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1 Introduction

This memo is a study memo on estimation and testing in linear regression.

2 Assumptions

In this note, we assume we assume various definitions and facts about random
variables, probability measures, definitions and facts about the chi-squared dis-
tribution and the t-distribution (See from chapterl to chapter 3 in [1] and see
from chapterl to chapter 4 in [2]).

Proposition 2.1. Le A be a N-by-N symteric idempotent matrix and assume
rank(A) =m and {ei}ivzl ~ N(0,En). Then

¢! Ae ~ x*(m) (1)

3 General Topics

3.1 Multivariate normal distribution
Remark 3.1. Let
(S1) (R, 7, P) is a probability space.
(52) X :=(Xy,...,X,) is a vector of random variables.
(S3) A is a (m,n) matriz.
(A1) (X1,...,Xn) ~ N(0, E,).
then cov(AX) = AAT.

The following Proposition3.5 is used to prove the Proposition3.3 discussed
later.

Proposition 3.1. Let
(A1) X = (X1, X2,....,X,)T ~ N(v,BBT), where B is a (p,q) ma-

trix.
(S1) Let s € [L,p — 1] NN and XV = (Xy,...,X,) and X@ :=
(Xot1sem Xp).-

(A2) cov(XM, X@) = 0.
then X and X® are independent.

Proof. The following proof consists of two steps.
STEP1. General case

In this step, we will show that it is enough to show the Proposition when
r:=rank(B) = p < q. For each i € NN[1,p], let b; be the i-th row vector of B.
Let V7 be the vector space generated from by, bo, ..., bs and let V5 be the vector



space generated from bsi1,bsq2,...,0,. We can take {b,(;)};2, is a basis of V;
and {b;(;)};2; is a basis of V5. Since Vi L Va, {bo@iy}it, N {br)}iz, = ¢ and
{bo(iy }it1 U{br(i) }i2, are linear independent. So it is enough to show {b, @ }iL,
and {b.(;y};2, are independent when rank(B) is the number of rows of B.

STEP2. Case when rank(B) =p <gq

Let W be the orthogonal complement of the vector space generated from
b1, b2, ...,b,. We can take cy, ..., c(,—p) Which is an orthonormal basis of W and
let

C1
c=] @ ,and let D := [g] By (A1), there are random variables {e}!_,
C(g—p)

on (©,.%) and random variables { Y}7_F on (£2,.%) such that € := {e}!_; are
i.i.d and €; ~ N(0,1) (V4)
<

and Z := vI= De +~ and cov(Z) = DDT.

The distribution of Z has the density function f, : R? 3 x + c-ezp(z? DDTz) €
R, where ¢ is a constant. By (A2) and the definition of C,

> 0 0
DDT =10 Yo 0 , where ¥ and Yo are symmetric positive def-
0 0 Eg—p)

inite matrixies. So the distribution of X has the density function f, : R >

x—d- exp(x(l)TElx(l)) . e:cp(x(Q)TElx@)) € R, where d is a constant and
M = (21,...,2,) and 23 = (2,41, ..., Zp). By the format of f,, X® and X®@
are independent. O

3.2 Preliminaries for linear regression
Throughout this section, we assume the following settings.
Setting 3.1 (Linear regression). Let

(S1) (2, 7, P) is a probability space.

(52) Let X :={X; j}n<i<ni<j<ky} be a (N, K) matriz.
(A1) XTX is a reqular matriz of order (K + 1).

(83) Let € := {e;}1<i<ny be N random variables.

(A2) {e}p<icny < N(0,3N,02Ey), where o > 0.
(84) Let {Bi}1<i<ky be a real K-dimension vector.

(85) Lety := {yi}{1<i<ny be N random variables which are defined
by the following equation.

y=XB+e (2)



Remark 3.2. By (A1),
rank(X) =K (3)

Definition 3.1 (Least squares estimate). Let

Bi=(XTX)"HXTy) (4)
We call 3 the least squares estimate of (2).
And let
j:=Xp (5)
We call § the predicted values of (2).
Lastly let
e=y—7 (6)

We call é the residual of (2).

Remark 3.3. § is the point which minimize RX 3 z — |y — Xz|> € [0,00).
And R
Bi=B+(X"X)"'X"e (7)

and for each i i ~ N(Bi,02&) and & > 0, where & is (i,i) component of
(xTx)".

Definition 3.2 (Multivariate normal distribution). Let X; be a random variable
on (Q,%) (i =1,2,...,N). {Xi}f\il ~ N(v,X) if there is a natural number
and (N,1) matriz A and there are random variables {e}t_; on (0, F) such that
€:={e}\_, areii.d and ¢, ~ N(0,1) (Vi) and X = Ae +~ and ¥ = AAT.

3.3 Interval estimation of regression coefficients

Proposition 3.2.
éel?
|ffvx2(N - K) (8)

o2

Proof. The following holds.
é=(Exy — X(XTX)"'1XT)e (9)

Let A = (Ey — X(XTX)7'XT) then A is symmetric and idempotent. So
each eigenvalue of A is 0 or 1. And tr(A) = N —tr(X(XTX)"1XT) = N —
tr(XTX)"!XTX) = N — K so rank(A) = N — K. So by Proposition2.1,
512

L~ (N - K). O

Proposition 3.3. 3 and é are independent.

Proof. By (7) and (9), cov(é,3) = 0. So by Proposition3.3 § and é are inde-
pendent. 0



By Remark and Proposition3.2 and Proposition3.2 and Proposition3.3, the
folloing Proposition holds.

Proposition 3.4. For each i € NN 1, K],

(Bi — Bi) /(N — K)
lelvE

In the above equation, tny_k is the t-distribution whose degrees of freedom is

N — K and &; is (i,1) component of (XTX)fl.

~t(N - K) (10)

The following is a remark.

Proposition 3.5.

A2 R
BGEE) — V() () (1)
Proof. By Proposition3.2, E(]l[éﬁ%{) = 02¢;. By Remark3.3, V(8;) = 02¢; O
lelVE

By the above remak, is denoted by se(ﬂ}).

N-K

3.4 Decomposition of TSS
Proposition 3.6.

(9,6)=0 (12)
Proof. By (7),
XTyg=XT"Xp=XT(XB+e)=X"y (13)
So
(gv é) - BTXTé
= B'X"(y-9)
=0
O

Proposition 3.7. Let
(A1) There is a K-by-K matriz B such that the first column of X B

18 1N
then B
=7 (14)
Proof. By (7),
XTg=XTXp=X"(XB+e)=X"y (15)
So the following holds.
BTXxTe =0 (16)
The fitst component of the BT X7¢é is § — 7. So § = 7. O



Proposition 3.8. Let

(S1) TSS := |y — yl,|?
(S2) RSS == |§ — yln|?
(53) ESS =y —j*

(A1) (A1) in Proposition3.7

then
TSS =RSS+ ESS (17)
Proof. Because
TSS =y (F ~ 31wy (18)
and .
RSS =y (XT(XTX) X — 1wy (19)
and
ESS =yT(E - XT(XTX) ' X)y (20)
TS5 =RSS+ ESS. O

3.5 Cochran’s theorem

Proposition 3.9. Let
(S1) m € N and A;:N-by-N symmetric matriz (i = 1,2, ...,m)
(A1) Exy =7 A;
(A2) N =X rank(A;)

then

where 6; ; is a Kronecker delta.

Proof. Let V; := A;RY and n; := rank(A;) and {v; j}1<j<n, be a basis of V;

e R

RY =(PV; (22)
Let fix arbitary i € {1,2,..., N} and fix arbitary x € RY. A;z = (X7, A) Az =

By Proposition3.9 and Proposition2.1 and Proposition, the following theo-
rem holds.

Proposition 3.10 (Cochran’s theorem).
We take over (S1) and (A1) in Proposition3.9. And let



(S2) (Q, 7, P) is a probability space.

(A1) e ~ N(0,Ey)

(S3) Qi == €TAje (i=1,2,...m)
then Q; ~ x*(rankA;) (Vi) and Q; and Q; are independent for all (i,j) €
{(,4)li # 5}

3.6 Testing
Throughout this subsection, we assume
B = (5,0,0,...,0)" (23)
and
1 Z1,1 x1,2 X1,L
X _ 1 .’112)1 332’2 x2,L (24)
1 TN, IN,2 -« IN,L
Then
XB=polna (25)
So
7 = X(XTX)"'xTy
= X(XTX)'XT(XB+e)
Bolni+ X(XTX)"1xTe (26)
And
_ 1
Ylni = ﬁole\m + 1y NE (27)
Consequently,
1
RSS::JXX(XTXj*RXT-NﬂNJk (28)

1
Because X (X7 X)71 X7 is symmetric, X (X7 X)~1X7T and i 1n,1 are com-
mutative.
And because X (X7 X)~1 X7 is idempotent and symmetric, (X (X7 X)~1XT—
Nl ~,1) is idempotent and symmetric.

1 1
rank(X(XTX)"1XT — NlN’l) =tr(X(XTX)1XxT — NIN’l) =L

So by Proposition3.10, RSS and ESS are independent and RSS ~ x2(L)
and ESS ~ x?(N — L —1).
So,
RSS

#wF(L,N—L—l) (29)
N-L-1



4 Simple linear regression

Throughout this subsection, we set
n n n n
o= @i Ty = ui Tow =Dty Toy = ) v
i=1 i=1 i=1 i=1

4.1 Casel: there is intercept

Throughout this subsection, we assume

1 X1
X — 1 T2
1 z,
Then
5 &
3= ()
_ (XTX)_lXTy
1 I
1 1 1 1 ZTo 1 vT
a (<x1 T a:n> R )Xy
1 =z,
—1
n T,
= (Tx Tm> Xty
_ 1 Tro —T: T,
TITI’I Tg 7Tr n T’t,y
So
_ N1y y — 1Ty
nLy, — T2
1
Toy 5TETy
- I
Ty — —T2
n
DY )
D (@i —2)?
Consequently,

Z?:l(mi —Z)(yi — ¥)
Sy (zi — T)?

-
Il

(30)



4.2 Case2: there is no intercept

Throughout this subsection, we assume
X = (z1,T2, .y zn)” (35)

Then

&
<

@
I
x

Iva

5 Estimation about population mean

Throughout this section, we assume X = 1y is one and we define u by 8 = pul;.
The followings hold.

XTX =N (37)

Y= X(XTX)"'xT = %1N7N (38)
e:=y—yln (39)

@ ~2(N =1) (40)

~ (N —1) (41)

6 Estimation about difference between two pop-
ulation means

Throughout this section, we assume

1, 0
X = ( 6” 1N> (42)
and
_(ly
o= (1) (43)



Then the followings hold.

XTx = (Ag ](3[) (46)
Yy <J&116\4,JV[ %1(])\{ N> (47)
=i =71 +& (48)
pe = (o)1 =2 +& (49)

So, by reproductive property of normal distribution,

1 1.,
p — p2 — (1 —92) ~ N(O’(T[ + %N)U )
And the following holds.

e]* = [y1 — plm|? + [y2 — poln|? (51)
By Proposition3.3, (1 — p2 — (U1 —¥2)) and |y1 — p11ar]? + |y2 — p2ly|? are
independent.

Consequently, the following holds.

(b1 —p2 — U1 —W2)) VM + N —2

1 1
\/(|y1 —pala|? + |y2 — p2ln|?)(— + =)

~tHM+N-2) (52

M N

7 One way analysis of variance

Throughout this section we set

Yy = (y1,17 oYl Y2,15 - Y205 - YK T "'ayK,’ﬂK)T (53)
ﬁ = (ﬂla/‘LZa"”/*LK)T (54)
g :@@:1,2, K (55)
L, O O O
Xo= [ 1re 1 OO (56)
e O O 1n,

Then
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Ly 0 0 0

ny

1
Y = X(XTX)—lXT = 0 no 1n2,n2 0] O (57)
o (@] (0] ilnmm{
In this subsection, hereafter, we assume there is a real number p such that
B =plk (58)
Then the followings holds.

T 1
TSS =€ (EN*N]-N,N)E (59)

T 1
ESS =€ (Y — NlNJV)e (60)

1

rank(Y — NlNW) =K-1 (61)
RSS = €' (Ex —Y)e (62)
rank(En —Y)=N—-K (63)

So, by Cohchran’s theorem, ESS and RSS are independent, and ESS ~
Y2(K —1) and RSS ~ x*(N — K).
Consequently, the following theoem holds.

Theorem 7.1. Under the setting(56) and the assumption(58)
(ESS/(K —1))/(RSS/(N —K))~F(K—-1,N — K) (64)
And the followings hold.

1
o 0 0
0o L 0
(XTX)"' = n2 (65)
0 0 —
nK
B = (gl,-aglw“wny)T (66)
So, by Proposition3.4, the following theoem holds.
Theorem 7.2. Under the setting(56)
_ (N — K)’I’Ll
(yi,- — 1) T ESS ~t(N - K) (67)
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