A study memo on implicit function theorem and method of Lagrange multiplier

Contents

1 Inverse function theorem 2
2 Implicit function theorem 5
3 Method of Lagrange multiplier 5

1 Inverse function theorem

Lemma 1.1. Let
(S1) $I_{b}:=(-b, b)^{n+1}$ and $J_{b}:=(-b, b)^{n}$.
(S2) $a \in I_{b}$.
(A1) $f \in C^{1}\left(\bar{I}_{b}, \mathbb{R}\right)$.
(A2) $f(a)=0$.
(A3) $\left.\alpha:=\inf f_{x \in I_{b}} \frac{\partial f}{\partial x_{1}}(x)\right)>0$.
then $r \in C^{1}\left(J_{b}, \mathbb{R}\right)$ such that

$$
\begin{equation*}
f(r(y), y)=0\left(\forall y \in J_{b}\right) \tag{1}
\end{equation*}
$$

Proof. By (A3), for any $y \in J_{b}$ there exists only one $r(y) \in(-b, b)$ such that $f(r(y), y)=0$.

Let us fix arbitary $y \in J_{b}$ and fix arbitary $i \in\{2,, \ldots, n\}$.
For $z \in \mathbb{R}$ such that $|z|$ is sufficient small,

$$
\begin{align*}
0= & 0-0 \\
= & f\left(r\left(y+z \boldsymbol{e}_{i}\right), y+z \boldsymbol{e}_{i}\right)-f\left(r\left(y+z \boldsymbol{e}_{i}\right), y\right) \\
& +f\left(r\left(y+z \boldsymbol{e}_{i}\right), y\right)-f(r(y), y) \\
= & \int_{0}^{1} \frac{d}{d t} f\left(r\left(y+z \boldsymbol{e}_{i}\right), y+t z \boldsymbol{e}_{i}\right) d t \\
& +\int_{0}^{1} \frac{d}{d t} f\left(r(y)+t\left(r\left(y+z \boldsymbol{e}_{i}\right)-r(y)\right), y\right) d t \\
= & z \int_{0}^{1} \frac{\partial f}{\partial x_{i}}\left(r\left(y+z \boldsymbol{e}_{i}\right), y+t z \boldsymbol{e}_{i}\right) d t \\
& +\left(r\left(y+z \boldsymbol{e}_{i}\right)-r(y)\right) \int_{0}^{1} \frac{\partial f}{\partial x_{1}}\left(r(y)+t\left(r\left(y+z \boldsymbol{e}_{i}\right)-r(y)\right), y\right) d t \tag{2}
\end{align*}
$$

By $(2),\left(r\left(y+z \boldsymbol{e}_{i}\right)-r(y)\right) \leq|z| \frac{1}{\alpha} \sup _{\bar{I}_{b}}\left|\frac{\partial f}{\partial x_{i}}\right|$. So r is continuous on J_{b}.
By (A1) and (A3), $\int_{0}^{1} \frac{\partial f}{\partial x_{1}}\left(r(y)+t\left(r\left(y+z \boldsymbol{e}_{i}\right)-r(y)\right), y\right) d t>0$. So, by (2),

$$
\begin{equation*}
\frac{\left(r\left(y+z \boldsymbol{e}_{i}\right)-r(y)\right)}{z}=\frac{\left(\int_{0}^{1} \frac{\partial f}{\partial x_{i}}\left(r\left(y+z \boldsymbol{e}_{i}\right), y+t z \boldsymbol{e}_{i}\right) d t\right.}{\int_{0}^{1} \frac{\partial f}{\partial x_{1}}\left(r(y)+t\left(r\left(y+z \boldsymbol{e}_{i}\right)-r(y)\right), y\right) d t} \tag{3}
\end{equation*}
$$

By (A1) and continuity of r and (3),

$$
\begin{equation*}
\lim _{z \rightarrow 0} \frac{\left(r\left(y+z \boldsymbol{e}_{i}\right)-r(y)\right)}{z}=\frac{\partial f}{\partial x_{i}}(r(y), y) \frac{\partial f}{\partial x_{1}}(r(y), y) \tag{4}
\end{equation*}
$$

Consequently $r \in C^{1}\left(J_{b}, \mathbb{R}\right)$.

Theorem 1.1 (Inverse function theorem). Let
(S1) U is open set in \mathbb{R}^{n}.
(S2) $a \in U$.
(A1) $f \in C^{1}\left(U, \mathbb{R}^{n}\right)$.
(A2) $\operatorname{det}(J f(a))>0$ on U.
then there is $V \subset U$ such that V and $f(U)$ are open set and $f: V \rightarrow f(V)$ is injective and $f^{-1} \in C^{1}(f(V), V)$.

STEP1: case when $n=1$. It is easy to show.
STEP2-1: f is locally injective(case when $n>1$). Let us fix arbitary $n_{0} \in \mathbb{N}$. We assume the above theorem is true if $n \leq n_{0}$. Let us assume $n=n_{0}+1$. By (A2), for any $i \in\{1,2, \ldots, n\}$ there is $u_{i} \in \mathbb{R}^{n}$ such that $J f(a) u_{i}=e_{i}$. By setting for sufficient $b>0 g:(-b, b)^{n} \ni \boldsymbol{t} \mapsto f\left(\sigma_{i=1}^{n} t_{i} v_{i}\right) \in \mathbb{R}^{n}$, We can assume $a=0$ and $f(0)=0$ and $[-c, c]^{n} \subset U$ for some $c>0$. and

$$
\begin{equation*}
\frac{\partial f^{i}}{\partial x_{i}}>0 \text { on } I_{c}:=(-c, c)^{n} \quad(\forall i>0) \tag{5}
\end{equation*}
$$

By (5), clearly f is injective on I_{c}.

STEP2-2: f is locally open map(case when $n>1$). Next, we will show f is open map in I_{c} for sufficient small $c>0$. And by Lemma1.1, there is $c^{\prime} \in(0, c)$ and $r: C^{1}\left(J_{c}^{\prime}, \mathbb{R}\right)$ such that $f_{1}(r(y), y)=0\left(\forall y \in J_{c^{\prime}}\right)$. Here, $J_{c}^{\prime}:=\left(-c^{\prime}, c^{\prime}\right)^{n_{0}}$. By resetting c to be sufficient smaller, we can assum that $c=c^{\prime}$.

We set $\tilde{f}=\left(f_{2}, \ldots, f_{n}\right)$. Let us set $g: J_{c} \ni y \mapsto \tilde{f}(r(y), y) \mathbb{R}^{n_{0}} . J g(0)=$ $\left(\begin{array}{c}\boldsymbol{e}_{2}^{T} \\ \boldsymbol{e}_{3}^{T} \\ \cdots \\ \boldsymbol{e}_{n}^{T}\end{array}\right)\left(\begin{array}{c}d r \\ \boldsymbol{e}_{1}^{T} \\ \cdots \\ \boldsymbol{e}_{n_{0}}^{T}\end{array}\right)=E_{n_{0}}$. By the assumption in mathematical induction, there is $c^{\prime \prime} \in(0, c)$ such that $g\left(J_{c^{\prime \prime}}\right)$ is an open set in $\mathbb{R}^{n_{0}}$ and g is injective on $J_{c^{\prime \prime}}$. By resetting c to be sufficient smaller, we can assum that $c=c^{\prime \prime}$.

Let us fix arbitary connected open interval $\left(x_{1}, x_{2}\right) \times J \subset I_{c}$. We set $I:=$ $\left(x_{1}, x_{2}\right)$. We will show $f(I \times J)$ is open set. Let us fix arbitary point $f\left(x_{0}, y_{0}\right) \in$ $f(I \times J)$. Because (5), For any $y \in J, f\left(x_{1}, y\right)<f\left(x_{0}, y\right)<f\left(x_{2}, y\right)$. Because \bar{J} is compact, by (5), there is d_{1} and d_{2} such that

$$
\begin{equation*}
f_{1}\left(x_{1}, y\right) \leq d_{1}<f_{1}\left(x_{0}, y\right)<d_{2} \leq f_{1}\left(x_{2}, y\right) \quad(\forall y \in J) \tag{6}
\end{equation*}
$$

We set $W:=\left(d_{1}, d_{2}\right) \times g(J)$. Cleary $f(x, y) \in W$. Because g is open map, W is open set. We will show $W \subset f(I \times J)$. Let us fix arbitary $(u, g(y)) \in I \times W$. Because $f_{1}(\cdot, y)$ is continuous and (6), by intermediate value theorem, there is $x \in I$ such that $f_{1}(x, y)=u$. So $f(x, y)=\left(f_{1}(x, y), g(y)\right)=(u, g(y))$. This means $W \subset f(I \times J)$. Consequently, f is open map in I_{c}.

We replace f by $f \mid I_{c}$.

STEP2-3: For each i, $\frac{\partial f^{-1}}{\partial w_{i}}$ exists(case when $n>1$). Let us fix arbitary $\left(u_{0}, v_{0}\right) \in$ W. Let us set $(x, y):=f^{-1}\left(u_{0}, v_{0}\right)$. By using an approach is same with one in STEP2-1, it is enough to show that for any $i \frac{\partial f^{-1}}{\partial w_{i}}\left(x_{0}, y_{0}\right)$ exists we can assume that $J f\left(x_{0}, y_{0}\right)=E_{n}$.

Let us fix arbitary $i \in\{1,2, \ldots, n\}$. Let us pick up $j \in(\{1,2, \ldots, n\} \backslash\{i\}$. By swaping x_{j} by x_{1} and swaping f_{j} by f_{1}, we can assume $j=1$. By using an approach is same with one in STEP2-2, there is $R \in C^{1}\left(J_{c}, \mathbb{R}\right)$ such that

$$
\begin{equation*}
f_{1}(R(y), y)=u\left(\forall y \in J_{c}\right) \tag{7}
\end{equation*}
$$

and $G: J_{c} \ni y \mapsto \tilde{f}(R(y), y) \in G\left(J_{c}\right)$ is injective and open map and class C^{1} and G^{-1} is class C^{1}.

For any t such that $|t|$ is sufficient small,

$$
\begin{equation*}
f^{-1}\left((u, v)+t \boldsymbol{e}_{i}\right)=\left(R\left(G^{-1}\left((u, v)+t \boldsymbol{e}_{i}\right)\right), G^{-1}\left((u, v)+t \boldsymbol{e}_{i}\right)\right) \tag{8}
\end{equation*}
$$

The right side of (8) is differentiable at $t=0$.
$\frac{\partial f^{-1}}{\partial w_{i}}\left(x_{0}, y_{0}\right)$ exists.
STEP2-4 f^{-1} is class C^{1} (case when $n>1$). Lastly, we will show $f^{-1} \in C^{1}\left(W, I_{c}\right)$. By STEP2-3,

$$
\begin{equation*}
f f^{-1}(w)=w(\forall w \in W) \tag{9}
\end{equation*}
$$

So,

$$
\begin{equation*}
\frac{\partial f^{-1}}{\partial w_{i}}(w)=J f\left(f^{-1}(w)\right)^{-1} e_{i}(\forall i, \forall w \in W) \tag{10}
\end{equation*}
$$

The right side of (10) is continuous with respect to w. So f^{-1} is class C^{1}.
Remark 1.1. There is a map which does not have global inverse map and has nonsingular Jacobi matrix at every point. $f:(0, \infty) \times \mathbb{R} \ni(r, \theta) \mapsto$ $r\binom{r \cos (\theta)}{r \sin (\theta)} \in \mathbb{R}^{2} \backslash\{0\}$ is a example of such maps.

Remark 1.2. [1] gives a sufficient condition for existence of global inverse map.
The following proposition is easily proved by inverse mapping theorem.
Corollary 1.1. (S1) U is open set in \mathbb{R}^{n}.
(S2) $a \in U$.
(A1) $f \in C^{1}\left(U, \mathbb{R}^{n}\right)$.
(S3) V is open set in \mathbb{R}^{n} such that $f(U) \subset V$.
(A2) $g \in C^{1}\left(V, \mathbb{R}^{n}\right)$.
(A3) $g \circ f=i d_{U}$.
then there is $f(U)$ is open set.

2 Implicit function theorem

Theorem 2.1 (Implicit function theorem). Let
(S1) U is open set in \mathbb{R}^{m+n}.
(S2) $a:=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $b:=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and $c:=(a, b)$.
(S3) $c \in U$.
(A1) $f \in C^{1}\left(U, \mathbb{R}^{m}\right)$.
(A2) $f(c)=0$.
(A3) $\operatorname{det}\left(\left\{\frac{\partial f_{i}}{\partial x_{j}}(a)\right\}_{1 \leq i, j \leq m}\right) \neq 0$.
then there is an open subset in $\mathbb{R}^{n} V$ and $r \in C^{1}\left(V, \mathbb{R}^{m}\right)$ such that $b \in V$ and $r(b)=a$ and

$$
\begin{equation*}
(r(y), y) \subset U \text { and } f(r(y), y)=0(\forall y \in V) \tag{11}
\end{equation*}
$$

Proof. By resetting $B f$ for $B=\left\{\frac{\partial f_{i}}{\partial x_{j}}(a)\right\}_{1 \leq i, j \leq m}^{-1}$, we can assume.
Let us set $g: U \ni(x, y) \mapsto(f(x), y) \in \mathbb{R}^{m+n}$. Because $\operatorname{det}(\operatorname{Jg}(c)) \neq 0$, by inverse function theorem, there is an open neighborhood of $c U^{\prime}:=B(a, \epsilon) \times$ $B(b, \epsilon) \subset U$ such that $g\left(U^{\prime}\right)$ is open subset and $g: U^{\prime} \rightarrow g\left(U^{\prime}\right)$ is class C^{1} homeomoriphisim.

We set $r: B(b, \epsilon) \ni g^{-1}(0, y) \in U^{\prime}$. Clearly r satisfies the conditions in the above theorem.

3 Method of Lagrange multiplier

Theorem 3.1 (Method of Lagrange multiplier). Let
(S1) U is open set in \mathbb{R}^{m+n}.
(S2) $a:=\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ and $b:=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and $c:=(a, b)$.
(S3) $c \in U$.
(S4) $g \in C^{1}(U, \mathbb{R})$.
(A1) $f \in C^{1}\left(U, \mathbb{R}^{m}\right)$.
(A2) $f(c)=0$.
(A3) $\operatorname{rank}(J f(c))=m$.
(A4) a is a maximum point of g in U.
then there is $\lambda \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
d g(a)=\Sigma_{i=1}^{m} \lambda_{i} d f_{i}(a) \tag{12}
\end{equation*}
$$

Proof. By swapping variables, we can assume (A3) in Theorem2.1. We pick r in Theorem2.1. We define $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ by $\left(s_{1}, s_{2}, \ldots, s_{n}\right):=\binom{\operatorname{Jr}(b)}{E_{n}}$ Clearly $\operatorname{dim}<s_{1}, s_{2}, \ldots, s_{n}>=n$. So $\operatorname{dim}<s_{1}, s_{2}, \ldots, s_{n}>^{\perp}=m$ Because $f(r(\cdot), \cdot) \equiv 0$ in $U,<d f_{1}, d f_{2}, \ldots, d f_{m}>C<s_{1}, s_{2}, \ldots, s_{n}>^{\perp}$. By (A3), $<d f_{1}, d f_{2}, \ldots, d f_{m}>=<$ $s_{1}, s_{2}, \ldots, s_{n}>^{\perp}$. Because $g(r(\cdot), \cdot)$ achives maximum at $b, d g \in<s_{1}, s_{2}, \ldots, s_{n}>^{\perp}$. Consequnently, there is $\lambda \in \mathbb{R}^{m}$ such that

$$
\begin{equation*}
d g(a)=\Sigma_{i=1}^{m} \lambda_{i} d f_{i}(a) \tag{13}
\end{equation*}
$$

References

[1] D. Gale, H. Nikaido, The Jacobian matrix and global univalence of mappings, Math. Annalen 159, 81-93(1965).

