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1 Introduction

This memo is a study memo on a proof of the central limit theorem. In this
memo, I will show the proof using characteristic functions.

Theorem 1.1 (Central limit theorem). Let

(S1) (Ω,F ,P) is a probability space.

(S2) {Xi}∞i=1 is a sequence of random variables on (Ω,F ,P).

(A1) ∃µ such that Xi ∼ µ (∀i). Bellow, we fix such µ.

(A2) {Xi}Ni=1 are independent for any N ∈ N.
(A3) E[µ] = ν and V [µ] = σ2 and σ ̸= 0.

then P√
nX̄ weakly converges to N(0, 1).

2 Preliminaries

Notation 2.1 (The set of all probability measures on (R)). Denote the set of
all borel sets on R by B(R). Denote the set of all probability measures on B(R)
by P(R).

Notation 2.2 (order relation in Rn). Let x, y ∈ Rn. Denote x ≤ y (x < y) if
xi ≤ yi (xi < yi) (∀i).

Definition 2.1 (A distribution of random variables). Let (Ω,F ,P) be a prob-
ability space and let X = (X1, X2, ..., Xn) be random variables on Ω. We define
PX : B(Rn) ∋ A 7→ P (X−1(A)) ∈ [0, 1]. We denote the distribution of X by
PX .

Definition 2.2 (A distribution function of a probability measure). Let µ ∈
R(Rn). We define Fµ : Rn ∋ x 7→ µ((−∞, x1] × (−∞, x2]... × (−∞, xn]) ∈ R
and we call Fµ the destribution function of µ.

Notation 2.3 (Fourier transform). Let f ∈ L1(Rn). Denote fourier transfor-
mation of f by F (f) and denote fourier inverse transformation of f by F−1(f).

Definition 2.3 (Weakly convergence of probability measures). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ∈ P(RN ).

(S3) Let µ ∈ P(RN ).

{µn}∞n=1 is weakly converges to µ if limn→∞ Fµn
(x) = Fµ(x) for any point x at

which Fµ is continuous. Denote this by µn =⇒ µ (n→ ∞)

Definition 2.4 (Characteristic function of probability measure). Let

(S1) (Ω,F ,P) is a probability space.
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(S2) Let µ ∈ P(Rn).

then call φµ : Rn ∋ t 7→
∫
Rn exp(itx)dµ(x) ∈ C is the characteristic function of

µ. Bellow, assume the characteristic function of µ denotes φµ unless otherwise
noted.

Definition 2.5 (Characteristic function of random variables). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let X = (X1, X2, ..., Xn) be a vector of random variables on
(Ω,F ,P).

then call φX : R ∋ t 7→
∫
Ω
exp(itX)dP ∈ C is the characteristic function of X.

Bellow, assume the characteristic function of X denotes φX unless otherwise
noted.

Definition 2.6 (Tightness of probability measures). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ∈ P(RN ).

{µn}∞n=1 is tight if for any ϵ > 0 there is a M > 0 such that

µn({x ∈ RN ||x| ≤M}) ≥ 1− ϵ (1)

Definition 2.7 (Weakly compactness of probability measures). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(RN ).

{µn}∞n=1 is weakly compact if for any subsequence {µα(n)}∞n=1 of {µn}∞n=1 there
is a subsequence of {µα(n)}∞n=1 which weakly comverges to a probability measure.

Definition 2.8 (Outer measure). Let

(S1) X is a set.

Γ : 2X → [0,∞] is an outer measure on X if the followings hold.

(i) Γ(ϕ) = 0

(ii) If A ⊂ B then Γ(A) ≤ Γ(B)

(iii) If {Ai}∞i=1 ⊂ 2X then Γ(∪∞
i=1Ai) ≤ Σ∞

i=1Γ(Ai)

3 Assumptions

In this note, we use the following propositions without proofs.

Proposition 3.1. Let

(S1) (Ω,F ,P) is a probability space.
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(S2) X is a N -dimensional vector of random variables on (Ω,F ).

(S3) Let µX be a probability distribution of X.

(S4) f ∈ L1(Ω) ∪ L∞(Ω)

then ∫
RN

fdµX =

∫
Ω

f ◦XdP (2)

Proposition 3.2. For any η > 0,

F (exp(−η(·)2) = 1√
2η
exp(− (·)2

4η
). (3)

Proposition 3.3. Let Σ be a positive definite symmetric matrix.

φN(0,Σ)(t) = exp(−tTΣ2t

2
) (4)

Proposition 3.4. Let

(S1) Arbitrarily take M > 0 and fix it.

(S2) Let fn : D(0,M) ∋ z 7→ (1 + z
n )
n ∈ C, where D(0,M) := {z ∈

C| |z| ≤M}, (n = 1, 2, ...).

then {fn}∞n=1 uniformly converges to exp on D(0,M).

Proposition 3.5. Let

(A1) Let F : R 7→ R is monotone increasing.

then {x | F is not continuous at x} is at most countable.

Proposition 3.6. Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(R).
(A1) Let µ ∈ P(R) such that µn =⇒ µ (n→ ∞).

then for any bounded continuous function f : R 7→ R

limn→∞

∫
R
f(x)dµn(x) =

∫
R
f(x)dµ(x) (5)

Proposition 3.7. Let

(S1) (Ω,F ,P) is a probability space.

(S2) µ is a probability measure on R.
(A1) E[µ] = 0 and V [µ] = 1.

then φµ(s) = 1− s2

2 + o(s2) (s→ 0)
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The following propositions are used for only Section7 and Subsection8.2.

Proposition 3.8. Let

(S1) (X, d) is a metric space.

then there is a complete metric space (X̃, d̃) and an isometry mapping i :
(X, d) → (X̃, d̃) such that i(X) is dense in X̃. We call (X̃, d̃) is a comple-
tion of (X, d).

Proposition 3.9. Let

(S1) X is a set.

(S2) Γ is an outer measure on X.

(S3) MΓ := {A ⊂ X| if B ⊂ A and C ⊂ Ac then µ(B) + µ(C) =
µ(B ∪ C)}.

then the followings holds.

(i) MΓ is a σ-algebra.

(ii) Γ is a measure on MΓ.

Proposition 3.10. Let

(S1) (X, d) is a compact metric space.

then C(X) ⊂ Cu(X).

Proposition 3.11. Let

(S1) (X, d1) is a compact metric space.

(S2) (Y, d2) is a compact metric space.

(A1) f ∈ C(X,Y ).

then f(X) is compact in Y .

Proposition 3.12. Cc(Rn) is dense in L1(Rn).

4 L1(Rn)

Proposition 4.1. Let us fix ϵ > 0. Then there is jϵ ∈ Cc(Rn) ∪ C+(Rn) such
that

(i) jϵ is a probability density function on Rn.
(ii) supp(jϵ) ⊂ B(0, ϵ).

The following proposition is easy to show.

Proposition 4.2. Let
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(S1) jϵ is the function in Proposition4.1.

(S2) f ∈ L1(Rn).

Then

(i) jϵ ∗ f ∈ C∞(Rn)
(ii) supp(jϵ ∗ f) ⊂ {x ∈ Rn|d(x, supp(jϵ ∗ f)) ≤ ϵ}
(iii) ||jϵ ∗ f ||1 ≤ ||f ||1
(iv) limϵ→0 jϵ ∗ f = f in L1(Rn).

(i) and (ii). It is easy to show.

(iii) and (iv). It is enable to show by an approach which is similar to the ap-
proach in the proof of Proposition5.1.

By (iv) of Proposition4.2 and Proposition3.12, the following holds.

Proposition 4.3. C∞
c (Rn) is dense in L1(Rn).

Proposition 4.4. Let

(S1) {fn}∞n=1 ⊂ L1(Rn) and f ∈ L1(Rn).
(A1) limn→∞ fn = f in L1(Rn).

then limn→∞ fn = f (almost everyware pointwise convergence).

Proof. Let us fix arbitary m ∈ N. We set

Em := {x ∈ Rn| lim
n→∞

|fn(x)− f(x)| ≥ 1

m
} (6)

It is enough to show Em is zero set.

1

m
µ(Em) ≤ ||fn − f ||1 → 0

5 Fourier transform

Definition 5.1. Let ϵ > 0 and n ∈ R.

Gϵ(x) :=
1

(2πϵ2)
n
2
exp(−|x|2

2ϵ2
) (x ∈ Rn) (7)

Proposition 5.1. The followings hold.

(i) Gϵ > 0 on Rn (∀ϵ > 0).

(ii)
∫
Rn Gϵdx = 1.
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(iii) For any δ > 0, limϵ→0

∫
|x|>δ Gϵdx = 0.

(iv) For any f ∈ L1(Rn), ||Gϵ ∗ f ||1 ≤ ||f ||1.
(v) For any f ∈ L1(Rn), limϵ→0Gϵ ∗ f = f in L1(Rn).
(vi) F−1(F (Gϵ)) = Gϵ (∀ϵ > 0)

(i) and (ii). Because Gϵ is the probability denity function of N(0, ϵEn), (i) and
(ii) hold.

(iii). Because
∫
|x|≤δ Gϵ(x)dx =

∫
|x|≤ δ

ϵ
G1(x)dx, (iii) holds.

(iv). By (i) and (ii),∫
Rn

|Gϵ ∗ g(x)|dx =

∫
Rn

|
∫
Rn

Gϵ(x− y)g(y)dy|dx

≤
∫
Rn

∫
Rn

Gϵ(x− y)|g(y)|dydx

=

∫
Rn

∫
Rn

Gϵ(x− y)dx|g(y)|dy

=

∫
Rn

|g(y)|dy

(v). By (iv) and Proposition3.12, we can assume f ∈ Cc(Rn).
By Lebesugue’s convergence theorem and (iv), it is enough to show Gϵ ∗ f

pointwize converges to f .
Let us fix arbitary ϵ > 0. Because f is uniform continuous on Rn, |f(x) −

f(y)| < ϵ
2 (for any x, y such that |x− y| < δ).

By (iii), there is τ0 > 0 such that
∫
|x|>δ Gτdx <

ϵ
2(2||f ||∞+1) (for any τ < τ0).

By (ii), for any x ∈ Rn

|Gϵ ∗ f(x)− f(x)| = |
∫
Rn

Gϵ(y)(f(x− y)− f(x))dy|

≤
∫
|x|<δ

Gϵ(y)|f(x− y)− f(x)|dy

+

∫
|x|≥δ

Gϵ(y)|f(x− y)− f(x)|dy

≤ ϵ

2
+ 2||f ||∞

∫
|x|≥δ

Gϵ(y)dy

≤ ϵ (8)

(vi). By Proposition3.2, (vi) holds.

7



Proposition 5.2 (Inverse formula). For any f ∈ L1(Rn) such that F (f) ∈
L1(Rn),

f = F−1(F (f)) (9)

Proof. By (v) in Proposition5.1 and Proposition4.4, it is enough to show Gϵ ∗ f
pointwize converges to F−1(F (f)) on Rn.

By (vi) in Proposition5.1 and Proposition3.2, for any x ∈ Rn

Gϵ ∗ f(x) = F−1(F (Gϵ)) ∗ f(x)

=

∫
Rn

F−1(F (Gϵ)(x− y))f(y)dy

=
1

(2π)
n
2

∫
Rn

∫
Rn

F (Gϵ)(ξ)exp(i(x− y)ξ)dξf(y)dy

=
1

(2π)
n
2

∫
Rn

∫
Rn

F (Gϵ)(ξ)exp(ixξ)exp(−iyξ)dξf(y)dy

=

∫
Rn

F (Gϵ)(ξ)exp(ixξ)

∫
Rn

1

(2π)
n
2
exp(−iyξ)f(y)dydξ

=

∫
Rn

F (Gϵ)(ξ)exp(ixξ)F (f)(ξ)dξ

=
1

(2π)
n
2

∫
Rn

(2π)
n
2 F (Gϵ)(ξ)F (f)(ξ)exp(ixξ)dξ

=
1

(2π)
n
2

∫
Rn

exp(−ϵ
2

2
|ξ|2)F (f)(ξ)exp(ixξ)dξ (10)

By Lebesuge’s convergence theorem,

1

(2π)
n
2

∫
Rn

exp(−ϵ
2

2
|ξ|2)F (f)(ξ)exp(ixξ)dξ → F−1(F (f))(x) (11)

Proposition 5.3 (Differential formula). Let

(S1) f ∈ C∞
c (Rn).

(S2) α ∈ Zn ∪ [0,∞)n.

(S3) m := Σni=1αi.

Then

(i) Dαf ∈ C∞
c (Rn) and

F (f)(Dαf) = (iξ)αF (f) (12)

(ii) F (f) ∈ L1(Rn).

(i). It is enable to show by using integration by parts.

(ii). It is enable to show by (i).
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6 Metric space

This section introduces definitions and propositions which are used for only
Section7 and Subsection8.2.

6.1 the case of general metric space

Definition 6.1 (Totally bouded metric space). Let

(S1) (X, d) is a metric space.

(X, d) is totally bounded if for any ϵ > 0 there are finite points {xi}Ni=1 such
that X = ∪Ni=1B(xi, ϵ).

Proposition 6.1. Let

(S1) (X, d) is a metric space.

then the followings are equivalent.

(i) (X, d) is a totally bounded metric space.

(ii) For any sequence {xi}∞i=1 ⊂ X there is a subsequence {xφ(i)}∞i=1

which is a cauchy sequence.

(i) =⇒ (ii). It is easy to show.

(ii) =⇒ (i). Let us assume (X, d) is not totally bounded. Then there is ϵ > 0

such that for any finite subset {xi}Ni=1 X ⊋ ∪φ(n)i=1 B(xi, ϵ).
Let us fix x1 ∈ X. Because X ⊋ B(x1, ϵ). Let us fix x2 ∈ X \ ∪1

i=1B(xi, ϵ).
By repeating the procedure in the same way below, there is {xi}∞i=1 such that
xn+1 /∈ ∪ni=1B(xi, ϵ) (∀n). Clearly {xi}∞i=1 does not contain subsequence which
is a cauchy sequence.

Proposition 6.2. Let

(S1) (X, d) is a totally bounded metric space.

(X, d) is separable.

Proof. For each n ∈ N, {xn,i}φ(n)i=1 such that X = ∪φ(n)i=1 B(xn,i,
1
n ). Clearly

{xn,i|n ∈ N, 1 ≤ i ≤ φ(n)} is dense in X.

Proposition 6.3. Let

(S1) (X, d) is a separable metric space.

(X, d) is secound countable.
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Proof. Let us fix a countable dense set {xn}∞n=1 in X. Let us arbitary open
covering {Uλ}λ∈Λ.

We set B := {B(xn,
1
m |n ∈ N and m ∈ N such that there is B(xn,

1
m ⊂ Uλ

for some λ ∈ Λ}.
There is φ : B → Λ such that

b ⊂ Uφ(b) (∀b ∈ B) (13)

Clearly {Uφ(b)|b ∋ B} is countable.
Let us arbitary x ∈ X. There is λ ∈ Λ such that x ∈ Uλ. There is n ∈ N such

that B(x, 2
n ) ⊂ Uλ. There is m such that d(x, xm) < 1

n . We set b := B(xm,
1
n ).

Clearly x ∈ b ⊂ Uλ. So x ∈ b ⊂ Uφ(b). Consequently, X = ∪b∈BUφ(b)

Proposition 6.4. Let

(S1) (X, d) is a metric space.

then the followings are equivalent.

(i) (X, d) is compact.

(ii) (X, d) is sequentially compact.

(iii) (X, d) is totally bounded and complete.

(i) =⇒ (ii). It is easy to show.

(ii) ⇐⇒ (iii). It is easy to show.

(iii) and (ii) =⇒ (i). We assume X is totally bounded and complete and X
is not compact.

By Proposition6.3 and Proposition6.2, X is second countable.
So there is a open set covering {Ui}∞i=1 such that for any finite subset A ⊂ N

X ⊋ ∪i∈AUi. Then {xi}∞i=1 such that xn+1 /∈ ∪ni=1Ui. By (ii), there is a
subsequence {xφ(i)}∞i=1 such that

lim
i→∞

xφ(i) =: x ∈ X (14)

exists.
There is n such that x ∈ Un. There is ϵ > 0 such that B(x, ϵ) ⊂ Un. By (14),

there is φ(m) > n such that xφ(m) ∈ B(x, ϵ) ⊂ Un. Because xφ(m) /∈ ∪φ(m)−1
i=1 ⊃

Un, xφ(m) ∈ Un and xφ(m) /∈ Un. It implies contradiction.

Proposition 6.5. Let

(S1) (X, d) is a metric space.

(A1) A ⊂ X is dense and totally bounded.

then (X, d) is totally bounded.
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Proof. Let fix arbitary sequence {xi}∞i=1 ⊂ X. By (A1), there is a sequcence
{ai}∞i=1 ⊂ A such that d(xi, ai) <

1
i (∀i). By (A1) and Proposition6.1, there is

a cauchy sequence {aφ(i)}∞i=1 ⊂ A. Let fix arbitary ϵ > 0. There is n0 ∈ N such
that 1

n0
< ϵ

3 and d(aφ(i), aφ(j)) <
ϵ
3 ∀i > n0, ∀j > n0. For any i > n0 and any

j > n0

d(xφ(i), xφ(j)) ≤ d(xφ(i), aφ(i)) + d(aφ(i), aφ(j)) + d(aφ(j), xφ(j))

≤ 1

φ(i)
+
ϵ

3
+

1

φ(j)
< ϵ

So {xφ(i)}∞i=1 is a cauchy sequence. Consequently X is totally bounded.

Proposition 6.6. Let us set X := [0, 1]N. Let us define d : X ×X → [0,∞)

d(x, y) := Σ∞
i=1

|yi − xi|
2i

(15)

then (X, d) is a compact metric space.

Proof. Clearly (X, d) is a metric space. By Proposition6.4, it is enough to
show X is sequential compact. Let us fix arbitary {xi}∞i=1 ⊂ X. There is
a subsequence {xφ(1,i)}∞i=1 and y1 ∈ [0, 1] such that limi→∞ xφ(1,i),1 = y1.
There is a subsequence of {xφ(1,i)}∞i=1 {xφ(2,i)}∞i=1 and y2 ∈ [0, 1] such that
limi→∞ xφ(2,i),i = yi (i = 1, 2). By repeating the procedure in the same way be-
low, we get φ(1, i)}n,i∈N. We set xψ(i) := xφ(i,i) (for i ∈ N) and y := (y1, y2, ...).
Clearly {xψ(i)}∞i=1 converges to y.

Proposition 6.7. Let

(S1) (X, d) is a separable metric space.

there is a metric d̃ such that (X, d) is homeomorphic to (X, d̃) and (X, d̃) is
totally bounded.

Proof. (X,min{d, 1}) is a metric space and (X,min{d, 1}) is homeomorphic to
(X, d). So we can assume (X, d) satisfies 0 ≤ d ≤ 1.

Let us fix {xi}∞i=1 ⊂ X which is dense in X. We set i : X ∋ x 7→
(d(x, xi))

∞
i=1[0, 1]

N. Clearly i : X → i(X) is homeomorphism. By Proposi-
tion6.4 and Proposition6.6, i(X) is totally bounded.

Proposition 6.8. Let

(S1) (X, d) is a separable metric space.

then there is a compact metric space (X̃, d̃) and an homeomorphic mapping
i : (X, d) → i(X) ⊂ X̃ such that i(X) is dense in X̃

Proof. This proposition is proved by Proposition6.7 and Proposition6.5 and
Proposition6.4 and Proposition3.8.
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Proposition 6.9. Let

(S1) (X, d) is a metric space.

(S2) A ⊂ X.

(S3) r > 0.

Then there is f ∈ C+(X) such that 0 ≤ f ≤ 1 on X and f |A ≡ 1 and supp(f) ⊂
{x|d(x,A) ≤ r}.

Proof. We set f : R ∋ x 7→ 1 − 1
rmin(r, d(x,A)) ∈ [0, 1]. f satisfies the above

condition.

By Proposition, the following holds.

Proposition 6.10. Let

(S1) (X, d) is a metric space.

(A1) A ⊂ X and B ⊂ X and d(A,B) > 0.

then thre are f ∈ C+(X) and g ∈ C+(X) such that 0 ≤ f ≤ 1 on X and
0 ≤ g ≤ 1 on X and f |A ≡ 1 and g|B ≡ 1 and d(supp(f), supp(g)) > 0.

6.2 the case of compact metric space

Proposition 6.11. Let

(S1) (X, d) is a compact metric space.

then C(X) is separable.

Proof. By Proposition3.11, C(X) ⊂ Cb(X). So it is enough to show {f ∈
C+(X)|0 ≤ f ≤ 1 on X} is separable. By Proposition6.4, X is totally bounded.

So for each n ∈ N, there are xn,1, xn,2, ..., xn,φ(n) such thatX = ∪φ(n)i=1 B(xn,i,
1
n ).

By Proposition6.1, for each n and i and m ∈ N there is fn,i,m ∈ C+(X) such
that

fn,i,m|B(xn,i,
1

n
) ≡ 1 (16)

and supp(fn,i,m) ⊂ B(xn,i,
1
n + 1

m ) and

0 ≤ fn,i,m ≤ 1 (17)

on X.
We set Λ := {(n, i,m, q) ∈ N3 × Q|i ≤ φ(n)}. For each λ which is a finite

subset of Λ, gλ := max{qfn,i,m|(n, i,m, q) ∈ λ}. Then B := {gλ|λ a finite
subset of Λ} is a countable set.

We will show B̄ = {f ∈ C+(X)|0 ≤ f ≤ 1 on X}. Let us fix arbitary
f ∈ {f ∈ C+(X)|0 ≤ f ≤ 1 on X} and ϵ > 0. By Proposition3.10, there is
N ∈ N such that

|f(x)− f(y)| < ϵ

2
(18)

12



(for any x, y such that d(x, y) < 1
N ). There are qi ∈ Q ∪ [0, 1] such that

|qi − f(x2N,i)| <
ϵ

2
(∀i) (19)

We set g := max{qif2N,i,2N |i = 1, 2, ..., φ(2N)}. Clearly g ∈ B.

Let us fix arbitary x ∈ X. Because X = ∪φ(2N)
i=1 B(x2N,i,

1
2N ), there is i such

that x ∈ B(x2N,i,
1

2N ).
By (16) and (18) and (19)

f(x)− ϵ

2
< f(x2N,i

< qi +
ϵ

2

< qif2N,i,2N (x) +
ϵ

2

< g(x) +
ϵ

2
(20)

So
f(x)− ϵ < g(x) (21)

There is j such that g(x) = qjf2N,j,2N (x). By (17) and (18) and (19),

qjf2N,j,2N (x) ≤ qj

< f(x2N,j) +
ϵ

2
< f(x) + ϵ (22)

So
|f(x)− g(x)| < ϵ (23)

Consequently, B̄ = {f ∈ C+(X)|0 ≤ f ≤ 1 on X}

7 Finite measures on metric space

We introduce several definitions and propositions for only Section8.2.

7.1 several facts on metric space

The following three definitions are from [2].

Definition 7.1 (Elementary function family). Let

(S1) (X, d) is a metric space.

E ⊂Map(X, [0,∞)) is called a family of elementary functions if the follow-
ings holds.

(i) if f, g ∈ E then f + g ∈ E .
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(ii) if f, g ∈ E and f ≥ g then f − g ∈ E .

(iii) if f, g ∈ E then min{f, g} ∈ E .

Definition 7.2 (Elementary integral). Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

l : E 7→ [0,∞] is an elementary integral on E if the followings hold.

(i) if f, g ∈ E then l(f + g) = l(f) + l(g)

(ii) if f, g ∈ E and f ≤ g then l(f) ≤ (g)

Definition 7.3 (Complete elementary integral). Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

l is a complete elementary integral if for any {fn}∞{n=1} such that limn→∞ fn = f

(pointwise convergence) and fn ≤ fn+1 (∀n ∈ R) satisfies limn→∞ l(fn) = l(f)

Definition 7.4 (Functional from elementary integral). Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

We define

L : {φ : X → [0,∞)} ∋ φ 7→ inf{Σ∞
i=1l(φi)|φi ∈ E (∀i), φ ≤ Σ∞

i=1φi} ∈ [0,∞]
(24)

Proposition 7.1. Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

(A1) [0,∞)E ⊂ E .

For any α > 0 and f ∈ E
l(αf) = αl(f) (25)

Proof. Let us fix q1 ∈ (α,∞)∩Q and q2 ∈ (0, α)∩Q. q2l(f) = l(q2f) ≤ l(αf) ≤
l(q1f) = q1l(f). So l(αf) = αl(f)

Proposition 7.2 (Outer measure from elementary integral). Let

(S1) (X, d) is a metric space.
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(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

(S4) L is the functional in Definition7.4.

(S5) We set Γ : 2X ∋ A 7→ L(χA).

then Γ is outer measure on X.

Proof. It is easy to show terms except (iii) in Definition2.8. So we will show
only (iii) in Definition2.8. Let us fix Ai

∞
i=1 ⊂ 2X .

Let us fix ϵ > 0.
For each i ∈ N, there are {φi,j}∞j=1 ⊂ E such that χAi

≤ Σ∞
j=1φi,j and

Σ∞
j=1l(φi,j) ≤ Γ(Ai) +

ϵ
2i

So χ∪∞
i=1Ai ≤ Σ∞

i=1,j=1φi,j .
Γ(∪∞

i=1Ai) ≤ Σ∞
i=1,j=1l(φi,j) ≤ Σ∞

i=1Γ(Ai) + ϵ
Consequently, (iii) holds.

Proposition 7.3. Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

(S4) L is the functional in Definition7.4.

(S5) Γ is the outer measure in Proposition7.2.

(S6) MΓ is the σ-algebra in Proposition3.9.

(A1) C+(X) ⊂ E .

(A2) If A,B are borel sets and d(A,B) > 0 then µ(A) + µ(B) =
µ(A ∪B).

then B(X) ⊂ MΓ.

Proof. Because MΓ is σ-algebra, it is enough to show that all closed sets are
contained in MΓ.

Let us fix closed set A. Let us subset B and C such that A ⊂ B and C ⊂ Ac.
Because A is closed set, C ⊂ {x|d(x,A) > 0}.
For each n ∈ N we set Cn := {x ∈ C|d(x,A) > 1

n} and Dn := {x ∈ C| 1
n−1 ≥

d(x,A) > 1
n}.

The followings holds.
C = ∪∞

n=1Dn (26)

CN = ∪Nn=1Dn (∀N) (27)

We assume Σ∞
n=1Γ(Dn) <∞. Let us fix ϵ > 0.

There is n0 such that Σ∞
n=n0

Γ(Dn) < ϵ.
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Because d(A,Cn0) > 0,

Γ(A) + Γ(C) = Γ(A) + Γ(Cn0 ∪ ∪∞
n=n0

Dn)

≤ Γ(A) + Γ(Cn0) + ϵ

≤ Γ(A) + Γ(Cn0) + ϵ

= Γ(A ∪ Cn0
) + ϵ

≤ Γ(A ∪ C) + ϵ (28)

So if Σ∞
n=1Γ(Dn) <∞ then Γ(A) + Γ(C) = Γ(A ∪ C).

We assume Σ∞
n=1Γ(Dn) = ∞. Then Σ∞

n=1Γ(D2n) = ∞ or Σ∞
n=1Γ(D2n−1) =

∞. We assume Σ∞
n=1Γ(D2n) = ∞.

If n1 ̸= n2 then d(Dn1
, Dn2

) > 0. So Γ(C) ≥ Γ(∪∞
n=1D2n) ≥ Σ∞

n=1Γ(D2n) =
∞. So if Σ∞

n=1Γ(D2n) = ∞ then Γ(B) + Γ(C) = Γ(A ∪ C) = ∞.
Similary, if Σ∞

n=1Γ(D2n−1) = ∞ then Γ(B) + Γ(C) = Γ(A ∪ C) = ∞.

Proposition 7.4. Let

(S1) (X, d) is a metric space.

(S2) E ⊂Map(X, [0,∞)) is a elementary function family.

(S3) l : E 7→ [0,∞] is an elementary integral.

(S4) {fn}∞n=1 ⊂ E and fn ≥ fn+1 on X (∀n).
(A1) There is f ∈ E such that limn→∞ ||fn − f ||∞ = 0

(A2) RE ⊂ E

then
lim
n→∞

l(fn) = l(f) (29)

Proof. |l(f)− l(fn)| = l(f − fn) ≤ ||f − fn||∞l(1) → 0 (n→ ∞)

Proposition 7.5. Let

(S1) (X, d) is a metric space.

(S2) l : E 7→ [0,∞] is an elementary integral on E := {f |f is non-
negative borel measurable on X }.

(S3) L is the functional in Definition7.4.

(S4) h1, h2 ∈ E .

(A1) d(supp(h1), supp(h2)) > 0.

then L(h1 + h2) = L(h1) + L(h2)

Proof. Let us fix arbitary ϵ > 0. Let us fix f and g in Proposition6.10.
Let us fix {φi} ⊂ E such that h1 + h2 ≤ Σ∞

i=1φi and Σ∞
i=1l(φi) ≤ L(h1 +

h2) + ϵ.
By definition of f and g,

h1 + h2 ≤ (f + g)Σ∞
i=1φi (30)
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and
h1 ≤ fΣ∞

i=1φi (31)

and
h2 ≤ gΣ∞

i=1φi (32)

So

L(h1 + h2) + ϵ ≥ Σ∞
i=1l(φi)

≥ Σ∞
i=1(l(fφi) + Σ∞

i=1l(gφi))

≥ L(h1) + L(h2) (33)

Consequently
L(h1) + L(h2) ≤ L(h1 + h2) (34)

Proposition 7.6. Let

(S1) (X, d) is a metric space.

(S2) l : E 7→ [0,∞] is an elementary integral on C+(X).

(S3) L is the functional in Definition7.4.

(S4) Γ is the outer measure in Proposition7.2.

(S5) MΓ is the σ-algebra in Proposition3.9.

then B(X) ⊂ MΓ.

Proof. Let us fix arbitary borel sets A,B such that d(A,B) > 0.
By Proposition7.5, Γ(A∪B) = L(χA∪B) = L(χA+χB) = L(χA)+L(χB) =

Γ(A) + Γ(B).
By Proposition7.3, B(X) ⊂ MΓ.

7.2 several facts on compact metric spaces

Proposition 7.7. Let

(S1) (X, d) is a compact metric space.

(S2) l is an elementary integral on C+(X). C+(X) := {f ∈ C(X)|f ≥
0}

then there is an unique measure µ on (X,B(X)) such that for any f ∈ C+(X)

l(f) =

∫
X

fµ (35)
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Existence. Let us fix f ∈ C+(X).
By replacing f by ||f ||∞ − f , it is enough to show∫

X

fdµl(f) ≤ l(f) (36)

By an argument similar to one in the proof of Proposition8.4, there are
am,i1≤m≤∞,1≤i≤φ(m) ⊂ R such that

0 = am,1 ≤ am,2 ≤ ... ≤ am,φ(m) > ||f ||∞ (∀m ∈ N) (37)

|am,i − am,i+1| ≤
1

2m
(∀m, ∀i) (38)

µ({f = am,i}) = 0 (∀m,∀i) (39)

We set
hm := Σ

φ(m)
i=1 am,iχ[am,i,am,i+1) (m ∈ N) (40)

and
hm,n := Σ

φ(m)
i=1 am,iχ(am,i+

1
n ,am,i+1− 1

n ) (m ∈ N, 1 ≤ i ≤ φ(m)) (41)

Let us fix ϵ > 0.
By Proposition3.10, f ∈ Cu(X).
By (39), there is m,n such that

|
∫
X

fdµ−
∫
X

hm,ndµ| < ϵ (42)

Because f ∈ Cu(X), if i ̸= j then d(f−1((am,i+
1
n , am,i+1− 1

n )), f
−1((am,j+

1
n , am,j+1 − 1

n ))) > 0.
So

l(f) ≥ L(hm,n ≥
∫
X

hm,ndµ (43)

Therefore, ∫
X

fdµ− ϵ ≤ l(f) (44)

Consequently, ∫
X

fdµ ≤ l(f) (45)
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Uniqueness. Let us fix arbitary µ1 ∈ P(X) and arbitary µ2 ∈ P(X) such that∫
X

fdµ1 =

∫
X

fdµ2 (∀f ∈ C+(X)) (46)

We set B := A ∈ B(X)|µ1(A) = µ2(A). Clearly B is σ-algebra.
Let us fix closed set A.
By Proposition6.1, there are {fm}∞m=1 ⊂ C+(X) such that

||fm||∞ ≤ 1 (∀m) (47)

and
limm→∞fm = χA (pointwize convergence) (48)

By Lebesugue’s convergence theorem, µ1(A) = µ2(A).
So A ∈ B.
Consequently B ⊂ B(X).

8 Weak convergence of probability distributions

8.1 the case of single variate

Proposition 8.1 (Helly’s selection theorem). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(R) and denote Fµn
by Fn (n = 1, 2, 3, ...).

Then there is a subsequence {Fα(n)}∞n=1 and F : R → [0,∞) such that F is
monotone increasing and right continuous, and Fα(n)(x) → F (x) for any point
x at which F is continuous.

Proof. There is {xn}∞n=1 ⊂ R such that {xn}∞n=1 = R. Let fix such {xn}∞n=1. Be-
cause 0 ≤ Fn(xm) ≤ 1 (for anym,n in N), there is a subsequence {α(n)}∞n=1 ⊂ N
and {F (xn)}∞n=1 ⊂ [0, 1] such that Fα(m)(xn) → F (xn) (m → ∞). We fix such
{α(n)}∞n=1 and F (xn)

∞
n= We define F (x) := infm∈{k|x≤xk}F (xm). By the def-

inition of F , F is right continuous and monotone increasing. Arbitrarily take
x ∈ R at which F is continuous and fix it. Arbitrarily take ϵ > 0 and fix it.
Let pick xα(m1) and xα(m2) such that xα(m1) ≤ x ≤ xα(m2) and (F (xα(m2)) −
F (xα(m1))) ≤ ϵ

8 . There is a n0 ∈ N such that |Fn(xα(m1))−F (xα(m1))| ≤ ϵ
8 and

|Fn(xα(m2))− F (xα(m2))| ≤ ϵ
8 for any n ≥ n0. Let fix such n0 and m1 and m2.

For any n ≥ n0

|Fn(xα(m1))− F (x)| ≤ |Fn(xα(m1))− F (xα(m1))|+ |F (xα(m1))− F (x)|

≤ ϵ

4
(49)
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and

|Fn(xα(m2))− F (x)| ≤ |Fn(xα(m1))− F (xα(m1))|+ |F (xα(m1))− F (x)|

≤ ϵ

4
(50)

So for any n ≥ n0

|Fn(xα(m1))− Fn(xα(m2))| ≤
ϵ

2
(51)

Arbitrarily take n ≥ n0 and fix it. Because Fn(xm1) ≤ Fn(x) ≤ Fn(xm2),

max{|Fn(xα(m1))− Fn(x)|, |Fn(xα(m2))− Fn(x)|} ≤ ϵ

2
(52)

By (49) and (50) and (52),

|Fn(x)− F (x)| ≤ ϵ (53)

Proposition 8.2. Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(R).

If {µn}∞n=1 is tight then {µn}∞n=1 is weakly compact.

Proof. By Proposition8.1, there is F : R → [0,∞) such that F is monotone
increasing and right continuous, and for any point x at which F is continuous

Fα(n)(x) → F (x) (n→ ∞) (54)

Here we denote Fµn
by Fn. Because of tightness of {µn}∞n=1, limitx→∞(F (x)−

F (−x)) = 1. So there is a probability measure µ such that F is a distribution
function of µ. By (54), µn =⇒ µ (n→ ∞).

Proposition 8.3. Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let {µn}∞n=1 ⊂ P(R). and µ ∈ P(R)
(A1) µn =⇒ µ (n→ ∞).

(A2) Let f be an arbitary bouded continuous function on R.

then

lim
n→∞

∫
fdµn(x) =

∫
fdµ(x) (55)
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Proof. Let us fix arbitary f ∈ Cb(R) and ϵ > 0.
Because µ(R) = 1 and R = ∪a∈Ra, for each n ∈ N {a ∈ R|µ(a) > 1

n} is
finite. So {a ∈ R|µ(a) > 0} is at most coutable.

So there is r1 > 0 and r2 > 0 such that

1− µ((−r1, r2)) <
ϵ

3(||f ||∞ + 1)
(56)

and µ(−r1) = 0 and µ(−r2) = 0.
Because f is uniformly continuous on X,
So there are am,i1≤m≤∞,1≤i≤φ(m) ⊂ R such that

−r1 = am,1 ≤ am,2 ≤ ... ≤ am,φ(m) = r2 (∀m ∈ N) (57)

and

|am,i − am,i+1| ≤
1

2m
(∀m, ∀i) (58)

and
µ({am,i}) = 0 (∀m,∀i) (59)

For each m ∈ N, set fm := Σ
φ(m)
i=1 f(ai)χ[ai,ai+1).

Because limm→∞ fm = f (pointwize convergence), by Lebesugue’s conver-
gence theorem there is m ∈ N such that

|
∫ r2

−r1
fmµ−

∫ r2

−r1
fµ| < ϵ

3
(60)

Because ∫ r2

−r1
fmµ = Σ

φ(m)
i=1 f(ai)µ([ai, ai+1)) (61)

and ∫ r2

−r1
fmµn = Σ

φ(m)
i=1 f(ai)µn([ai, ai+1)) (∀n) (62)

So there is n0 such that

|
∫ r2

−r1
fmµn −

∫ r2

−r1
fmµ| <

ϵ

3
(∀n ≥ n0) (63)

By (56) and (60) and (63),

|
∫
R
fµn −

∫
R
fµ| < ϵ (∀n ≥ n0) (64)
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8.2 the case of multi variates

Definition 8.1 (Weak convergence). Let

(S1) (X, d) is a metric space.

(S2) {µn}∞n=1 ⊂ P(X).

(S3) µ ∈ P(X).

We say {µn}∞n=1 weakly converges to µ if for any borel set A such that µ(∂(A)) =
0 limn→∞ µn(A) = µ(A) Denote µn =⇒ µ by weak convergence.

The following proposition gives the equivalent definition of weak conver-
gence.

Proposition 8.4. Let

(S1) (X, d) is a metric space.

(S2) {µn}∞n=1 ⊂ P(X).

(S3) µ ∈ P(X).

then the followings are equivalent.

(i) µn =⇒ µ.

(ii) Set Cb(X) := {f ∈ C(X)|||f ||∞ <∞}. For any f ∈ Cb(X)

lim
n→∞

∫
fdµn =

∫
fdµ (65)

(iii) Set Cu(X) := {f ∈ C(X)| f is uniformly continuous on X}.
For any f ∈ Cb(X) ∩ Cu(X)

lim
n→∞

∫
fdµn =

∫
fdµ (66)

(iv) For any closed set A

lim
n→∞

µn(A) ≤ µ(A) (67)

(v) For any closed set U

lim
n→∞

µn(U) ≥ µ(U) (68)

(i) =⇒ (ii): Let fix arbitary f ∈ Cb(X). Because ∪a∈R{f = a} = X and
µ(X) = 1, for any n ∈ N {a ∈ R|µ({f = a}) > 1

n} is a finite set. So {a ∈
R|µ({f = a}) > 0} = ∪∞

n=1{a ∈ R|µ({f = a}) > 1
n} is at most countable.

So there are am,i1≤m≤∞,1≤i≤φ(m) ⊂ R such that

−||f ||∞ > am,1 ≤ am,2 ≤ ... ≤ am,φ(m) > ||f ||∞ (∀m ∈ N) (69)
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|am,i − am,i+1| ≤
1

2m
(∀m, ∀i) (70)

µ({f = am,i}) = 0 (∀m,∀i) (71)

For m ∈ N set

gm := Σ
φ(m)
i=1 am,i+1χ{am,i≤f≤am,i+1} (72)

and
hm := Σ

φ(m)
i=1 am,iχ{am,i≤f≤am,i+1} (73)

Because for anym and i ∂{am,i ≤ f ≤ am,i+1} ⊂ {f = am,i}∪{f = am,i+1},
for any m and i

µ(∂{am,i ≤ f ≤ am,i+1}) = 0 (74)

Let fix arbitary ϵ > 0.
By Lebesugue’s convergence theorem, there is m ∈ N such that

∫
gmdµ −∫

hmdµ ≤ ϵ.
By (i), ∫

fdµ− ϵ ≤
∫
hmdµ

= lim
n→∞

∫
hmdµn

≤ lim
n→∞

∫
fdµn

(75)

and ∫
fdµ+ ϵ ≥

∫
gmdµ

= lim
n→∞

∫
gmdµn

≥ lim
n→∞

∫
fdµn

(76)

Consequently,
∫
fdµ = limn→∞

∫
fdµn.

(ii) =⇒ (iii): It’s trivial.

(iii) =⇒ (iv): Let fix arbitary closed set A. We set

fn(x) := |1−min(1, d(x,A))|n (n ∈ N, x ∈ x) (77)
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fn ∈ Cb(X) ∩ Cu(X) (∀n) and limn→∞ fn → χA (pointwiseconvergence)
and ∫

fmdµn ≥ µn(A) (78)

By Lebesugue’s convergence theorem,

µ(A) ≥ lim
n→∞

µn(A) (79)

(iv) ⇐⇒ (v): It’s trivial.

(iv) and (v) =⇒ (i): Let A ∈ B(X) and µ(∂A) = 0. By (iv),

lim
n→∞

µn(A) ≤ lim
n→∞

µn(A)

≤ µ(A)

= µ(A \A) + µ(A)

≤ µ(∂) + µ(A)

= µ(A) (80)

In the same way as above we obtain

lim
n→∞

µn(A) ≥ µ(A) (81)

Consequently

lim
n→∞

µn(A) = µ(A) (82)

The following is the definition of a metric of P(R).

Proposition 8.5. Let

(S1) (X, d) is a compact metric space.

(S2) {fn}∞n=1 is a dense subset of (X, d). By Proposition6.11, such
subsets always exist.

(S3) τ(µ1, µ2) := Σ∞
n=1|

∫
fndµ1 −

∫
fndµ2| (µ1, µ2 ∈ P(R)).

then the followings hold.

(i) τ is a metric on P(R).
(ii) for any {µn}∞n=1 ⊂ P(R) and µ ∈ P(R), µn =⇒ µ (n → ∞)

is equivalent to τ(µn, µ) → 0 (n→ ∞).

(i): Let fix µ1 ∈ P(X) and µ2 ∈ P(X) such that τ(µ1, µ2) = 0. It is enough
to show µ1 = µ2 for showing (i). By (S2), for any f ∈ C+(X)

∫
fdµ1 =

∫
fdµ2.

By uniqueness in Proposition7.7, µ1 = µ2.

24



(ii): Let us assume τ(µn, µ) → 0 (n → ∞). Let us fix arbitary ϵ > 0. There is
m ∈ N such that ||f − fm||∞ < ϵ

3 . There is n0 ∈ N such that for any n ≥ n0

|
∫
X

fmdµn −
∫
X

fmdµ| <
ϵ

3
. (83)

For any n ≥ n0

|
∫
X

fdµn −
∫
X

fdµ| < |
∫
X

fdµn −
∫
X

fmdµn|

+|
∫
X

fmdµn −
∫
X

fmdµ|+ |
∫
X

fmdµ−
∫
X

fmdµ|

< ϵ (84)

Consequently, µn =⇒ µ (n→ ∞).
The inverse is clear.

Proposition 8.6. (P(X), τ) is a compact metric space.

Proof. By Proposition6.4, it is enough to show (P(X), τ) is sequencially com-
pact.

Let us fix arbitary µn
∞
n=1 ⊂ P(X).

For any m ∈ N, {
∫
fmµn}∞n=1 is bounded.

For eachm ∈ N, there is {φ(m,n)}∞n=1 such that l(fm) := limn→∞
∫
fmdµφ(m,n)

exists and |l(fm)−
∫
fmdµφ(m,n)| < 1

m (∀n ≥ m).
We set ψ(m) := φ(m,m) (m ∈ N).
By the definition of ψ, for any m ∈ N l(fm) = limn→∞

∫
fmdµψ(n).

Let us fix arbitary f ∈ Cb(X) and ϵ > 0. There is k ∈ N such that ||f−fk|| <
ϵ
3 .

There is n0 ∈ N such that for any m ≥ n0 and any n ≥ n0 |
∫
fkdµψ(m) −∫

fkdµψ(m)| < ϵ
3

So for any m ≥ n0 and any n ≥ n0 |
∫
fdµψ(m) −

∫
fdµψ(m)| < ϵ.

So l(f) := limm→∞
∫
fdµψ(m) exists.

Clearly l is an elementary integral on C+(X).
So by Proposition7.7, there is µ ∈ P(X) such that

l(f) =

∫
X

fdµ (∀f ∈ C+(X)) (85)

Clearly µψ(n) =⇒ µ (n→ ∞).

Proposition 8.7. Let

(S1) (X, d) is a separable metric space.

(A1) {µn}∞n=1 ⊂ P(X) is tight.

There is a subsequence µφ(n)
∞
{n=1} and µ ∈ P(X) such that µφ(n) =⇒ µ

(n→ ∞).
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Proof. Let (X̃, d̃) be a compact metric space in Proposition6.8 and i : X → X̃
in Proposition6.8. By Proposition7.7, for each n ∈ N there is a measure µ̃n such
that for any g ∈ C+(X̃) and n ∈ N∫

X

g ◦ idµn =

∫
X̃

gdµ̃n (86)

There is an increasing sequence of compact sets {Kn}∞n=1 such that

µm(Kn) > 1− 1

n
(87)

(∀m ∈ N,∀n ∈ N)
Let K := ∪∞

n=1Kn. By (87), for any m ∈ N

µm(K) = µ̃m(i(K)) = 1 (88)

For n ∈ N and x ∈ X̃, gm,n(x) := (1 − min1, d(x,Km))n.
∫
X̃
gm,ndµ̃l ≥

µ̃m(Km) ≥ 1 − 1
m . By reaching n → ∞, µm(Km) = µ̃(i(Km)) ≥ 1 − 1

m . By
reaching m→ ∞,

µ̃(i(K)) = 1 (89)

By Proposition, there is a subsequence {µ̃φ(n)}∞n=1 and µ̃ ∈ P(X̃) such that
µ̃n =⇒ µ̃ (n→ ∞).

Because for any n ∈ N i(Kn) is compact, i(Kn) ∈ B(X̃). So i(K) ∈ B(X̃).
We will show

B(X) ⊂ B := {A ⊂ X|i(A ∩K)B(X̃)} (90)

Because i is injective, if {An}∞n=1 ⊂ B then ∪∞
n=1An ∈ B. And if AB then

i(Ac ∩K) = i(K) ∩ i(A ∩K)c ∈ B So B is a σ-algebra. For any closed set A,
A ∈ B. So (90) holds.

For A ∈ B(X), we define

µ(A) := µ̃(i(A ∪K)) (91)

By (89),
µ(K) = 1 (92)

Let me fix arbitary f ∈ Cb(X)∩Cu(X). Because f ∈ Cu(X) and i(X)isdenseinX̃,
there is f̃ ∈ Cb(X̃) ∩ Cu(X̃) such that f̃ |i(X) = f ◦ i−1.
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By the definition of {µn}∞n=1 and µ,

lim
n→∞

∫
X

fdµn = lim
n→∞

∫
X

f̃ ◦ idµn

= lim
n→∞

∫
X̃

f̃dµ̃n

=

∫
X̃

f̃dµ̃

=

∫
i(K)

f̃dµ̃

=

∫
i(K)

f ◦ i−1dµ̃

=

∫
K

fdµ

=

∫
X

fdµ (93)

9 Characteristic functions of probability distri-
bution

9.1 the case of single variate

By Fubini’s theorem, the following holds.

Proposition 9.1. Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let µ ∈ P(R).
(S3) Let f ∈ L1(R).

then ∫
R
f(t)φµ(t)dt =

∫
R

F−1(f)(x)dµ(x) (94)

Proposition 9.2 (Uniqueness of characteristic function). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let µ ∈ P(R) and µ′ ∈ P(R).

If φµ = φµ′ then µ = µ′.

Proof. Let us arbitary f ∈ C∞
c (Rn). By Proposition5.3, F (f) ∈ L1(Rn). By

Proposition5.2,
∫
R f(x)dµ(x) =

∫
R f(x)dµ

′(x). By Proposition4.3, µ = µ′.
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This proposition states that convergence of distributions in law is derived
from each point convergence of the characteristic function.

Proposition 9.3 (Levy’s continuity theorem(single variate case)). Let

(S1) {µn}∞n=1 ⊂ P(R)
(S2) φn is the characteristic function of µn (n = 1, 2, ...)

(A1) {µn}∞n=1 ⊂ P(R) then the followings are equivalent.

(i) There is a φ s.t φ is a measurable function on R and φ is contin-
uous at 0 and φ(0) = 1 and φn −−−−→

n→∞
φ (converge pointwise).

Below, we fix such φ.

(ii) Then there is a µ ∈ P(R) such that φ is the characteristic
function of µ and µn =⇒ µ (n→ ∞).

(i) =⇒ (ii). The followings are strategy of the proof.
–Memo

(STEP1) Showing {µn}∞n=1 is tight.

(STEP2) Getting µ of the subject.

–
(STEP1)

For each m ∈ N, there is a measurable function fm such that fm continuous
at 0 and fm(0) = 1 and supp(f) ⊂ [−1

m , −1
m ] is compact and fm ≤ 1 in R

and F−1fm ≤ 1 in R. {χ[− 1
m , 1

m ]}∞m=1 sutisfies the above conditions. Fix such

{fm}∞m=1.
We get ∫

R
fm(x)φn(x)dx =

∫
R
F−1fm(x)dµn(x) (95)

So

1− m

2

∫
R
fm(x)φn(x)dx = 1− m

2

∫
R
F−1fm(x)dµn(x) (96)

Call the left side of the above (96) Im,n and call the right side of the above
(96) Jm,n. Fix any ε > 0.

(STEP1-1)
–Memo
We will show that Im,n < ε for sufficient largem,n. We will show this statement
using the dominated convergence theorem and continuity of φ at 0
–
(STEP1-2)
–Memo
We will show that Jm,n > µn({x ∈ R| |x| ≥ m}) for sufficient largem,n. We will
show this statement using the dominated convergence theorem and continuity
of φ at 0
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–

The following holds.

F−1fm(x) =
1

m
F−1fm(

x

m
) (97)

So

Jm,n = 1− 1

2

∫
R
F−1fm(

x

m
)dµn(x)

=

∫
R
1− 1

2
F−1fm(

x

m
)dµn(x)

=

∫
{x∈R| |x|≥m}

1− 1

2
F−1fm(

x

m
)dµn(x) (98)

In (98), we use statement F−1fm ≤ 1 in R (∀m ∈ N).

1− 1

2
F−1fm(

x

m
) ≥ 1− 1

2
maxy∈supp(|fm|)|fm(y)|m

|x|

≥ 1

2
(99)

So

Jm,n ≥ 1

2
µn({x ∈ R| |x| ≥ m}) (100)

By (STEP1-1) and (100) for sufficient large m and n we get

2ϵ ≥ µn({x ∈ R| |x| ≥ m}) (101)

So We have shown {µn}∞n=1 is tight.
(STEP2)

By (STEP1), there is a subsequence {µψ(n)}∞n=1 which converges to a µ in
law. It is enough to show for any subsequence of {µn}∞n=1 the subsequence has
some subsequnece of the subsequence which converges to µ in law. Let fix any
subsequence {µω(n)}∞n=1. There is a subsequence {µω(α(n))}∞n=1 which converges
to µ′. By increasing n to ∞ in (96) and Proposition8.3, ϕµ = ϕ and ϕµ′ = ϕ.
By uniqueness of characteristic function, µ = µ′.

(ii) =⇒ (i). φµ : R ∋ t 7→
∫
Ω
exp(itx)dµ. It is easy to show φµ is continuous

at 0.
By Proposition8.3,∫

R
exp(itx)dµ(x) = lim

n→∞

∫
R
exp(itx)dµn (∀t) (102)
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9.2 the case of multi variates

Proposition 9.4 (Levy’s continuity theorem(multi variate case)). Let

(S1) {µn}∞n=1 ⊂ P(RN )

(S2) φn is the characteristic function of µn (n = 1, 2, ...)

(A1) {µn}∞n=1 ⊂ P(RN )

(A1) There is a φ s.t φ is a measurable function on RN and φ is
continuous at 0 and φ(0) = 1 and φn −−−−→

n→∞
φ (converge point-

wise). Below, we fix such φ.

Then there is a µ ∈ P(RN ) such that φ is the characteristic function of µ
and µn =⇒ µ (n→ ∞).

Proof. By an argument which is similar to the proof of Proposition9.3, we can
show that {µn}∞n=1 is tight.

By Proposition8.7 and uniqueness of fourier transformation in RN and Propo-
sition8.4, there is µ ∈ P(R)N such that µn =⇒ µ (n→ ∞) and φµ = φ.

10 A proof of the central limit theorem

10.1 the case of single variate

Theorem 10.1 (Central limit theorem). Let

(S1) (Ω,F ,P) is a probability space.

(S2) {Xi}∞i=1 is a sequence of random variables on (Ω,F ,P).

(A1) ∃µ such that Xi ∼ µ (∀i). Bellow, we fix such µ.

(A2) {Xi}Ni=1 are independent for any N ∈ N.
(A3) E[µ] = ν and V [µ] = σ2 and σ > 0.

then P√
n(X̄−ν) weakly converges to N(0, σ).

Proof. We can assume ν = 0 and σ = 1. Bellow, we assume that.
Let Yi,n := Xi√

n
(i = 1, 2, ..., n) and Yn :=

∑n
i=1 Yi,n (n = 1, 2, ...). By (A1),

φYi,n
= φY1,n

(∀i,∀n). Let φn := φYn
and ψn := φY1,n

(n = 1, 2, ...). And let
ψµ : R ∋ s 7→

∫
R exp(isx)dµ(x). Then φn = (ψn)

n and ψn(t) = ψµ(
t√
n
) and

(∀t ∈ R). We will show the following equation. By Proposition3.7,

φY1,n
(t) = 1− t2

2n
+ o(

1

n
)(n→ ∞) (103)

By the above equation and Proposition3.4,

φn(t) = (1− t2

2n
+ o(

1

n
))n → exp(− t

2

2
) (n→ ∞) (104)
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By Proposition9.3, there is a µ0 ∈ P(R) such that P√
nX̄ converges to µ0

in law and φµ0 = exp(− (·)2
2 ). Because φN(0,1) = exp(− (·)2

2 ) and uniqueness of
characteristic function, P√

nX̄ converges to N(0, 1)

10.2 the case of multi variates

Theorem 10.2 (Central limit theorem(multi variate case)). Let

(S1) (Ω,F ,P) is a probability space.

(S2) {Xi}∞i=1 is a sequence of N -dimensional vectors of random vari-
ables on (Ω,F ,P).

(A1) ∃µ such that Xi ∼ µ (∀i). Bellow, we fix such µ.

(A2) {Xi}ni=1 are independent for any n ∈ N.
(A3) E[µ] = ν and cov[µ] = σ2 and σ is N -by-N positive definite

symmetric matrix.

then P√
n(X̄−ν) weakly converges to N(0,Σ).

Proof. Let us fix arbitary t ∈ RN and s ∈ R. Let us set Yn := stT (Xn − ν).
The following holds.

φ√
n(X̄−ν)(st) = E(exp(

√
nistT (X̄ − ν))) = φ√

n(Ȳ−ν)(s) (105)

By Theorem10.1 and Proposition9.3 and Proposition3.3,

lim
n→∞

φ√
n(Ȳ−ν)(s) = exp(−s

2tTΣ2t

2
) (106)

By setting s = 1,

lim
n→∞

φ√
n(X̄−ν)(st) = exp(−tTΣ2t

2
) (107)

By Proposition9.4 and Proposition3.3, P√
n(X̄−ν) weakly converges toN(0,Σ).
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