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1 Introduction

This memo is a study memo on a proof of the central limit theorem. In this
memo, I will show the proof using characteristic functions.

Theorem 1.1 (Central limit theorem). Let
(51) (Q,.7,P) is a probability space.
(52) {X;}2, is a sequence of random variables on (Q, F, P).
(A1) 3p such that X; ~ p (Vi). Bellow, we fix such p.
(A2) {X;}| are independent for any N € N.
(A3) E[u) =v and V]u] = 02 and o # 0.

then P gmx weakly converges to N(0,1).

2 Preliminaries

Notation 2.1 (The set of all probability measures on (R)). Denote the set of
all borel sets on R by B(R). Denote the set of all probability measures on B(R)
by Z(R).

Notation 2.2 (order relation in R™). Let z,y € R™. Denote x <y (v <vy) if
z; <yi (7 <yi) (Vi)

Definition 2.1 (A distribution of random variables). Let (2, %, P) be a prob-
ability space and let X = (X1, Xs, ..., X,,) be random variables on 2. We define
Px : B(R") 3 A P(X71(A)) € [0,1]. We denote the distribution of X by
Py.

Definition 2.2 (A distribution function of a probability measure). Let u €
Z(R™). We define F,, : R™ 3 x — p((—00,z1] X (—00,z2]... X (—00,z,]) € R
and we call F,, the destribution function of p.

Notation 2.3 (Fourier transform). Let f € L'(R™). Denote fourier transfor-
mation of f by F(f) and denote fourier inverse transformation of f by F ~1(f).

Definition 2.3 (Weakly convergence of probability measures). Let

(51) (Q,.%,P) is a probability space.
(S2) Let {pn}; € P(RN).
(S3) Let u € P(RY).

{pn}o2q is weakly converges to p if lim, o F),, (x) = F,(x) for any point x at
which F, is continuous. Denote this by p, => p (n — 00)

Definition 2.4 (Characteristic function of probability measure). Let

(81) (Q,.Z,P) is a probability space.



(S2) Let u € P(R™).

then call ¢, : R" 3t — [o, exp(itz)du(x) € C is the characteristic function of
p. Bellow, assume the characteristic function of u denotes ¢, unless otherwise
noted.

Definition 2.5 (Characteristic function of random variables). Let

(S1) (2, Z, P) is a probability space.
(S2) Let X = (X1, Xa,...,Xp) be a vector of random variables on
(Q, #,P).

then call px : R >t — [, exp(itX)dP € C is the characteristic function of X.
Bellow, assume the characteristic function of X denotes px unless otherwise
noted.

Definition 2.6 (Tightness of probability measures). Let

(S1) (,.Z, P) is a probability space.
(52) Let {un}p2, € P(RY).

{1n }22 is tight if for any € > O there is a M > 0 such that
pa{z € RY ||z < M}) >1 - (1)
Definition 2.7 (Weakly compactness of probability measures). Let

(S1) (R, %, P) is a probability space.
(S2) Let {n}o, C P(RY).

{pn}oly is weakly compact if for any subsequence {fia(n) o1 Of {in}ney there
is a subsequence of {fla(n) fney which weakly comverges to a probability measure.

Definition 2.8 (Outer measure). Let
(S1) X is a set.

[:2%X —[0,00] is an outer measure on X if the followings hold.

(i) T(¢) =0
(ii) If A C B then I'(A) < T(B)
(iii) If {A;}22, C 2% then T(UX, A;) < X0, T(A;)

3 Assumptions

In this note, we use the following propositions without proofs.
Proposition 3.1. Let
(81) (Q,.%, P) is a probability space.



(52) X is a N-dimensional vector of random variables on (Q,.F).
(83) Let ux be a probability distribution of X .
(S4) f € LHQUL=(Q)

/RNfdMX:/QfOXdP (2)

Proposition 3.2. For any n > 0,

then

1 ()
F (eap(—n()?) = —s=eap(—=/-). (3)
V2 4n
Proposition 3.3. Let ¥ be a positive definite symmetric matriz.
t7'>%t
on(o,x)(t) = exp(— 5 ) (4)

Proposition 3.4. Let
(S1) Arbitrarily take M > 0 and fix it.

(S2) Let f,, : D(0O,M) > z+— (1 + 2)" € C, where D(0,M) := {z €
C| |2| € M}, (n=1,2,...).

then { £, Yo%, uniformly converges to exp on D(0, M).
Proposition 3.5. Let

(A1) Let F : R — R is monotone increasing.
then {x | F is not continuous at x} is at most countable.
Proposition 3.6. Let

(51) (Q,.7,P) is a probability space.
(52) Let {pn}pzy C P(R).
(A1) Let p € P(R) such that p, = p (n — o).

then for any bounded continuous function f: R +— R

lint o / F(@)dpin(z) = / F(@)du(z) (5)

Proposition 3.7. Let

(S81) (Q,.%,P) is a probability space.
(52) w is a probability measure on R.
(A1) Elu) =0 and Viu] = 1.

then ¢, (s) =1 — % +0(s%) (s —0)



The following propositions are used for only Section7 and Subsection8.2.
Proposition 3.8. Let
(S1) (X,d) is a metric space.

then there is a complete metric space ()ﬁd)~ and an isometry mapping i :
(X,d) = (X,d) such that i(X) is dense in X. We call (X,d) is a comple-
tion of (X,d).

Proposition 3.9. Let
(81) X is a set.

(52) T is an outer measure on X.

(S3) My :={A C X| if BC A and C C A° then p(B) + pu(C) =
u(BUO).

then the followings holds.

(i) My is a o-algebra.

(i1) T is a measure on Mr.
Proposition 3.10. Let
(S1) (X,d) is a compact metric space.
then C(X) C C,(X).
Proposition 3.11. Let

(S1) (X,d1) is a compact metric space.
(52) (Y,d2) is a compact metric space.
(A1) f e C(X,Y).

then f(X) is compact in'Y .
Proposition 3.12. C.(R") is dense in L'(R").

4 LY(RM)
Proposition 4.1. Let us fix € > 0. Then there is j. € C.(R™) U C(R™) such
that
(i) je is a probability density function on R™.
(ii) supp(je) C B(0,€).
The following proposition is easy to show.

Proposition 4.2. Let



(51) je is the function in Proposition4.1.
(S2) f € LY R").
Then
(i) jex [ € C(R")
(ii) supp(je * f) C {x € R"|d(z, supp(jc * [)) < €}
(iii) ||je = fllx < [|flla
(iv) im0 jc * f = f in LY(R™).

(i) and (ii). Tt is easy to show.

(i1i) and (iv). Tt is enable to show by an approach which is similar to the

proach in the proof of Proposition5.1.

By (iv) of Proposition4.2 and Proposition3.12, the following holds.

Proposition 4.3. C°(R") is dense in L'(R").
Proposition 4.4. Let

(S1) {fa}pzy C L'(R™) and f € L'(R").
(A1) lim, oo fr = f in L*(R™).

then lim, o frn = f (almost everyware pointwise convergence).

Proof. Let us fix arbitary m € N. We set
By o= { € B lim | fule) — f(2)] > —}

It is enough to show E,, is zero set.

—u(Ep) < Nfa— Sl >0

5 Fourier transform

Definition 5.1. Let ¢ > 0 and n € R.

G(x) := (2#12)3 emp(—%) (x e R")

Proposition 5.1. The followings hold.
(i) Ge >0 on R™ (Ve > 0).
(i) [gn Gedx = 1.

ap-



(i11) For any § > 0, lim._,o fx\>5 G.dz = 0.

(iv) For any f € L'(R"), ||Ge* flly < [If]l1-

(v) For any f € L'(R™), lim_,o G x f = f in L*(R"™).

(vi) FHF(Ge)) = G, (Ve >0)
(i) and (ii). Because G, is the probability denity function of N(0,€E,), (i) and
(ii) hold. O

(iii). Because f (z)dx = fleé G1(z)dz, (iii) holds. O

x|<§

(iv). By (i) and (ii),

[ 1Gog@las = [ 1] G- powislds
R™ R™ R™
< //G 9(y)|dydz
Rn JR™

- / Ge(x —y)dx|g(y)|dy
n JRrn

= [ latwdy

(v). By (iv) and Proposition3.12, we can assume f € C.(R").

By Lebesugue’s convergence theorem and (iv), it is enough to show G * f
pointwize converges to f.

Let us fix arbitary € > 0. Because f is uniform continuous on R", |f(x) —
f(y)| < § (for any z,y such that |z — y| < 9).

By (iu1), there is 79 > 0 such that flw\>5 Grdx <

By (ii), for any x € R"™

O

72(%\)‘\6\00-5-1) (for any 7 < 79).

Gex fx) = f(x)| = |RnGs(y)(f(fﬂ*y)*f(x))dyl

IA

/| _, G @ =)~ f(@)ldy
+ /lzwc:e(ynf(xy)f(w)ldy

€
< 5+ 2l Ge(y)dy
|z[>6
< € (8)

(vi). By Proposition3.2, (vi) holds.



Proposition 5.2 (Inverse formula). For any f € L'(R™) such that Z(f) €
LY(R™),

f=7"1F() (9)
Proof. By (v) in Proposition5.1 and Proposition4.4, it is enough to show G * f

pointwize converges to .# ~1(.Z(f)) on R™.
By (vi) in Proposition5.1 and Proposition3.2, for any = € R™

Gex f(z) = FUF(G)) * f(a)

T TG — ) f(y)dy
1
(2m)

s

I
T

F(Ge)(§)exp(i(z — y)E)dE f(y)dy

I
|3
5

n Rn

- o [ [ PG eptisereon-erdes i
)2 Jre Jre

= [ F G erntin) [ reap(-ine)fw)avae

Il
—
9

(Go)(exp(ixg) F (f)(§)dE

(2m)2 F(Ge) (€)-F (f) (&) exp(ixt)dE

n

62
= @n? /Rn exp(*g|§|2)9(f)(€)exp(ix§)d§ (10)

|
—
[N}
S| =
S~—
[NE
%\

By Lebesuge’s convergence theorem,

(2;)3 /R exp(—%|§I2)ﬁ(f)(€)exp(ix£)d£ - ZYZ(H))=) 1)

O

Proposition 5.3 (Differential formula). Let

(S1) f e CeERM).

(52) ac € Z" U [0, 00)".

(53) m =Xl 0.
Then

(i) D*f € C*(R™) and
F (D) = ()7 (f) (12)

(ii) F(f) € LY(R").

(i). Tt is enable to show by using integration by parts.

(i1). Tt is enable to show by (i).



6 Metric space

This section introduces definitions and propositions which are used for only
Section7 and Subsection8.2.
6.1 the case of general metric space
Definition 6.1 (Totally bouded metric space). Let
(S81) (X,d) is a metric space.

(X,d) is totally bounded if for any € > 0 there are finite points {{L'z}fil such
that X = UN B(xi,€).

Proposition 6.1. Let
(S1) (X,d) is a metric space.
then the followings are equivalent.

(i) (X,d) is a totally bounded metric space.

(ii) For any sequence {x;}32, C X there is a subsequence {Z ;) }i2,
which is a cauchy sequence.

1) — (i1). It is easy to show. O
(i) (i) y

(i) = (i). Let us assume (X, d) is not totally bounded. Then there is € > 0
such that for any finite subset {z;}, X 2 u:(’f)B(xi? €).

(2

Let us fix z; € X. Because X 2 B(z1,¢€). Let us fix x5 € X \ UL, B(w;,€).
By repeating the procedure in the same way below, there is {z;}2; such that
Tny1 ¢ U B(x4,€) (Vn). Clearly {x;}52, does not contain subsequence which
is a cauchy sequence. O

Proposition 6.2. Let
(S1) (X,d) is a totally bounded metric space.
(X, d) is separable.

Proof. For each n € N, {,;}2%) such that X = U B(z,,, 1), Clearly
{zniln €N, 1 <i<p(n)}is dense in X. O

Proposition 6.3. Let
(S1) (X,d) is a separable metric space.

(X, d) is secound countable.



Proof. Let us fix a countable dense set {z,}%; in X. Let us arbitary open

covering {Uj}xea.

We set B := {B(zp, %|n € N and m € N such that there is B(zy, % c Uy
for some A € A}.

There is ¢ : B — A such that

bcC Ugo(b) (Vb S B) (13)

Clearly {U,4)|b > B} is countable.

Let us arbitary x € X. There is A € A such that x € Uy. There is n € N such
that B(z,2) C Uy. There is m such that d(z,zm,) < 2. We set b := B(z,, 1).
Clearly x € b C Ux. So x € b C Uy ). Consequently, X = UpegUy, 1) O

Proposition 6.4. Let
(S1) (X,d) is a metric space.
then the followings are equivalent.
(i) (X,d) is compact.
(i1) (X,d) is sequentially compact.
(iti) (X, d) is totally bounded and complete.
(i) = (ii). Tt is easy to show. O
(ii)) <= (iii). It is easy to show. O

(i1i) and (i) = (i). We assume X is totally bounded and complete and X
is not compact.
By Proposition6.3 and Proposition6.2, X is second countable.
So there is a open set covering {U,}52, such that for any finite subset A C N
X 2 UjealU;. Then {z;}$°, such that x,41 ¢ U ,U;. By (ii), there is a
subsequence {z,(;)}2; such that
lim z,) =1z € X (14)

i—00

exists.

There is n such that « € U,,. There is € > 0 such that B(x,¢) C U,. By (14),

there is ¢(m) > n such that z,,,) € B(z,€) C Uy,. Because () ¢ Uf:(T)_l >

Un, Typm) € Un and Ty (m) ¢ U,. It implies contradiction. O
Proposition 6.5. Let

(S1) (X,d) is a metric space.
(A1) A C X is dense and totally bounded.

then (X,d) is totally bounded.

10



Proof. Let fix arbitary sequence {z;}32, C X. By (Al), there is a sequcence
{a;}32, C A such that d(z;,a;) < + (Vi). By (A1) and Proposition6.1, there is
a cauchy sequence {a,(7)};2; C A. Let fix arbitary € > 0. There is ng € N such
that n% < 5 and d(ag (i), ap(y)) < § Vi > no, Vj > ng. For any i > ng and any
J >N

d(@ei), o) < d(Tp) ap(n)) + dagei)s ag(y) + dap(): Te(g))
< Lo e 1
T ope@) 3 wl)
< €
So {x,(1)}52, is a cauchy sequence. Consequently X is totally bounded. O

Proposition 6.6. Let us set X :=[0,1]N. Let us define d : X x X — [0,00)

|Z/z' *T/z'|

d(fﬂ,y) = Efil i

(15)

then (X,d) is a compact metric space.

Proof. Clearly (X,d) is a metric space. By Proposition6.4, it is enough to
show X is sequential compact. Let us fix arbitary {x;}5°, C X. There is
a subsequence {z,(1:)}i2; and y; € [0,1] such that lim; o Ty1,0),1 = Y1-
There is a subsequence of {z,(1:)}52 {ZTp(2,i)}i2; and y2 € [0,1] such that
lim; o0 T(2,4),i = ¥i (4 = 1,2). By repeating the procedure in the same way be-
low, we get ©(1,4) }nien. We set ) 1= T4 (for i € N) and y := (y1, 92, ...).
Clearly {zy;}i2, converges to y. O

Proposition 6.7. Let

(S1) (X,d) is a separable metric space.

there is a metric d such that (X,d) is homeomorphic to (X,d) and (X,d) is
totally bounded.

Proof. (X, min{d,1}) is a metric space and (X, min{d, 1}) is homeomorphic to
(X,d). So we can assume (X, d) satisfies 0 < d < 1.

Let us fix {z;}$2; C X which is dense in X. Weset i : X > x
(d(x,2:))22,[0,1]N. Clearly i : X — i(X) is homeomorphism. By Proposi-
tion6.4 and Proposition6.6, i(X) is totally bounded. O

Proposition 6.8. Let
(S1) (X,d) is a separable metric space.

then there is a compact metric space (X,CZ) and_an homeomorphic mapping
i:(X,d) = i(X) C X such that i(X) is dense in X

Proof. This proposition is proved by Proposition6.7 and Proposition6.5 and
Proposition6.4 and Proposition3.8. O

11



Proposition 6.9. Let

(S81) (X,d) is a metric space.
(52) AC X.
(S3) r > 0.

Then there is f € C(X) such that0 < f <1 on X and flA =1 and supp(f) C
{z|d(x, A) < r}.

Proof. We set f:R >z 1— imin(r,d(z,A)) € [0,1]. f satisfies the above
condition. O

By Proposition, the following holds.
Proposition 6.10. Let

(S81) (X,d) is a metric space.
(A1) AC X and B C X and d(A, B) > 0.

then thre are f € CL(X) and g € C(X) such that 0 < f < 1 on X and
0<g<1lonX and flA=1 and g|B =1 and d(supp(f), supp(g)) > 0.

6.2 the case of compact metric space
Proposition 6.11. Let

(S1) (X,d) is a compact metric space.
then C(X) is separable.

Proof. By Proposition3.11, C(X) C Cy(X). So it is enough to show {f €

C4(X)]0 < f <1on X} is separable. By Proposition6.4, X is totally bounded.

So for each n € N, there are .y, 1, Tn 2, .-, Tn,u(n) Such that X = Uf:(T)B(xn,i, %)

By Proposition6.1, for each n and ¢ and m € N there is f,, ;m € C+(X) such
that

1
fn,i,m|B(-rn,i7 ﬁ) =1 (16)
and supp(f,im) C B(@n,i, 5 + ;) and

on X.

We set A := {(n,i,m,q) € N> x Q|i < p(n)}. For each A which is a finite
subset of A, gx := max{qfnim|(n,i,m,q) € A\}. Then B := {g)|\ a finite
subset of A} is a countable set.

We will show B = {f € C.(X)|0 < f < 1 on X}. Let us fix arbitary
fe{feCiX)0<f<1lon X} and e > 0. By Proposition3.10, there is
N € N such that

@)= )l <5 (18)

12



(for any x,y such that d(z,y) < ). There are ¢; € QU [0,1] such that
€ .
|ai = flzan)| < 5 (¥0) (19)

We set g := maz{q;fon,i2nli =1,2,...,0(2N)}. Clearly g € B.

Let us fix arbitary x € X. Because X = Uf:@lN)B(mgN,i, 75 ), there is i such
that z € B(xQN,iy ﬁ)

By (16) and (18) and (19)

flx)—5 < flwan,

2
.
< q;+ 5
< gifanion(x)+ %
< glx)+ % (20)
So
f(z) —e<g(x) (21)

There is j such that g(z) = g; fon jon(z). By (17) and (18) and (19),

gjfonjon(x) < gj
< flzany) + %
< flx)+e (22)

So
[f(z) —g(z)] <€ (23)
Consequently, B = {f € C;(X)[0 < f <1lon X}

7 Finite measures on metric space

We introduce several definitions and propositions for only Section8.2.

7.1 several facts on metric space

The following three definitions are from [2].

Definition 7.1 (Elementary function family). Let
(S1) (X,d) is a metric space.

& C Map(X,[0,00)) is called a family of elementary functions if the follow-
ings holds.

(i) if f,g€ & then f+g€&.

13



(ii) if f,g€ & and f > g then f —g € &.
(iii) if f,g € & then min{f,g} € &.
Definition 7.2 (Elementary integral). Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.
l:&+—[0,00] is an elementary integral on & if the followings hold.
(i) if .9 € & then I(f +g) =1U(f) +1(9)
(i) if f.9 € & and f < g then I(}) < (g)
Definition 7.3 (Complete elementary integral). Let
(S1) (X,d) is a metric space.
(S2) & C Map(X,[0,00)) is a elementary function family.
(83) 1: & [0,00] is an elementary integral.

[ is a complete elementary integral if for any {fn}f{’jtzl} such thatlim,, .o frn = f
(pointwise convergence) and fn, < fni1 (Vn € R) satisfies limy, o0 I(fn) = I(f)

Definition 7.4 (Functional from elementary integral). Let
(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.
(88) 1: &+ [0,00] is an elementary integral.

We define
Li{p: X = [0,00)} 3 ¢ = inf{XEZ,U(pi)lpi € & (Vi),p < BZ10i} € [0, 00]
(24)
Proposition 7.1. Let
(S1) (X,d) is a metric space.
(S2) & C Map(X,[0,00)) is a elementary function family.
(83) 1: &+~ [0,00] is an elementary integral.
(A1) [0,00)& C &.
Foranya >0 and f €&
l(af) = al(f) (25)
Proof. Let us fix g1 € (o,00)NQ and ¢z € (0,0)NQ. g2l(f) =1(q2f) < l(af) <
Uarf) = qul(f). So l(ef) = al(f) O

Proposition 7.2 (Outer measure from elementary integral). Let

(S81) (X,d) is a metric space.

14



(52) & C Map(X,[0,00)) is a elementary function family.
(88) 1: &+ [0,00] is an elementary integral.

(84) L is the functional in Definition7.4.

(S5) We setT':2% 5 A L(xa).

then I' is outer measure on X.

Proof. Tt is easy to show terms except (iii) in Definition2.8. So we will show
only (iii) in Definition2.8. Let us fix 4;°, C 2%.

Let us fix € > 0.

For each i € N, there are {¢;;}72; C & such that x4, < ¥32,¢;; and
52 i) < T(As) + &

S0 Xuse, 4, < B2y 106

LU, Ai) <3320 5o0l(eiy) <52 T(Ai) +e

Consequently, (iii) holds.

Proposition 7.3. Let

(S1) (X,d) is a metric space.
(52) & C Map(X,[0,00)) is a elementary function family.
(83) 1: &+ [0,00] is an elementary integral.
(S4) L is the functional in Definition7.4.
(85) T is the outer measure in Proposition7.2.
(56) My is the o-algebra in Propositions.9.
(A1) CL(X) C &.
(A2) If A,B are borel sets and d(A,B) > 0 then u(A) + u(B) =
w(AU B).
then #B(X) C Mr.

Proof. Because Mr is o-algebra, it is enough to show that all closed sets are
contained in 9.

Let us fix closed set A. Let us subset B and C such that A C B and C C A°.

Because A is closed set, C' C {z|d(z, A) > 0}.

For each n € N we set C,, := {z € C|d(z,A) > 1} and D,, :={z € C|-15 >
d(z, A) > 11}

The followings holds.

= Uz, D, (26)

Cy =UN_ D, (VN) (27)

We assume %22 ,T'(D,,) < co. Let us fix € > 0.
There is ng such that X952 T'(D,) < .

15



Because d(A, Cyp,) > 0,
I'(A) +T(C)

I
—

IAIA

IN
—

Chy UU

n=ngp

D,)

(28)

So if £92,T'(D,,) < 0o then I'(A) + T'(C) =T(AUC).
We assume %52, I'(D,,) = oo. Then X2 I'(Dg,) = 0o or X2 I'(Day—1) =

0o0. We assume .52 1 T'(Da,) = co.

If ny # ng then d(D,,,, Dy,) > 0. So I'(C) > T(US2, Day,) > X902 ,T(Day) =
00. So if £92 1 T'(Dgy,) = 0o then I'(B) + I'(C) =T(AUC) = 0.

oo

Similary, if 35 I'(Dayp_1) = 0o then I'(B) + I'(C) =T (AU C) = 0.

Proposition 7.4. Let
(S81) (X,d) is a metric space.

O

(52) & C Map(X,[0,00)) is a elementary function family.
(83) 1: &+ [0,00] is an elementary integral.

(S4) {fu}3, C & and fr, > fuy1 on X (Vn).
(A1) There is f € & such that limy, o0 || fn — flloo =0

(A2) RE C &

then

lim I(fn) = I(f)

n—oo

Proof. [I(f) = U(fa)| = U(f = fn) < [If = fallscl(1) = 0 (n — 00)

Proposition 7.5. Let
(S51) (X,d) is a metric space.

(52) 1: & — [0,00] is an elementary integral on & := {f|f is non-
negative borel measurable on X }.

(583) L is the functional in Definition7.4.

(S84) hi,hy € &.
(A1) d(supp(h1), supp(hz)) > 0.

Proof. Let us fix arbitary € > 0. Let us fix f and ¢ in Proposition6.10.
Let us fix {¢;} C & such that hy + hy < X2, ¢, and X2,1(¢;) < L(hy +

hg) + €.
By definition of f and g,

hy 4+ he < (f 4+ 9)X52, @

(30)
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and

hy < fE210 (31)
and
hay < 93721 0; (32)
So
L(hy+ha)+e€¢ > EZ1(ps)
> B2, ((fei) +X211(g¢:))
> L(hy) + L(hy) (33)
Consequently
L(h1) + L(h2) < L(h1 + h2) (34)
O

Proposition 7.6. Let
(S1) (X,d) is a metric space.
(S2) 1: &~ [0,00] is an elementary integral on Cy(X).
(83) L is the functional in Definition7.4.
(54) T is the outer measure in Proposition7.2.
(585) My is the o-algebra in Propositiond.9.
then B(X) C Mr.

Proof. Let us fix arbitary borel sets A, B such that d(A, B) > 0.

By Proposition7.5, I'(AUB) = L(xaus) = L{xa+x8) = L(xa)+ L(xs) =
I'(A) +TI'(B).

By Proposition7.3, Z(X) C Mr. O
7.2 several facts on compact metric spaces
Proposition 7.7. Let

(S1) (X,d) is a compact metric space.
(52) lis an elementary integral on C(X). C+(X) :={f e C(X)|f >
0}

then there is an unique measure i on (X, B(X)) such that for any f € C(X)

I(f) = /X fu (35)
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Ezistence. Let us fix f € C4(X).
By replacing f by ||f||cc — f, it is enough to show

/X faul(f) < 1(f) (36)

By an argument similar to one in the proof of Proposition8.4, there are

Um,i1 <m<oo,1<i<p(m) C R such that

0=0m1 < am2 < oo < lmpm) > || fllee (Ym €N) (37)

1

S (¥m, ¥i) (38)

|@m,i — Qmjit1] <
p({f = am,}) =0 (Ym, Vi) (39)
We set
hon = 52 G i Xam s i10) (M € N) (40)
and
M = B2 X (a4 Lama 1y (MEN, 1<i<p(m))  (41)

Let us fix € > 0.
By Proposition3.10, f € Cy(X).
By (39), there is m,n such that

[ i [ ol <o (42)

Because f € Cu(X)v if 7é j then d(f_l((a’m,i"" %a Ami+1 — %))7 f_l((a”ﬂhj +
1 1
7 Omj+1 — 7)) > 0.

So
U(F) > L n > / Iy (43)
X
Therefore,
[ tau—e<i) (14
b'e
Consequently,
[ san <) (45)
X
O
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Uniqueness. Let us fix arbitary pu; € #(X) and arbitary pg € &(X) such that

/ fus = / fdus (Vf € C1 (X)) (46)
X X

We set #:= A € B(X)|pu1(A) = p2(A). Clearly & is o-algebra.
Let us fix closed set A.
By Proposition6.1, there are {f,,,}5°_; C C(X) such that

| fmlloe <1 (Vm) (47)

and
liMmpm— oo fm = Xa (pointwize convergence) (48)

By Lebesugue’s convergence theorem, 1 (A4) = pa(A).
So Ae A.
Consequently Z C #(X).
O

8 Weak convergence of probability distributions

8.1 the case of single variate

Proposition 8.1 (Helly’s selection theorem). Let

(81) (Q,.Z,P) is a probability space.
(S2) Let {pn}52, C P(R) and denote F,, by F,, (n=1,2,3,...).

n=1

Then there is a subsequence {Fymy}nzy and F' : R — [0,00) such that F is
monotone increasing and right continuous, and Fy,)(x) — F(x) for any point
x at which F is continuous.

Proof. Thereis {z,}2>; C Rsuch that {x,,}52; = R. Let fix such {z,,}>2. Be-
cause 0 < F,(z,,) < 1 (for any m, n in N), there is a subsequence {a(n)}>2; C N
and {F(z,)}52, C [0,1] such that Fj(,,)(z,) = F(x,) (m — 00). We fix such
{a(n)}o2, and F(xy),. We define F(x) := infime{rjz<eo,} F(2m). By the def-
inition of F', F is right continuous and monotone increasing. Arbitrarily take
x € R at which F' is continuous and fix it. Arbitrarily take ¢ > 0 and fix it.
Let pick ZTa(ml) and Ta(m2) such that Taml) S T < To(m2) and (F(:Ea(mg)) —
F(za(m1))) < §. Thereis a ng € N such that |F,(za(m1)) — F(Tam))| < g and
| Fo(Ta(m2)) — F(Taime))| < § for any n > ng. Let fix such ng and m1 and m2.
For any n > nyg

|Fn($a(ml)) - F(ﬂf)l <
<

Fn(fa(ml)) - F(:Ea(ml))| + |F(xoc(m1)) - F($)|

1 (49)
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and

|Fn(x0z(m2)) - F(l‘)| < ‘Fn(aja(ml)) - F(za(ml)” + |F(xo¢(m1)) - F(x)|
€
< - 50
< ¢ (50)
So for any n > ng
€
|Fn(l‘oz(m1)) - Fn(xa(m2))‘ < 5 (51)
Arbitrarily take n > ng and fix it. Because Fy,(x1) < Fo(z) < Fp(m2),
€
maz{|Fu(Zam)) = Fa(@)] [Fn(@a(m2) = Fal@)l} < 5 (52)
By (49) and (50) and (52),
|Fn(z) — F(z)] <€ (53)
O

Proposition 8.2. Let
(S81) (Q,.%, P) is a probability space.
(52) Let {pn}pi, C P(R).
If {un}oo, is tight then {p,}5% is weakly compact.

Proof. By Proposition8.1, there is F' : R — [0,00) such that F is monotone
increasing and right continuous, and for any point x at which F is continuous

Fomy(z) = F(z) (n — 00) (54)

Here we denote F),, by F,. Because of tightness of {u,}02 1, limit,; oo (F(z) —
F(—xz)) = 1. So there is a probability measure p such that F' is a distribution
function of . By (54), un = p (n — 00). O

Proposition 8.3. Let
(S1) (2, Z, P) is a probability space.
(S2) Let {pn}52; C P(R). and pn € P(R)
(A1) pp = p (n — 00).
(A2) Let f be an arbitary bouded continuous function on R.

then
Jin [ fdun(e) = [ snto) (55)
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Proof. Let us fix arbitary f € Cp(R) and € > 0.

Because p(R) = 1 and R = Ugepa, for each n € N {a € R|u(a) > 1} is
finite. So {a € R|u(a) > 0} is at most coutable.

So there is r; > 0 and 7o > 0 such that

€

1- N((irlﬂﬁ)) < 3(||f‘|oo + 1) (56)

and p(—r1) =0 and p(—re) = 0.
Because f is uniformly continuous on X,
So there are am i« cn 1<i<o(m) C R such that

—T1=0am < am,2 <. < Am,p(m) = T2 (vm € N) (57)
and 1
|m,i — Qmig1]| < om (Vm, Vi) (58)
and
p{ami}) =0 (Ym, Vi) (59)

For each m € N, set f, := Ef:(;")f(ai)x{%wm).
Because lim,, o0 frn = f (pointwize convergence), by Lebesugue’s conver-
gence theorem there is m € N such that

T2 T2

€
| fott — ful <3 (60)
—7T1 —T1
Because v
Fmr =38 F(ai)u([ai, aitn)) (61)
r
and o
Frntin = S5 f(ai)n((as, ai11) (V0) (62)
—ry
So there is ng such that
92 T2 I
‘ fm/J'n - fm,u| < g (vn > no) (63)
—T1 —T1
By (56) and (60) and (63),
([ = [ gl < (> m) (64)
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8.2 the case of multi variates
Definition 8.1 (Weak convergence). Let
(S1) (X,d) is a metric space.

(52) {pn}nzs © Z(X).
(S3) e Z(X).

We say {un 2, weakly converges to u if for any borel set A such that p(9(A)) =
0 limy, o0 ftn(A) = u(A) Denote p, = 1 by weak convergence.

The following proposition gives the equivalent definition of weak conver-

gence.
Proposition 8.4. Let
(S51) (X,d) is a metric space.

(52) {pn}ni, C Z(X).
(S3) e P(X).

then the followings are equivalent.

(i) pn = p.
(ii) Set Cp(X) :={f € C(X)|||f]loo < 00}. For any f € Cp(X)
Jim [ s, = [ i (65)

(iii) Set Cy(X) := {f € C(X)| f is uniformly continuous on X}.
For any f € Cp(X)NCu(X)

Jim [ s, = [ i (66)

(iv) For any closed set A

T j1.(4) < u(4) (67)
(v) For any closed set U
lim 1, (U) > u(U) (68)

(i) = (ii): Let fix arbitary f € Cp(X). Because Uger{f = a} = X and
pw(X) =1, for any n € N {a € Rlu({f = a}) > 1} is a finite set. So {a €
Rlp({f =a}) >0} =22 {a € Rlu({f = a}) > 1} is at most countable.

So there are Um,i1<m<oo1<i<p(m) © R such that

_||f||oo > Qm,1 < Gm,2 <..< Amp(m) > Hf“oo (vm € N) (69)
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1
|am,i - am,i+1| S 27771 (Vm,Vz) (70)

p{f = am,i}) =0 (Vm, Vi) (71)
For m € N set
Gm =S G i1 X < F<am i) (72)
and
hop = Zf:(T)am,iX{am,iSfSGm,i+1} (73)

Because for any m and i 0{am,; < f < ami+1} C{f = am,i}U{f = am, it1},
for any m and i
M(a{am,i < f < am,i+1}) =0 (74)

Let fix arbitary € > 0.
By Lebesugue’s convergence theorem, there is m € N such that [ gn,du —

f hmdp < e.
By (i),
/fdu—e < /hmdu
= lim o dpiy,
n—r oo
< lim [ fdu,
n—r oo
(75)
and
/fdu-l-e > /gmdu
= lim Impin
n—oo
> lim [ fdu,
n—oo
(76)
Consequently, [ fdp =lim, oo [ fdfiy.
(i) = (i11): Tt’s trivial.
(i1i) = (iv): Let fix arbitary closed set A. We set
fu(x) := 11 = min(1l,d(z, A))|" (n € N,z € x) (77)
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fn € Cp(X) N CW(X) (Vn) and lim, oo frn = xa (pointwiseconvergence)
and

[ i = 1) (78)
By Lebesugue’s convergence theorem,
p(A) > Tim g (A) (79)
O
(iv) <= (v): Tt’s trivial. O

() and (v) = (i): Let A € B(X) and p(0A) = 0. By (iv),

lim p,(A) < lim p,(A4)

1(A)

1(AN\ A) + p(A)

w(0) + u(A)

p(A) (80)

IN

IA

In the same way as above we obtain

lim p,(4) > p(A) (1)
Consequently
Jim pi, (A) = p(A) (82)

The following is the definition of a metric of Z(R).
Proposition 8.5. Let

(S1) (X,d) is a compact metric space.

(S2) {fn}52 is a dense subset of (X,d). By Proposition6.11, such
subsets always exist.

(53) (1, p2) 3= X580 | [ fndpn = [ Frdpa| (a1, p2 € 2(R)).
then the followings hold.
(i) T is a metric on P (R).

(i) for any {pn}pz, C Z(R) and p € P(R), pp = p (n — o0)
is equivalent to T(fn, ) = 0 (n — 00).

(1): Let fix pn € P(X) and pg € P(X) such that 7(u1, u2) = 0. It is enough
to show p11 = pio for showing (i). By (S2), for any f € C4(X) [ fdu = [ fdus.
By uniqueness in Proposition7.7, u1 = ps. U
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(i1): Let us assume 7(un, t) — 0 (n — o0). Let us fix arbitary € > 0. There is
m € N such that ||f — fiu|lcc < §. There is ng € N such that for any n > ng

I/Xfmdun—/xfmdu\ <3 (83)

For any n > ng

[ i = [ gl <1 [ = [ gl

#l [ Suditn = [ w41 [ S [ fdu
< € (84)

Consequently, p, = p (n — 00).
The inverse is clear. O

Proposition 8.6. (Z(X),T) is a compact metric space.

Proof. By Proposition6.4, it is enough to show (Z?(X),7) is sequencially com-
pact.

Let us fix arbitary pn52, C Z2(X).

For any m € N, {[ fiun}22, is bounded.

For each m € N, there is {¢(m, n)}52; such that I(f,,,) := limy, 00 [ Jm@pbp(m,n)
exists and [I(fin) — [ fm@pipmn| < = (Yn > m).

We set ¢(m) := p(m,m) (m € N).

By the definition of ¢, for any m € N I(fn,) = im0 [ frndfiy(n)-

Let us fix arbitary f € Cp(X) and € > 0. There is k € N such that || f— fx]| <
’ There is ng € N such that for any m > ng and any n > ng |ff;€duw(m) —
J iy < 5

So for any m > ng and any n > ng | [ fdpym) — [ fdppom| < e

So I(f) := limMm—o0 | fdfiy(m) exists.

Clearly [ is an elementary integral on C (X).

So by Proposition7.7, there is p € (X)) such that

100) = [ fan (vf € C(X) (85)
Clearly fiyny = p (n — 00).

Proposition 8.7. Let

(S1) (X,d) is a separable metric space.
(A1) {pn}e, C P(X) is tight.

There is a subsequence uw(n)?i:l} and p € P(X) such that py(n) = p
(n — o).
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Proof. Let (X7 dN) be a compact metric space in Proposition6.8 and 7 : X — X
in Proposition6.8. By Proposition7.7, for each n € N there is a measure fi,, such
that for any g € C4(X) and n € N

/ g oidu, = /~ gdfiy, (86)
X X

There is an increasing sequence of compact sets {K,,}52 ; such that
1
,um(Kn) >1-- (87)
n
(Vm € N,¥n € N)
Let K := U2, K,,. By (87), for any m € N
pn (K) = fimn (i(K)) =1 (88)
For n € N and z € X, gmn(z) = (1 —minl,d(z, Kp,) fXgmndm >
fon (Km) > 1 — % By reaching n — 00, iy (Kpm) = A(i(K )) >1- % By
reaching m — oo,
Ali(K)) = 1 (89)

By Proposition, there is a subsequence {fi,(n)}ne; and i € 2 (X) such that

fin => 1 (n — 00). - -
Because for any n € N i(K,,) is compact, i(K,) € Z(X). So i(K) € Z(X).
We will show

BX)C B :={AcCX[i(ANK)B(X)} (90)

Because i is injective, if {A4,}52; C & then U2 A4, € B. And if A then
(A°NK)=iK)Ni(ANK)® € % So A is a o- algebra For any closed set A,
A€ A. So (90) holds.

For A € #(X), we define

u(A) = p(i(AU K)) (91)

By (89),
w(K) =1 (92)

Let me fix arbitary f € Cy(X)NCy(X). Because f € C’u( )and i(X)isdensein X,
there is f € Cy(X) N Cy(X) such that fli(X) = foi!
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By the definition of {4, }52; and u,

n—oo n—oo

lim [ fdu, = lim [ foiduy
X X

n—oo

/X fdi

fdpi

= lim | fdj,
X

i(K)

foi~ldj
i(K)

/K fdu

/X fdp (93)

9 Characteristic functions of probability distri-
bution

9.1 the case of single variate
By Fubini’s theorem, the following holds.
Proposition 9.1. Let
(S51) (Q,.Z, P) is a probability space.
(S2) Let u € P(R).
(S3) Let f € L'(R).
then
[ 10euta = [ 7 (n)@dnt) (99)
Proposition 9.2 (Uniqueness of characteristic function). Let
(S1) (2, %, P) is a probability space.
(52) Let p € P(R) and i/ € P(R).
If o, = @ then p=yp'.

Proof. Let us arbitary f € C>°(R"). By Proposition5.3, Z(f) € L'(R"). By
Proposition5.2, [, f(x)du(x) = [; f(x)dy/'(x). By Propositiond.3, p=p/. O
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This proposition states that convergence of distributions in law is derived
from each point convergence of the characteristic function.

Proposition 9.3 (Levy’s continuity theorem(single variate case)). Let

(51) {pn}ni, C P(R)
(52) @y is the characteristic function of u, (n=1,2,...)
(A1) {pn}Se, C P(R) then the followings are equivalent.

(i) There is a @ s.t p is a measurable function on R and ¢ is contin-
uous at 0 and ¢(0) =1 and @, —— ¢ (converge pointwise).
n— 00

Below, we fix such .

(i) Then there is a p € P(R) such that ¢ is the characteristic
function of p and p, = p (n — ).

(i) = (i1). The followings are strategy of the proof.
~Memo

(STEP1) Showing {p,}22, is tight.
(STEP2) Getting u of the subject.

(STEP1)
For each m € N, there is a measurable function f,,, such that f,, continuous
at 0 and f,,(0) = 1 and supp(f) C [+, =] is compact and f, < 1 in R

and F~'f, < 1in R. {x;_1 1,};5_; sutisfies the above conditions. Fix such

{fm}fr?:l'
We get

l/Jhﬁﬂw%xww=i/1?4ﬁﬁxwudx) (95)
R R
So

L™

3 [ fo@en@ds =1= 5 [ F @@ (o)

Call the left side of the above (96) I, ,, and call the right side of the above
(96) Jom,n. Fix any € > 0.

(STEP1-1)

~Memo

We will show that I, ,, < ¢ for sufficient large m, n. We will show this statement
using the dominated convergence theorem and continuity of ¢ at 0

(STEP1-2)

—~Memo

We will show that Jy, , > pn({x € R| |z| > m}) for sufficient large m, n. We will
show this statement using the dominated convergence theorem and continuity
of p at 0
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The following holds.

g e Lry @

F o) = = () (97)
So

Jm,n = 1- 7/]: 1fm E dun(x)

[1-37 1fm(%)dun(w)
Lo S F T ) (2) (98)

- /{xeR | 2m}

In (98), we use statement F~1f,, <1in R (Vm € N).

1 T 1 m
1- 7-7:_1 m\ > 1-Z SU m T
9 f (m) = 2maxy€k pp(|fm\)|f (y)| ‘$|

1
> =
> 1 (99)
So 1
I > i,un({a: € R| || > m}) (100)

By (STEP1-1) and (100) for sufficient large m and n we get
2¢ > pn({z € R| [z = m}) (101)

So We have shown {p,}22, is tight.
(STEP2)

By (STEP1), there is a subsequence {fyn)}ne; which converges to a u in
law. It is enough to show for any subsequence of {p,}52 ; the subsequence has
some subsequnece of the subsequence which converges to p in law. Let fix any
subsequence { i) }ne1. There is a subsequence { iy (a(n)) }ne1 Which converges
to g/. By increasing n to oo in (96) and Proposition8.3, ¢, = ¢ and ¢,/ = ¢.
By uniqueness of characteristic function, u = p'.

O

1) = (i). p, Rt — |,exp(ite)dy. It is easy to show ¢, is continuous
4 ) w Rt Q itx)dp. It i to sh i ti
at 0.

By Proposition8.3,

/Rexp(it:c)du(x) = lim [ exp(itz)du, (Vi) (102)

n—oo R

O
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9.2 the case of multi variates

Proposition 9.4 (Levy’s continuity theorem(multi variate case)). Let

(1) {pn}iZs C P(RY)
(S2) vy, is the characteristic function of py, (n =1,2,...)
(A1) {pn}is, C P(RY)

(A1) There is a ¢ s.t ¢ is a measurable function on RN and ¢ is
continuous at 0 and p(0) =1 and ¢, —— ¢ (converge point-
n—oo

wise). Below, we fix such ¢.

Then there is a i € P(RN) such that ¢ is the characteristic function of u
and fin, = p (N — 00).

Proof. By an argument which is similar to the proof of Proposition9.3, we can
show that {u,}52; is tight.
By Proposition8.7 and uniqueness of fourier transformation in R" and Propo-
sition8.4, there is u € Z(R)N such that pu, = pu (n — o) and ¢, = ¢.
O

10 A proof of the central limit theorem

10.1 the case of single variate
Theorem 10.1 (Central limit theorem). Let

(S1) (2, %, P) is a probability space.

(52) {X;}2, is a sequence of random variables on (Q, %, P).
(A1) 3p such that X; ~ p (Vi). Bellow, we fiz such p.

(A2) {X;}N| are independent for any N € N.

(A3) E[u) =v and V[u] = 0% and o > 0.

then P s x_,) weakly converges to N(0,0).

Proof. We can assume v = 0 and ¢ = 1. Bellow, we assume that.
Let Y;,, := % (i =1,2,.,n)and Y, := Y1 Y, (n = 1,2,...). By (AL),
0y, = oy, (Vi,¥n). Let ¢, 1= py, and ¢, := ¢y, , (n =1,2,...). And let
Y i R > s— [pexp(isz)du(x). Then ¢, = ()" and Py (t) = ¢M(ﬁ) and
(Vt € R). We will show the following equation. By Proposition3.7,

=1- 2 +o()n—o0) (10)

@Yl,n - 2n o n n o0

By the above equation and Proposition3.4,

12 12

pult) = (1= 1+ 0(1))" = exp(~ ) (n— o0) (104)
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By Proposition9.3, there is a po € Z(R) such that P % converges to wg

in law and ¢, = exp(—%). Because @ (0,1) = exp(—%) and uniqueness of

characteristic function, P ;¢ converges to N(0,1) O
10.2 the case of multi variates
Theorem 10.2 (Central limit theorem(multi variate case)). Let

(S51) (Q,.%, P) is a probability space.

(52) {X;}2, is a sequence of N-dimensional vectors of random vari-
ables on (2, F, P).

(A1) 3u such that X; ~ p (Vi). Bellow, we fix such p.
(A2) {X;}?_, are independent for any n € N.

(A3) Elu] = v and covlu] = % and o is N-by-N positive definite
symmetric matrix.

then P/ x_,) weakly converges to N(0,%).

Proof. Let us fix arbitary t € RY and s € R. Let us set Y;, := st (X,, — v).
The following holds.

@ (% —)(st) = E(exp(vnist" (X — 1)) = ¢ jmv—u)(s) (105)

By Theorem10.1 and Proposition9.3 and Proposition3.3,

) 2t %t
Jm o sy (s) = exp(———— (106)
By setting s =1,
. tTy%t
Jim o mxoy)(st) = exp(— 5 ) (107)

By Proposition9.4 and Proposition3.3, P s x_,) weakly converges to N (0, X3).
]
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