A study memo on linear regression

Contents

1	Introduction	2
2	Assumptions	2
3	General Topics	2
	3.1 Multivariate normal distribution	2
	3.2 Preliminaries for linear regression	3
	3.3 Interval estimation of regression coefficients	4
	3.4 Decomposition of TSS	5
	3.5 Cochran's theorem	6
	3.6 Testing	7
4	Simple linear regression	8
	4.1 Case1: there is intercept	8
	4.2 Case2: there is no intercept	9
5	Estimation about population mean	9
6	Estimation about difference between two population means	9
7	One way analysis of variance	10

1 Introduction

This memo is a study memo on estimation and testing in linear regression.

2 Assumptions

In this note, we assume we assume various definitions and facts about random variables, probability measures, definitions and facts about the chi-squared distribution and the t-distribution (See from chapter1 to chapter 3 in [1] and see from chapter1 to chapter 4 in [2]).

Proposition 2.1. Le A be a N-by-N symteric idempotent matrix and assume rank(A) = m and $\{\epsilon_i\}_{i=1}^N \sim N(0, E_N)$. Then

$$\epsilon^T A \epsilon \sim \chi^2(m) \tag{1}$$

3 General Topics

3.1 Multivariate normal distribution

Remark 3.1. Let

(S1) (Ω, F, P) is a probability space.
(S2) X := (X₁,...,X_n) is a vector of random variables.

(S3) A is a (m, n) matrix.

 $(A1) (X_1, ..., X_n) \sim N(0, E_n).$

then $cov(AX) = AA^T$.

The following Proposition 3.5 is used to prove the Proposition 3.3 discussed later.

Proposition 3.1. Let

- (A1) $X := (X_1, X_2, ..., X_p)^T \sim N(\gamma, BB^T)$, where B is a (p,q) matrix.
- (S1) Let $s \in [1, p 1] \cap \mathbb{N}$ and $X^{(1)} := (X_1, ..., X_s)$ and $X^{(2)} := (X_{s+1}, ..., X_p).$
- $(A2) \ cov(X^{(1)}, X^{(2)}) = 0.$

then $X^{(1)}$ and $X^{(2)}$ are independent.

Proof. The following proof consists of two steps. STEP1. General case

In this step, we will show that it is enough to show the Proposition when $r := rank(B) = p \leq q$. For each $i \in \mathbb{N} \cap [1, p]$, let b_i be the *i*-th row vector of B. Let V_1 be the vector space generated from $b_1, b_2, ..., b_s$ and let V_2 be the vector space generated from $b_{s+1}, b_{s+2}, ..., b_p$. We can take $\{b_{\sigma(i)}\}_{i=1}^{r_1}$ is a basis of V_1 and $\{b_{\tau(i)}\}_{i=1}^{r_2}$ is a basis of V_2 . Since $V_1 \perp V_2$, $\{b_{\sigma(i)}\}_{i=1}^{r_1} \cap \{b_{\tau(i)}\}_{i=1}^{r_2} = \phi$ and $\{b_{\sigma(i)}\}_{i=1}^{r_1} \cup \{b_{\tau(i)}\}_{i=1}^{r_2}$ are linear independent. So it is enough to show $\{b_{\sigma(i)}\}_{i=1}^{r_1}$ and $\{b_{\tau(i)}\}_{i=1}^{r_2}$ are independent when rank(B) is the number of rows of B.

STEP2. Case when $rank(B) = p \leq q$

Let W be the orthogonal complement of the vector space generated from $b_1, b_2, ..., b_p$. We can take $c_1, ..., c_{(q-p)}$ which is an orthonormal basis of W and

 $C := \begin{bmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{bmatrix}, \text{ and let } D := \begin{bmatrix} B \\ C \end{bmatrix}. \text{ By (A1), there are random variables } \{\epsilon\}_{i=1}^p$

on (Ω, \mathscr{F}) and random variables $\{Y\}_{i=1}^{q-p}$ on (Ω, \mathscr{F}) such that $\boldsymbol{\epsilon} := \{\epsilon\}_{i=1}^{q}$ are *i.i.d* and $\epsilon_i \sim N(0,1)$ ($\forall i$)

and
$$Z := \begin{bmatrix} X \\ Y \end{bmatrix} = D\epsilon + \gamma$$
 and $cov(Z) = DD^T$.

The distribution of Z has the density function $f_q : \mathbb{R}^q \ni x \mapsto c \cdot exp(x^T D D^T x) \in \mathbb{R}^q$

 $\mathbb{R}, \text{ where } c \text{ is a constant. By (A2) and the definition of } C,$ $DD^{T} = \begin{bmatrix} \Sigma_{1} & 0 & 0 \\ 0 & \Sigma_{2} & 0 \\ 0 & 0 & E_{(q-p)} \end{bmatrix}, \text{ where } \Sigma_{1} \text{ and } \Sigma_{2} \text{ are symmetric positive def-}$ inite matrixies. So the distribution of X has the density function $f_{p} : \mathbb{R}^{p} \ni$

 $x \mapsto d \cdot exp(x^{(1)}{}^T \Sigma_1 x^{(1)}) \cdot exp(x^{(2)}{}^T \Sigma_1 x^{(2)}) \in \mathbb{R}$, where d is a constant and $x^{(1)} = (x_1, ..., x_s)$ and $x^{(2)} = (x_{s+1}, ..., x_p)$. By the format of f_p , $X^{(1)}$ and $X^{(2)}$ are independent.

3.2Preliminaries for linear regression

Throughout this section, we assume the following settings.

Setting 3.1 (Linear regression). Let

- (S1) (Ω, \mathcal{F}, P) is a probability space.
- (S2) Let $X := \{X_{i,j}\}_{\{1 \le i \le N, 1 \le j \le K\}}$ be a (N, K) matrix.
- (A1) $X^T X$ is a regular matrix of order (K+1).
- (S3) Let $\epsilon := \{\epsilon_i\}_{1 \le i \le N}$ be N random variables.
- (A2) $\{\epsilon_i\}_{\{1 \le i \le N\}} \stackrel{iid}{\sim} N(\mathbf{0}, \sum_{i=1}^N \sigma^2 E_N), \text{ where } \sigma > 0.$
- (S4) Let $\{\beta_i\}_{\{1 \le i \le K\}}$ be a real K-dimension vector.
- (S5) Let $y := \{y_i\}_{1 \le i \le N}$ be N random variables which are defined by the following equation.

$$y = X\beta + \epsilon \tag{2}$$

Remark 3.2. By (A1),

$$rank(X) = K \tag{3}$$

Definition 3.1 (Least squares estimate). Let

$$\hat{\beta} := (X^T X)^{-1} (X^T y) \tag{4}$$

We call $\hat{\beta}$ the least squares estimate of (2). And let

$$\hat{y} := X\hat{\beta} \tag{5}$$

We call \hat{y} the predicted values of (2). Lastly let

$$\hat{e} := y - \hat{y} \tag{6}$$

We call \hat{e} the residual of (2).

Remark 3.3. $\hat{\beta}$ is the point which minimize $\mathbb{R}^K \ni z \mapsto |y - Xz|^2 \in [0, \infty)$. And

$$\hat{\beta} := \beta + (X^T X)^{-1} X^T \epsilon \tag{7}$$

and for each $i \hat{\beta}_i \sim N(\beta_i, \sigma^2 \xi_i)$ and $\xi_i > 0$, where ξ_i is (i, i) component of $(X^T X)^{-1}$.

Definition 3.2 (Multivariate normal distribution). Let X_i be a random variable on (Ω, \mathscr{F}) (i = 1, 2, ..., N). $\{X_i\}_{i=1}^N \sim N(\gamma, \Sigma)$ if there is a natural number land (N, l) matrix A and there are random variables $\{\epsilon\}_{i=1}^l$ on (Ω, \mathscr{F}) such that $\epsilon := \{\epsilon\}_{i=1}^l$ are *i.i.d* and $\epsilon_i \sim N(0, 1)$ ($\forall i$) and $X = A\epsilon + \gamma$ and $\Sigma = AA^T$.

3.3 Interval estimation of regression coefficients

Proposition 3.2.

$$\frac{|\hat{e}|^2}{\sigma^2} \sim \chi^2 (N - K) \tag{8}$$

Proof. The following holds.

$$\hat{e} = (E_N - X(X^T X)^{-1} X^T) \epsilon \tag{9}$$

Let $A := (E_N - X(X^T X)^{-1} X^T)$ then A is symmetric and idempotent. So each eigenvalue of A is 0 or 1. And $tr(A) = N - tr(X(X^T X)^{-1} X^T) = N - tr((X^T X)^{-1} X^T X) = N - K$ so rank(A) = N - K. So by Proposition2.1, $\frac{|\hat{e}|^2}{\sigma^2} \sim \chi^2(N - K).$

Proposition 3.3. $\hat{\beta}$ and \hat{e} are independent.

Proof. By (7) and (9), $cov(\hat{e}, \hat{\beta}) = 0$. So by Proposition3.3 $\hat{\beta}$ and \hat{e} are independent.

By Remark and Proposition3.2 and Proposition3.2 and Proposition3.3, the folloing Proposition holds.

Proposition 3.4. For each $i \in \mathbb{N} \cap [1, K]$,

$$\frac{(\hat{\beta}_i - \beta_i)\sqrt{(N-K)}}{|\hat{e}|\sqrt{\xi_i}} \sim t(N-K)$$
(10)

In the above equation, t_{N-K} is the t-distribution whose degrees of freedom is N-K and ξ_i is (i,i) component of $(X^TX)^{-1}$.

The following is a remark.

Proposition 3.5.

$$E(\frac{|\hat{e}|^2 \xi_i}{N-K}) = V(\hat{\beta}_i) \ (\forall i) \tag{11}$$

Proof. By Proposition3.2, $E(\frac{|\hat{e}|^2\xi_i}{N-K}) = \sigma^2\xi_i$. By Remark3.3, $V(\hat{\beta}_i) = \sigma^2\xi_i$ \Box

By the above remak, $\frac{|\hat{e}|\sqrt{\xi_i}}{\sqrt{N-K}}$ is denoted by $se(\hat{\beta}_i)$.

3.4 Decomposition of TSS

Proposition 3.6.

$$(\hat{y}, \hat{e}) = 0 \tag{12}$$

Proof. By (7),

$$X^{T}\hat{y} = X^{T}X\hat{\beta} = X^{T}(X\beta + \epsilon) = X^{T}y$$
(13)

 So

$$\begin{aligned} (\hat{y}, \hat{e}) &= \beta^T X^T \hat{e} \\ &= \beta^T X^T (y - \hat{y}) \\ &= 0 \end{aligned}$$

Proposition 3.7. Let

(A1) There is a K-by-K matrix B such that the first column of XB is
$$1_N$$

then

$$\overline{\hat{y}} = \overline{y} \tag{14}$$

Proof. By (7),

$$X^T \hat{y} = X^T X \hat{\beta} = X^T (X\beta + \epsilon) = X^T y$$
(15)

So the following holds.

$$B^T X^T \hat{e} = 0 \tag{16}$$

The fitst component of the
$$B^T X^T \hat{e}$$
 is $\overline{\hat{y}} - \overline{y}$. So $\overline{\hat{y}} = \overline{y}$.

Proposition 3.8. Let

(S1) $TSS := |y - \overline{y}1_n|^2$ (S2) $RSS := |\hat{y} - \overline{y}1_n|^2$ (S3) $ESS := |y - \hat{y}|^2$ (A1) (A1) in Proposition 3.7

then

$$TSS = RSS + ESS \tag{17}$$

Proof. Because

$$TSS = y^{T} (E - \frac{1}{N} \mathbf{1}_{N,N}) y$$
(18)

and

$$RSS = y^T (X^T (X^T X)^{-1} X - \frac{1}{N} \mathbf{1}_{N,N}) y$$
(19)

and

$$ESS = y^{T} (E - X^{T} (X^{T} X)^{-1} X) y$$
(20)

TSS = RSS + ESS.

3.5 Cochran's theorem

Proposition 3.9. Let

(S1)
$$m \in \mathbb{N}$$
 and $A_i:N$ -by-N symmetric matrix $(i = 1, 2, ..., m)$
(A1) $E_N = \sum_{i=1}^m A_i$
(A2) $N = \sum_{i=1}^m rank(A_i)$

then

$$A_i A_j = \delta_{i,j} A_i \ (\forall i, \ \forall j) \tag{21}$$

where $\delta_{i,j}$ is a Kronecker delta.

Proof. Let $V_i := A_i \mathbb{R}^N$ and $n_i := rank(A_i)$ and $\{v_{i,j}\}_{1 \le j \le n_i}$ be a basis of V_i (i = 1, 2, ..., m). By (A1) and (A2), $\{v_{i,j}\}_{1 \le i \le m, 1 \le j \le n_i}$ is a basis of \mathbb{R}^N . and

$$\mathbb{R}^N = \bigoplus_{i=1}^m V_i \tag{22}$$

Let fix arbitrary $i \in \{1, 2, ..., N\}$ and fix arbitrary $x \in \mathbb{R}^N$. $A_i x = (\sum_{i=1}^m A_i) A_i x = (A_i)^2 x + (\sum_{j \neq i} A_j A_i x)$. By (22), $A_i x = A_i^2 x$ and $A_j A_i x = 0$.

By Proposition3.9 and Proposition2.1 and Proposition, the following theorem holds.

Proposition 3.10 (Cochran's theorem). We take over (S1) and (A1) in Proposition 3.9. And let

(S2) (Ω, \mathscr{F}, P) is a probability space. (A1) $\boldsymbol{\epsilon} \sim N(0, E_N)$ (S3) $Q_i := \boldsymbol{\epsilon}^T A_i \boldsymbol{\epsilon} \ (i = 1, 2, ..., m)$

then $Q_i \sim \chi^2(rankA_i)$ ($\forall i$) and Q_i and Q_j are independent for all $(i, j) \in \{(i, j) | i \neq j\}$

3.6 Testing

Throughout this subsection, we assume

$$\beta = (\beta_0, 0, 0, ..., 0)^T \tag{23}$$

and

$$X = \begin{pmatrix} 1 & x_{1,1} & x_{1,2} & \dots & x_{1,L} \\ 1 & x_{2,1} & x_{2,2} & \dots & x_{2,L} \\ \dots & \dots & \dots & \dots \\ 1 & x_{N,1} & x_{N,2} & \dots & x_{N,L} \end{pmatrix}$$
(24)

Then

$$X\beta = \beta_0 1_{N,1} \tag{25}$$

 So

$$\hat{y} = X(X^{T}X)^{-1}X^{T}y
= X(X^{T}X)^{-1}X^{T}(X\beta + \epsilon)
= \beta_{0}1_{N,1} + X(X^{T}X)^{-1}X^{T}\epsilon$$
(26)

And

$$\bar{y}1_{N,1} = \beta_0 \frac{1}{N} 1_{N,1} + 1_{N,N} \epsilon \tag{27}$$

Consequently,

$$RSS = \epsilon^{T} (X(X^{T}X)^{-1}X^{T} - \frac{1}{N}1_{N,1})\epsilon$$
(28)

Because $X(X^TX)^{-1}X^T$ is symmetric, $X(X^TX)^{-1}X^T$ and $\frac{1}{N}1_{N,1}$ are commutative.

And because $X(X^TX)^{-1}X^T$ is idempotent and symmetric, $(X(X^TX)^{-1}X^T \frac{1}{N} \mathbf{1}_{N,1}$) is idempotent and symmetric.

$$rank(X(X^TX)^{-1}X^T - \frac{1}{N}1_{N,1}) = tr(X(X^TX)^{-1}X^T - \frac{1}{N}1_{N,1}) = L$$

So by Proposition3.10, RSS and ESS are independent and RSS ~ $\chi^2(L)$

and $ESS \sim \chi^2 (N - L - 1)$. So,

$$\frac{\frac{RSS}{L}}{\frac{ESS}{N-L-1}} \sim F(L, N-L-1)$$
(29)

4 Simple linear regression

Throughout this subsection, we set

$$T_x = \sum_{i=1}^n x_i, \ T_y = \sum_{i=1}^n y_i, \ T_{x,x} = \sum_{i=1}^n x_i^2, \ T_{x,y} = \sum_{i=1}^n x_i y_i$$
(30)

4.1 Case1: there is intercept

Throughout this subsection, we assume

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix}$$
(31)

Then

$$\hat{\beta} = \begin{pmatrix} \hat{\alpha} \\ \hat{\gamma} \end{pmatrix}$$

$$= (X^T X)^{-1} X^T y$$

$$= (\begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \dots & \dots \\ 1 & x_n \end{pmatrix})^{-1} X^T y$$

$$= \begin{pmatrix} n & T_x \\ T_x & T_{x,x} \end{pmatrix}^{-1} X^T y$$

$$= \frac{1}{nT_{x,x} - T_x^2} \begin{pmatrix} T_{x,x} & -T_x \\ -T_x & n \end{pmatrix} \begin{pmatrix} T_y \\ T_{x,y} \end{pmatrix}$$
(32)

 So

$$\hat{\gamma} = \frac{nT_{x,y} - T_x T_y}{nT_{x,x} - T_x^2} = \frac{T_{x,y} - \frac{1}{n} T_x T_y}{T_{x,x} - \frac{1}{n} T_x^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
(33)

Consequently,

$$\hat{\gamma} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
(34)

4.2 Case2: there is no intercept

Throughout this subsection, we assume

$$X = (x_1, x_2, \dots, x_n)^T$$
(35)

Then

$$\hat{\beta} = \frac{T_{x,y}}{T_{x,x}} \tag{36}$$

5 Estimation about population mean

Throughout this section, we assume $X = 1_N$ is one and we define μ by $\beta = \mu 1_1$. The followings hold.

$$X^T X = N \tag{37}$$

$$Y := X(X^T X)^{-1} X^T = \frac{1}{N} \mathbb{1}_{N,N}$$
(38)

$$\hat{e} := y - \overline{y} \mathbf{1}_N \tag{39}$$

$$\frac{|\hat{e}|^2}{\sigma^2} \sim \chi^2 (N-1)$$
 (40)

$$\frac{(\mu - \overline{y})\sqrt{N(N-1)}}{|y - \overline{y}|} \sim t(N-1)$$
(41)

6 Estimation about difference between two population means

Throughout this section, we assume

$$X = \begin{pmatrix} 1_M & 0\\ 0 & 1_N \end{pmatrix} \tag{42}$$

and

$$\beta = \begin{pmatrix} \mu_1 1_M \\ \mu_2 1_N \end{pmatrix} \tag{43}$$

$$\begin{pmatrix} y_1\\ y_2 \end{pmatrix} := y \tag{44}$$

$$\begin{pmatrix} \epsilon_1\\ \epsilon_2 \end{pmatrix} := \epsilon \tag{45}$$

Then the followings hold.

$$X^T X = \begin{pmatrix} M & 0\\ 0 & N \end{pmatrix} \tag{46}$$

$$Y := \begin{pmatrix} \frac{1}{M} \mathbf{1}_{M,M} & 0\\ 0 & \frac{1}{N} \mathbf{1}_{N,N} \end{pmatrix}$$
(47)

$$\mu_1 = (\hat{y}_1)_1 = \overline{y_1} + \overline{\epsilon_1} \tag{48}$$

$$\mu_2 = (\hat{y}_2)_1 = \overline{y_2} + \overline{\epsilon_2} \tag{49}$$

So, by reproductive property of normal distribution,

$$\mu_1 - \mu_2 - (\overline{y_1} - \overline{y_2}) \sim N(0, (\frac{1}{M} + \frac{1}{N})\sigma^2)$$
(50)

And the following holds.

$$|\hat{e}|^2 = |y_1 - \mu_1 \mathbf{1}_M|^2 + |y_2 - \mu_2 \mathbf{1}_N|^2$$
(51)

By Proposition 3.3, $\left(\mu_1-\mu_2-(\overline{y_1}-\overline{y_2})\right)$ and $|y_1-\mu_1\mathbf{1}_M|^2+|y_2-\mu_2\mathbf{1}_N|^2$ are independent.

Consequently, the following holds.

$$\frac{(\mu_1 - \mu_2 - (\overline{y_1} - \overline{y_2}))\sqrt{M + N - 2}}{\sqrt{(|y_1 - \mu_1 \mathbf{1}_M|^2 + |y_2 - \mu_2 \mathbf{1}_N|^2)(\frac{1}{M} + \frac{1}{N})}} \sim t(M + N - 2)$$
(52)

7 One way analysis of variance

Throughout this section we set

$$y := (y_{1,1}, \dots, y_{1,n_1}, y_{2,1}, \dots, y_{2,n_2}, \dots, y_{K,1}, \dots, y_{K,n_K})^T$$
(53)

$$\beta := (\mu_1, \mu_2, ..., \mu_K)^T \tag{54}$$

$$\bar{y}_{i,\cdot} := \frac{\sum_{j=1}^{n_i} y_{i,j}}{n_i} \ (i = 1, 2, ..., K)$$
(55)

$$X := \begin{pmatrix} 1_{n_1} & O & O & O \\ 1_{n_2} & 1_{n_2} & O & O \\ \dots & \dots & \dots & \dots \\ 1_{n_K} & O & O & 1_{n_K} \end{pmatrix}$$
(56)

Then

$$Y := X(X^T X)^{-1} X^T := \begin{pmatrix} \frac{1}{n_1} 1_{n_1, n_1} & O & O & O \\ O & \frac{1}{n_2} 1_{n_2, n_2} & O & O \\ \dots & \dots & \dots & \dots \\ O & O & O & \frac{1}{n_K} 1_{n_K, n_K} \end{pmatrix}$$
(57)

In this subsection, hereafter, we assume there is a real number μ such that

$$\beta = \mu 1_K \tag{58}$$

Then the followings holds.

$$TSS = \boldsymbol{\epsilon}^T (E_N - \frac{1}{N} \mathbf{1}_{N,N}) \boldsymbol{\epsilon}$$
(59)

$$ESS = \boldsymbol{\epsilon}^T (Y - \frac{1}{N} \mathbf{1}_{N,N}) \boldsymbol{\epsilon}$$
(60)

$$rank(Y - \frac{1}{N}1_{N,N}) = K - 1$$
 (61)

$$RSS = \boldsymbol{\epsilon}^T (E_N - Y) \boldsymbol{\epsilon} \tag{62}$$

$$rank(E_N - Y) = N - K \tag{63}$$

So, by Cohchran's theorem, ESS and RSS are independent, and $ESS \sim \chi^2(K-1)$ and $RSS \sim \chi^2(N-K)$.

Consequently, the following theorem holds.

Theorem 7.1. Under the setting (56) and the assumption (58)

$$(ESS/(K-1))/(RSS/(N-K)) \sim F(K-1, N-K)$$
 (64)

And the followings hold.

$$(X^T X)^{-1} = \begin{pmatrix} \frac{1}{n_1} & 0 & \dots & 0\\ 0 & \frac{1}{n_2} & \dots & 0\\ \dots & \dots & \dots & \dots\\ 0 & \dots & 0 & \frac{1}{n_K} \end{pmatrix}$$
(65)

$$\hat{\beta} = (\bar{y}_{1,\cdot}, \bar{y}_{2,\cdot}, ..., \bar{y}_{K,\cdot})^T$$
(66)

So, by Proposition 3.4, the following theorem holds.

Theorem 7.2. Under the setting(56)

$$(\bar{y}_{i,\cdot} - \mu_i) \sqrt{\frac{(N-K)n_i}{ESS}} \sim t(N-K)$$
(67)

References

- [1] Tadahisa Funaki, Probability Theory(in Japanese), ISBN-13 978-4254116007.
- [2] Akimichi Takemura, Modern Mathematical STATISTICS(in Japanese), ISBN-13 978-4780608601.
- [3] Hideki Iwaki, Review of Statistics(in Japanese), lecture notes in kyoto sangyo university. http://www.cc.kyoto-su.ac.jp/ iwaki/Stat0.pdf