =

eT2
eT3
...
eTn




dr
eT1
...
eTn0

 = En0 . By the assumption in mathematical induction, there is

c′′ ∈ (0, c) such that g(Jc′′) is an open set in Rn0 and g is injective on Jc′′ . By
resetting c to be sufficient smaller, we can assum that c = c′′.

Let us fix arbitary connected open interval (x1, x2) × J ⊂ Ic. We set I :=
(x1, x2). We will show f(I×J) is open set. Let us fix arbitary point f(x0, y0) ∈
f(I × J). Because (5), For any y ∈ J , f(x1, y) < f(x0, y) < f(x2, y). Because
J̄ is compact, by (5), there is d1 and d2 such that

f1(x1, y) ≤ d1 < f1(x0, y) < d2 ≤ f1(x2, y) (∀y ∈ J) (6)

We set W := (d1, d2) × g(J). Cleary f(x, y) ∈ W . Because g is open map, W
is open set. We will show W ⊂ f(I × J). Let us fix arbitary (u, g(y)) ∈ I ×W .
Because f1(·, y) is continuous and (6), by intermediate value theorem, there is
x ∈ I such that f1(x, y) = u. So f(x, y) = (f1(x, y), g(y)) = (u, g(y)). This
means W ⊂ f(I × J). Consequently, f is open map in Ic.

We replace f by f |Ic.
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STEP2-3: For each i, ∂f−1

∂wi
exists(case when n > 1). Let us fix arbitary (u0, v0) ∈

W . Let us set (x, y) := f−1(u0, v0). By using an approach is same with one in

STEP2-1, it is enough to show that for any i ∂f−1

∂wi
(x0, y0) exists we can assume

that Jf(x0, y0) = En.
Let us fix arbitary i ∈ {1, 2, ..., n}. Let us pick up j ∈ ({1, 2, ..., n} \ {i}. By

swaping xj by x1 and swaping fj by f1, we can assume j = 1. By using an
approach is same with one in STEP2-2, there is R ∈ C1(Jc,R) such that

f1(R(y), y) = u (∀y ∈ Jc) (7)

and G : Jc ∋ y 7→ f̃(R(y), y) ∈ G(Jc) is injective and open map and class C1

and G−1 is class C1.
For any t such that |t| is sufficient small,

f−1((u, v) + tei) = (R(G−1((u, v) + tei)), G
−1((u, v) + tei)) (8)

The right side of (8) is differentiable at t = 0.
∂f−1

∂wi
(x0, y0) exists.

STEP2-4 f−1 is class C1(case when n > 1). Lastly, we will show f−1 ∈ C1(W, Ic).
By STEP2-3,

ff−1(w) = w (∀w ∈ W ) (9)

So,
∂f−1

∂wi
(w) = Jf(f−1(w))−1ei (∀i,∀w ∈ W ) (10)

The right side of (10) is continuous with respect to w. So f−1 is class C1.

Remark 1.1. There is a map which does not have global inverse map and
has nonsingular Jacobi matrix at every point. f : (0,∞) × R ∋ (r, θ) 7→

r

(
r cos(θ)
r sin(θ)

)
∈ R2 \ {0} is a example of such maps.

Remark 1.2. [1] gives a sufficient condition for existence of global inverse map.

The following proposition is easily proved by inverse mapping theorem.

Corollary 1.1. (S1) U is open set in Rn.

(S2) a ∈ U .

(A1) f ∈ C1(U,Rn).

(S3) V is open set in Rn such that f(U) ⊂ V .

(A2) g ∈ C1(V,Rn).

(A3) g ◦ f = idU .
then there is f(U) is open set.
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2 Implicit function theorem

Theorem 2.1 (Implicit function theorem). Let

(S1) U is open set in Rm+n.

(S2) a := (a1, a2, ..., am) and b := (b1, b2, ..., bn) and c := (a, b).

(S3) c ∈ U .

(A1) f ∈ C1(U,Rm).

(A2) f(c) = 0.

(A3) det({ ∂fi
∂xj

(a)}1≤i,j≤m) ̸= 0.

then there is an open subset in Rn V and r ∈ C1(V,Rm) such that b ∈ V and
r(b) = a and

(r(y), y) ⊂ U and f(r(y), y) = 0 (∀y ∈ V ) (11)

Proof. By resetting Bf for B = { ∂fi
∂xj

(a)}−1
1≤i,j≤m, we can assume.

Let us set g : U ∋ (x, y) 7→ (f(x), y) ∈ Rm+n. Because det(Jg(c)) ̸= 0, by
inverse function theorem, there is an open neighborhood of c U ′ := B(a, ϵ) ×
B(b, ϵ) ⊂ U such that g(U ′) is open subset and g : U ′ → g(U ′) is class C1

homeomoriphisim.
We set r : B(b, ϵ) ∋ g−1(0, y) ∈ U ′. Clearly r satisfies the conditions in the

above theorem.

3 Method of Lagrange multiplier

Theorem 3.1 (Method of Lagrange multiplier). Let

(S1) U is open set in Rm+n.

(S2) a := (a1, a2, ..., am) and b := (b1, b2, ..., bn) and c := (a, b).

(S3) c ∈ U .

(S4) g ∈ C1(U,R).
(A1) f ∈ C1(U,Rm).

(A2) f(c) = 0.

(A3) rank(Jf(c)) = m.

(A4) a is a maximum point of g in U .

then there is λ ∈ Rm such that

dg(a) = Σm
i=1λidfi(a) (12)
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Proof. By swapping variables, we can assume (A3) in Theorem2.1. We pick r

in Theorem2.1. We define (s1, s2, ..., sn) by (s1, s2, ..., sn) :=

(
Jr(b)
En

)
Clearly

dim < s1, s2, ..., sn >= n. So dim < s1, s2, ..., sn >⊥= m Because f(r(·), ·) ≡ 0
in U , < df1, df2, ..., dfm >⊂< s1, s2, ..., sn >⊥. By (A3), < df1, df2, ..., dfm >=<
s1, s2, ..., sn >⊥. Because g(r(·), ·) achives maximum at b, dg ∈< s1, s2, ..., sn >⊥.
Consequnently, there is λ ∈ Rm such that

dg(a) = Σm
i=1λidfi(a) (13)
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