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1 Introduction

This memo is a study memo on estimation and testing in linear regression.

2 Assumptions

In this note, we assume we assume various definitions and facts about random
variables, probability measures, definitions and facts about the chi-squared dis-
tribution and the t-distribution (See from chapter1 to chapter 3 in [1] and see
from chapter1 to chapter 4 in [2]).

Proposition 2.1. Le A be a N -by-N symteric idempotent matrix and assume
rank(A) = m and {ϵi}Ni=1 ∼ N(0, EN ). Then

ϵTAϵ ∼ χ2(m) (1)

3 General Topics

3.1 Multivariate normal distribution

Remark 3.1. Let

(S1) (Ω,F , P ) is a probability space.

(S2) X := (X1, ..., Xn) is a vector of random variables.

(S3) A is a (m,n) matrix.

(A1) (X1, ..., Xn) ∼ N(0, En).

then cov(AX) = AAT .

The following Proposition3.5 is used to prove the Proposition3.3 discussed
later.

Proposition 3.1. Let

(A1) X := (X1, X2, ..., Xp)
T ∼ N(γ,BBT ), where B is a (p, q) ma-

trix.

(S1) Let s ∈ [1, p − 1] ∩ N and X(1) := (X1, ..., Xs) and X(2) :=
(Xs+1, ..., Xp).

(A2) cov(X(1), X(2)) = 0.

then X(1) and X(2) are independent.

Proof. The following proof consists of two steps.
STEP1. General case

In this step, we will show that it is enough to show the Proposition when
r := rank(B) = p ≤ q. For each i ∈ N∩ [1, p], let bi be the i-th row vector of B.
Let V1 be the vector space generated from b1, b2, ..., bs and let V2 be the vector
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space generated from bs+1, bs+2, ..., bp. We can take {bσ(i)}r1i=1 is a basis of V1

and {bτ(i)}r2i=1 is a basis of V2. Since V1 ⊥ V2, {bσ(i)}r1i=1 ∩ {bτ(i)}r2i=1 = ϕ and
{bσ(i)}r1i=1∪{bτ(i)}r2i=1 are linear independent. So it is enough to show {bσ(i)}r1i=1

and {bτ(i)}r2i=1 are independent when rank(B) is the number of rows of B.

STEP2. Case when rank(B) = p ≤ q
Let W be the orthogonal complement of the vector space generated from

b1, b2, ..., bp. We can take c1, ..., c(q−p) which is an orthonormal basis of W and
let

C :=


c1
c2
...

c(q−p)

, and let D :=

[
B
C

]
. By (A1), there are random variables {ϵ}pi=1

on (Ω,F ) and random variables { Y }q−p
i=1 on (Ω,F ) such that ϵ := {ϵ}qi=1 are

i.i.d and ϵi ∼ N(0, 1) (∀i)

and Z :=

[
X
Y

]
= Dϵ+ γ and cov(Z) = DDT .

The distribution of Z has the density function fq : Rq ∋ x 7→ c·exp(xTDDTx) ∈
R, where c is a constant. By (A2) and the definition of C,

DDT =

Σ1 0 0
0 Σ2 0
0 0 E(q−p)

, where Σ1 and Σ2 are symmetric positive def-

inite matrixies. So the distribution of X has the density function fp : Rp ∋
x 7→ d · exp(x(1)TΣ1x

(1)) · exp(x(2)TΣ1x
(2)) ∈ R, where d is a constant and

x(1) = (x1, ..., xs) and x(2) = (xs+1, ..., xp). By the format of fp, X
(1) and X(2)

are independent.

3.2 Preliminaries for linear regression

Throughout this section, we assume the following settings.

Setting 3.1 (Linear regression). Let

(S1) (Ω,F ,P) is a probability space.

(S2) Let X := {Xi,j}{1≤i≤N,1≤j≤K} be a (N,K) matrix.

(A1) XTX is a regular matrix of order (K + 1).

(S3) Let ϵ := {ϵi}{1≤i≤N} be N random variables.

(A2) {ϵi}{1≤i≤N}
iid∼ N(0,ΣN

i=1σ
2EN ), where σ > 0.

(S4) Let {βi}{1≤i≤K} be a real K-dimension vector.

(S5) Let y := {yi}{1≤i≤N} be N random variables which are defined
by the following equation.

y = Xβ + ϵ (2)
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Remark 3.2. By (A1),
rank(X) = K (3)

Definition 3.1 (Least squares estimate). Let

β̂ := (XTX)−1(XT y) (4)

We call β̂ the least squares estimate of (2).
And let

ŷ := Xβ̂ (5)

We call ŷ the predicted values of (2).
Lastly let

ê := y − ŷ (6)

We call ê the residual of (2).

Remark 3.3. β̂ is the point which minimize RK ∋ z 7→ |y − Xz|2 ∈ [0,∞).
And

β̂ := β + (XTX)−1XT ϵ (7)

and for each i β̂i ∼ N(βi, σ
2ξi) and ξi > 0, where ξi is (i, i) component of

(XTX)
−1

.

Definition 3.2 (Multivariate normal distribution). Let Xi be a random variable

on (Ω,F ) (i = 1, 2, ..., N). {Xi}Ni=1 ∼ N(γ,Σ) if there is a natural number l
and (N, l) matrix A and there are random variables {ϵ}li=1 on (Ω,F ) such that
ϵ := {ϵ}li=1 are i.i.d and ϵi ∼ N(0, 1) (∀i) and X = Aϵ+ γ and Σ = AAT .

3.3 Interval estimation of regression coefficients

Proposition 3.2.
|ê|2

σ2
∼ χ2(N −K) (8)

Proof. The following holds.

ê = (EN −X(XTX)−1XT )ϵ (9)

Let A := (EN − X(XTX)−1XT ) then A is symmetric and idempotent. So
each eigenvalue of A is 0 or 1. And tr(A) = N − tr(X(XTX)−1XT ) = N −
tr((XTX)−1XTX) = N − K so rank(A) = N − K. So by Proposition2.1,
|ê|2
σ2 ∼ χ2(N −K).

Proposition 3.3. β̂ and ê are independent.

Proof. By (7) and (9), cov(ê, β̂) = 0. So by Proposition3.3 β̂ and ê are inde-
pendent.
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By Remark and Proposition3.2 and Proposition3.2 and Proposition3.3, the
folloing Proposition holds.

Proposition 3.4. For each i ∈ N ∩ [1,K],

(β̂i − βi)
√
(N −K)

|ê|
√
ξi

∼ t(N −K) (10)

In the above equation, tN−K is the t-distribution whose degrees of freedom is

N −K and ξi is (i, i) component of (XTX)
−1

.

The following is a remark.

Proposition 3.5.

E(
|ê|2ξi
N −K

) = V (β̂i) (∀i) (11)

Proof. By Proposition3.2, E(
|ê|2ξi
N −K

) = σ2ξi. By Remark3.3, V (β̂i) = σ2ξi

By the above remak,
|ê|

√
ξi√

N −K
is denoted by se(β̂i).

3.4 Decomposition of TSS

Proposition 3.6.
(ŷ, ê) = 0 (12)

Proof. By (7),

XT ŷ = XTXβ̂ = XT (Xβ + ϵ) = XT y (13)

So

(ŷ, ê) = βTXT ê

= βTXT (y − ŷ)

= 0

Proposition 3.7. Let

(A1) There is a K-by-K matrix B such that the first column of XB
is 1N

then
ŷ = y (14)

Proof. By (7),

XT ŷ = XTXβ̂ = XT (Xβ + ϵ) = XT y (15)

So the following holds.
BTXT ê = 0 (16)

The fitst component of the BTXT ê is ŷ − y. So ŷ = y.
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Proposition 3.8. Let

(S1) TSS := |y − y1n|2

(S2) RSS := |ŷ − y1n|2

(S3) ESS := |y − ŷ|2

(A1) (A1) in Proposition3.7

then
TSS = RSS + ESS (17)

Proof. Because

TSS = yT (E − 1

N
1N,N )y (18)

and

RSS = yT (XT (XTX)−1X − 1

N
1N,N )y (19)

and
ESS = yT (E −XT (XTX)−1X)y (20)

TSS = RSS + ESS.

3.5 Cochran’s theorem

Proposition 3.9. Let

(S1) m ∈ N and Ai:N -by-N symmetric matrix (i = 1, 2, ...,m)

(A1) EN = Σm
i=1Ai

(A2) N = Σm
i=1rank(Ai)

then
AiAj = δi,jAi (∀i, ∀j) (21)

where δi,j is a Kronecker delta.

Proof. Let Vi := AiRN and ni := rank(Ai) and {vi,j}1≤j≤ni
be a basis of Vi

(i = 1, 2, ...,m). By (A1) and (A2), {vi,j}1≤i≤m,1≤j≤ni is a basis of RN . and

RN =

m⊕
i=1

Vi (22)

Let fix arbitary i ∈ {1, 2, ..., N} and fix arbitary x ∈ RN . Aix = (Σm
i=1Ai)Aix =

(Ai)
2x+ (Σj ̸=iAjAix. By (22), Aix = Ai

2x and AjAix = 0.

By Proposition3.9 and Proposition2.1 and Proposition, the following theo-
rem holds.

Proposition 3.10 (Cochran’s theorem).
We take over (S1) and (A1) in Proposition3.9. And let
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(S2) (Ω,F , P ) is a probability space.

(A1) ϵ ∼ N(0, EN )

(S3) Qi := ϵTAiϵ (i = 1, 2, ...,m)

then Qi ∼ χ2(rankAi) (∀i) and Qi and Qj are independent for all (i, j) ∈
{(i, j)|i ̸= j}

3.6 Testing

Throughout this subsection, we assume

β = (β0, 0, 0, ..., 0)
T (23)

and

X =


1 x1,1 x1,2 ... x1,L

1 x2,1 x2,2 ... x2,L

... ... ... ...
1 xN,1 xN,2 ... xN,L

 (24)

Then
Xβ = β01N,1 (25)

So

ŷ = X(XTX)−1XT y

= X(XTX)−1XT (Xβ + ϵ)

= β01N,1 +X(XTX)−1XT ϵ (26)

And

ȳ1N,1 = β0
1

N
1N,1 + 1N,N ϵ (27)

Consequently,

RSS = ϵT (X(XTX)−1XT − 1

N
1N,1)ϵ (28)

Because X(XTX)−1XT is symmetric, X(XTX)−1XT and
1

N
1N,1 are com-

mutative.
And becauseX(XTX)−1XT is idempotent and symmetric, (X(XTX)−1XT−

1

N
1N,1) is idempotent and symmetric.

rank(X(XTX)−1XT − 1

N
1N,1) = tr(X(XTX)−1XT − 1

N
1N,1) = L

So by Proposition3.10, RSS and ESS are independent and RSS ∼ χ2(L)
and ESS ∼ χ2(N − L− 1).

So,

RSS

L
ESS

N − L− 1

∼ F (L,N − L− 1) (29)
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4 Simple linear regression

Throughout this subsection, we set

Tx =

n∑
i=1

xi, Ty =

n∑
i=1

yi, Tx,x =

n∑
i=1

x2
i , Tx,y =

n∑
i=1

xiyi (30)

4.1 Case1: there is intercept

Throughout this subsection, we assume

X =


1 x1

1 x2

... ...
1 xn

 (31)

Then

β̂ =

(
α̂
γ̂

)
= (XTX)−1XT y

= (

(
1 1 ... 1
x1 x2 ... xn

)
1 x1

1 x2

... ...
1 xn

)−1XT y

=

(
n Tx

Tx Tx,x

)−1

XT y

=
1

nTx,x − T 2
x

(
Tx,x −Tx

−Tx n

)(
Ty

Tx,y

)
(32)

So

γ̂ =
nTx,y − TxTy

nTx,x − T 2
x

=
Tx,y −

1

n
TxTy

Tx,x − 1

n
T 2
x

=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(33)

Consequently,

γ̂ =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(34)
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4.2 Case2: there is no intercept

Throughout this subsection, we assume

X = (x1, x2, ..., xn)
T (35)

Then

β̂ =
Tx,y

Tx,x
(36)

5 Estimation about population mean

Throughout this section, we assume X = 1N is one and we define µ by β = µ11.
The followings hold.

XTX = N (37)

Y := X(XTX)−1XT =
1

N
1N,N (38)

ê := y − y1N (39)

|ê|2

σ2
∼ χ2(N − 1) (40)

(µ− y)
√
N(N − 1)

|y − y|
∼ t(N − 1) (41)

6 Estimation about difference between two pop-
ulation means

Throughout this section, we assume

X =

(
1M 0
0 1N

)
(42)

and

β =

(
µ11M
µ21N

)
(43)

(
y1
y2

)
:= y (44)

(
ϵ1
ϵ2

)
:= ϵ (45)
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Then the followings hold.

XTX =

(
M 0
0 N

)
(46)

Y :=

(
1
M 1M,M 0

0 1
N 1N,N

)
(47)

µ1 = (ŷ1)1 = y1 + ϵ1 (48)

µ2 = (ŷ2)1 = y2 + ϵ2 (49)

So, by reproductive property of normal distribution,

µ1 − µ2 − (y1 − y2) ∼ N(0, (
1

M
+

1

N
)σ2) (50)

And the following holds.

|ê|2 = |y1 − µ11M |2 + |y2 − µ21N |2 (51)

By Proposition3.3, (µ1−µ2− (y1− y2)) and |y1−µ11M |2+ |y2−µ21N |2 are
independent.

Consequently, the following holds.

(µ1 − µ2 − (y1 − y2))
√
M +N − 2√

(|y1 − µ11M |2 + |y2 − µ21N |2)( 1

M
+

1

N
)

∼ t(M +N − 2) (52)

7 One way analysis of variance

Throughout this section we set

y := (y1,1, ..., y1,n1 , y2,1, ..., y2,n2 , ..., yK,1, ..., yK,nK
)T (53)

β := (µ1, µ2, ..., µK)T (54)

ȳi,· :=

∑ni

j=1 yi,j

ni
(i = 1, 2, ...,K) (55)

X :=


1n1

O O O
1n2

1n2
O O

... ... ... ...
1nK

O O 1nK

 (56)

Then
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Y := X(XTX)−1XT :=


1
n1

1n1,n1
O O O

O 1
n2

1n2,n2
O O

... ... ... ...
O O O 1

nK
1nK ,nK

 (57)

In this subsection, hereafter, we assume there is a real number µ such that

β = µ1K (58)

Then the followings holds.

TSS = ϵT (EN − 1

N
1N,N )ϵ (59)

ESS = ϵT (Y − 1

N
1N,N )ϵ (60)

rank(Y − 1

N
1N,N ) = K − 1 (61)

RSS = ϵT (EN − Y )ϵ (62)

rank(EN − Y ) = N −K (63)

So, by Cohchran’s theorem, ESS and RSS are independent, and ESS ∼
χ2(K − 1) and RSS ∼ χ2(N −K).

Consequently, the following theoem holds.

Theorem 7.1. Under the setting(56) and the assumption(58)

(ESS/(K − 1))/(RSS/(N −K)) ∼ F (K − 1, N −K) (64)

And the followings hold.

(XTX)−1 =



1

n1
0 ... 0

0
1

n2
... 0

... ... ... ...

0 ... 0
1

nK

 (65)

β̂ = (ȳ1,·, ȳ2,·, ..., ȳK,·)
T (66)

So, by Proposition3.4, the following theoem holds.

Theorem 7.2. Under the setting(56)

(ȳi,· − µi)

√
(N −K)ni

ESS
∼ t(N −K) (67)
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