A study memo on linear regression

Contents

1 Introduction 2
2 Assumptions 2
3 General Topics 2
3.1 Multivariate normal distribution 2
3.2 Preliminaries for linear regression 3
3.3 Interval estimation of regression coefficients 4
3.4 Decomposition of TSS 5
3.5 Cochran's theorem 6
3.6 Testing 7
4 Simple linear regression 8
4.1 Case1: there is intercept 8
4.2 Case2: there is no intercept 9
5 Estimation about population mean 9
6 Estimation about difference between two population means 9
7 One way analysis of variance 10

1 Introduction

This memo is a study memo on estimation and testing in linear regression.

2 Assumptions

In this note, we assume we assume various definitions and facts about random variables, probability measures, definitions and facts about the chi-squared distribution and the t-distribution (See from chapter1 to chapter 3 in [1] and see from chapter1 to chapter 4 in [2]).

Proposition 2.1. Le A be a $N-b y-N$ symteric idempotent matrix and assume $\operatorname{rank}(A)=m$ and $\left\{\epsilon_{i}\right\}_{i=1}^{N} \sim N\left(0, E_{N}\right)$. Then

$$
\begin{equation*}
\epsilon^{T} A \epsilon \sim \chi^{2}(m) \tag{1}
\end{equation*}
$$

3 General Topics

3.1 Multivariate normal distribution

Remark 3.1. Let
(S1) (Ω, \mathscr{F}, P) is a probability space.
(S2) $X:=\left(X_{1}, \ldots, X_{n}\right)$ is a vector of random variables.
(S3) A is a (m, n) matrix.
(A1) $\left(X_{1}, \ldots, X_{n}\right) \sim N\left(0, E_{n}\right)$.
then $\operatorname{cov}(A X)=A A^{T}$.
The following Proposition3.5 is used to prove the Proposition3.3 discussed later.

Proposition 3.1. Let
(A1) $X:=\left(X_{1}, X_{2}, \ldots, X_{p}\right)^{T} \sim N\left(\gamma, B B^{T}\right)$, where B is a (p, q) matrix.
(S1) Let $s \in[1, p-1] \cap \mathbb{N}$ and $X^{(1)}:=\left(X_{1}, \ldots, X_{s}\right)$ and $X^{(2)}:=$ $\left(X_{s+1}, \ldots, X_{p}\right)$.
(A2) $\operatorname{cov}\left(X^{(1)}, X^{(2)}\right)=0$.
then $X^{(1)}$ and $X^{(2)}$ are independent.
Proof. The following proof consists of two steps.
STEP1. General case
In this step, we will show that it is enough to show the Proposition when $r:=\operatorname{rank}(B)=p \leq q$. For each $i \in \mathbb{N} \cap[1, p]$, let b_{i} be the i-th row vector of B. Let V_{1} be the vector space generated from $b_{1}, b_{2}, \ldots, b_{s}$ and let V_{2} be the vector
space generated from $b_{s+1}, b_{s+2}, \ldots, b_{p}$. We can take $\left\{b_{\sigma(i)}\right\}_{i=1}^{r_{1}}$ is a basis of V_{1} and $\left\{b_{\tau(i)}\right\}_{i=1}^{r_{2}}$ is a basis of V_{2}. Since $V_{1} \perp V_{2},\left\{b_{\sigma(i)}\right\}_{i=1}^{r_{1}} \cap\left\{b_{\tau(i)}\right\}_{i=1}^{r_{2}}=\phi$ and $\left\{b_{\sigma(i)}\right\}_{i=1}^{r_{1}} \cup\left\{b_{\tau(i)}\right\}_{i=1}^{r_{2}}$ are linear independent. So it is enough to show $\left\{b_{\sigma(i)}\right\}_{i=1}^{r_{1}}$ and $\left\{b_{\tau(i)}\right\}_{i=1}^{r_{2}}$ are independent when $\operatorname{rank}(B)$ is the number of rows of B.

STEP2. Case when $\operatorname{rank}(B)=p \leq q$
Let W be the orthogonal complement of the vector space generated from $b_{1}, b_{2}, \ldots, b_{p}$. We can take $c_{1}, \ldots, c_{(q-p)}$ which is an orthonormal basis of W and let
$C:=\left[\begin{array}{c}c_{1} \\ c_{2} \\ \ldots \\ c_{(q-p)}\end{array}\right]$, and let $D:=\left[\begin{array}{l}B \\ C\end{array}\right]$. By (A1), there are random variables $\{\epsilon\}_{i=1}^{p}$
on (Ω, \mathscr{F}) and random variables $\{Y\}_{i=1}^{q-p}$ on (Ω, \mathscr{F}) such that $\epsilon:=\{\epsilon\}_{i=1}^{q}$ are i.i.d and $\epsilon_{i} \sim N(0,1)(\forall i)$
and $Z:=\left[\begin{array}{l}X \\ Y\end{array}\right]=D \boldsymbol{\epsilon}+\gamma$ and $\operatorname{cov}(Z)=D D^{T}$.
The distribution of Z has the density function $f_{q}: \mathbb{R}^{q} \ni x \mapsto c \cdot \exp \left(x^{T} D D^{T} x\right) \in$ \mathbb{R}, where c is a constant. By (A2) and the definition of C,
$D D^{T}=\left[\begin{array}{ccc}\Sigma_{1} & 0 & 0 \\ 0 & \Sigma_{2} & 0 \\ 0 & 0 & E_{(q-p)}\end{array}\right]$, where Σ_{1} and Σ_{2} are symmetric positive definite matrixies. So the distribution of X has the density function $f_{p}: \mathbb{R}^{p} \ni$ $x \mapsto d \cdot \exp \left(x^{(1)^{T}} \Sigma_{1} x^{(1)}\right) \cdot \exp \left(x^{(2)^{T}} \Sigma_{1} x^{(2)}\right) \in \mathbb{R}$, where d is a constant and $x^{(1)}=\left(x_{1}, \ldots, x_{s}\right)$ and $x^{(2)}=\left(x_{s+1}, \ldots, x_{p}\right)$. By the format of $f_{p}, X^{(1)}$ and $X^{(2)}$ are independent.

3.2 Preliminaries for linear regression

Throughout this section, we assume the following settings.
Setting 3.1 (Linear regression). Let
(S1) (Ω, \mathscr{F}, P) is a probability space.
(S2) Let $X:=\left\{X_{i, j}\right\}_{\{1 \leq i \leq N, 1 \leq j \leq K\}}$ be a (N, K) matrix.
(A1) $X^{T} X$ is a regular matrix of order $(K+1)$.
(S3) Let $\epsilon:=\left\{\epsilon_{i}\right\}_{\{1 \leq i \leq N\}}$ be N random variables.
(A2) $\left\{\epsilon_{i}\right\}_{\{1 \leq i \leq N\}} \stackrel{i i d}{\sim} N\left(\mathbf{0}, \Sigma_{i=1}^{N} \sigma^{2} E_{N}\right)$, where $\sigma>0$.
(S4) Let $\left\{\beta_{i}\right\}_{\{1 \leq i \leq K\}}$ be a real K-dimension vector.
(S5) Let $y:=\left\{y_{i}\right\}_{\{1 \leq i \leq N\}}$ be N random variables which are defined by the following equation.

$$
\begin{equation*}
y=X \beta+\epsilon \tag{2}
\end{equation*}
$$

Remark 3.2. $B y$ ($A 1$),

$$
\begin{equation*}
\operatorname{rank}(X)=K \tag{3}
\end{equation*}
$$

Definition 3.1 (Least squares estimate). Let

$$
\begin{equation*}
\hat{\beta}:=\left(X^{T} X\right)^{-1}\left(X^{T} y\right) \tag{4}
\end{equation*}
$$

We call $\hat{\beta}$ the least squares estimate of (2). And let

$$
\begin{equation*}
\hat{y}:=X \hat{\beta} \tag{5}
\end{equation*}
$$

We call \hat{y} the predicted values of (2).
Lastly let

$$
\begin{equation*}
\hat{e}:=y-\hat{y} \tag{6}
\end{equation*}
$$

We call \hat{e} the residual of (2).
Remark 3.3. $\hat{\beta}$ is the point which minimize $\mathbb{R}^{K} \ni z \mapsto|y-X z|^{2} \in[0, \infty)$. And

$$
\begin{equation*}
\hat{\beta}:=\beta+\left(X^{T} X\right)^{-1} X^{T} \epsilon \tag{7}
\end{equation*}
$$

and for each $i \hat{\beta}_{i} \sim N\left(\beta_{i}, \sigma^{2} \xi_{i}\right)$ and $\xi_{i}>0$, where ξ_{i} is (i, i) component of $\left(X^{T} X\right)^{-1}$.

Definition 3.2 (Multivariate normal distribution). Let X_{i} be a random variable on $(\Omega, \mathscr{F})(i=1,2, \ldots, N) .\left\{X_{i}\right\}_{i=1}^{N} \sim N(\gamma, \Sigma)$ if there is a natural number l and (N, l) matrix A and there are random variables $\{\epsilon\}_{i=1}^{l}$ on (Ω, \mathscr{F}) such that $\boldsymbol{\epsilon}:=\{\epsilon\}_{i=1}^{l}$ are i.i.d and $\epsilon_{i} \sim N(0,1)(\forall i)$ and $X=A \boldsymbol{\epsilon}+\gamma$ and $\Sigma=A A^{T}$.

3.3 Interval estimation of regression coefficients

Proposition 3.2.

$$
\begin{equation*}
\frac{|\hat{e}|^{2}}{\sigma^{2}} \sim \chi^{2}(N-K) \tag{8}
\end{equation*}
$$

Proof. The following holds.

$$
\begin{equation*}
\hat{e}=\left(E_{N}-X\left(X^{T} X\right)^{-1} X^{T}\right) \epsilon \tag{9}
\end{equation*}
$$

Let $A:=\left(E_{N}-X\left(X^{T} X\right)^{-1} X^{T}\right)$ then A is symmetric and idempotent. So each eigenvalue of A is 0 or 1. And $\operatorname{tr}(A)=N-\operatorname{tr}\left(X\left(X^{T} X\right)^{-1} X^{T}\right)=N-$ $\operatorname{tr}\left(\left(X^{T} X\right)^{-1} X^{T} X\right)=N-K$ so $\operatorname{rank}(A)=N-K$. So by Proposition2.1, $\frac{|\hat{e}|^{2}}{\sigma^{2}} \sim \chi^{2}(N-K)$.

Proposition 3.3. $\hat{\beta}$ and \hat{e} are independent.
Proof. By (7) and (9), $\operatorname{cov}(\hat{e}, \hat{\beta})=0$. So by Proposition3.3 $\hat{\beta}$ and \hat{e} are independent.

By Remark and Proposition3.2 and Proposition3.2 and Proposition3.3, the folloing Proposition holds.

Proposition 3.4. For each $i \in \mathbb{N} \cap[1, K]$,

$$
\begin{equation*}
\frac{\left(\hat{\beta}_{i}-\beta_{i}\right) \sqrt{(N-K)}}{|\hat{e}| \sqrt{\xi_{i}}} \sim t(N-K) \tag{10}
\end{equation*}
$$

In the above equation, t_{N-K} is the t-distribution whose degrees of freedom is $N-K$ and ξ_{i} is (i, i) component of $\left(X^{T} X\right)^{-1}$.

The following is a remark.

Proposition 3.5.

$$
\begin{equation*}
E\left(\frac{|\hat{e}|^{2} \xi_{i}}{N-K}\right)=V\left(\hat{\beta}_{i}\right)(\forall i) \tag{11}
\end{equation*}
$$

Proof. By Proposition3.2, $E\left(\frac{|\hat{e}|^{2} \xi_{i}}{N-K}\right)=\sigma^{2} \xi_{i}$. By Remark3.3, $V\left(\hat{\beta}_{i}\right)=\sigma^{2} \xi_{i}$
By the above remak, $\frac{|\hat{e}| \sqrt{\xi_{i}}}{\sqrt{N-K}}$ is denoted by $\operatorname{se}\left(\hat{\beta}_{i}\right)$.

3.4 Decomposition of TSS

Proposition 3.6.

$$
\begin{equation*}
(\hat{y}, \hat{e})=0 \tag{12}
\end{equation*}
$$

Proof. By (7),

$$
\begin{equation*}
X^{T} \hat{y}=X^{T} X \hat{\beta}=X^{T}(X \beta+\boldsymbol{\epsilon})=X^{T} y \tag{13}
\end{equation*}
$$

So

$$
\begin{aligned}
(\hat{y}, \hat{e}) & =\beta^{T} X^{T} \hat{e} \\
& =\beta^{T} X^{T}(y-\hat{y}) \\
& =0
\end{aligned}
$$

Proposition 3.7. Let
(A1) There is a K-by- K matrix B such that the first column of $X B$ is 1_{N}
then

$$
\begin{equation*}
\overline{\hat{y}}=\bar{y} \tag{14}
\end{equation*}
$$

Proof. By (7),

$$
\begin{equation*}
X^{T} \hat{y}=X^{T} X \hat{\beta}=X^{T}(X \beta+\boldsymbol{\epsilon})=X^{T} y \tag{15}
\end{equation*}
$$

So the following holds.

$$
\begin{equation*}
B^{T} X^{T} \hat{e}=0 \tag{16}
\end{equation*}
$$

The fitst component of the $B^{T} X^{T} \hat{e}$ is $\overline{\hat{y}}-\bar{y}$. So $\overline{\hat{y}}=\bar{y}$.

Proposition 3.8. Let
(S1) TSS $:=\left|y-\bar{y} 1_{n}\right|^{2}$
(S2) $R S S:=\left|\hat{y}-\bar{y} 1_{n}\right|^{2}$
(S3) $E S S:=|y-\hat{y}|^{2}$
(A1) (A1) in Proposition3.7
then

$$
\begin{equation*}
T S S=R S S+E S S \tag{17}
\end{equation*}
$$

Proof. Because

$$
\begin{equation*}
T S S=y^{T}\left(E-\frac{1}{N} 1_{N, N}\right) y \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
R S S=y^{T}\left(X^{T}\left(X^{T} X\right)^{-1} X-\frac{1}{N} 1_{N, N}\right) y \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
E S S=y^{T}\left(E-X^{T}\left(X^{T} X\right)^{-1} X\right) y \tag{20}
\end{equation*}
$$

$T S S=R S S+E S S$.

3.5 Cochran's theorem

Proposition 3.9. Let
(S1) $m \in \mathbb{N}$ and $A_{i}: N-b y-N$ symmetric matrix $(i=1,2, \ldots, m)$
(A1) $E_{N}=\sum_{i=1}^{m} A_{i}$
(A2) $N=\sum_{i=1}^{m} \operatorname{rank}\left(A_{i}\right)$
then

$$
\begin{equation*}
A_{i} A_{j}=\delta_{i, j} A_{i}(\forall i, \forall j) \tag{21}
\end{equation*}
$$

where $\delta_{i, j}$ is a Kronecker delta.
Proof. Let $V_{i}:=A_{i} \mathbb{R}^{N}$ and $n_{i}:=\operatorname{rank}\left(A_{i}\right)$ and $\left\{v_{i, j}\right\}_{1 \leq j \leq n_{i}}$ be a basis of V_{i} $(i=1,2, \ldots, m)$. By (A1) and (A2), $\left\{v_{i, j}\right\}_{1 \leq i \leq m, 1 \leq j \leq n_{i}}$ is a basis of \mathbb{R}^{N}. and

$$
\begin{equation*}
\mathbb{R}^{N}=\bigoplus_{i=1}^{m} V_{i} \tag{22}
\end{equation*}
$$

Let fix arbitary $i \in\{1,2, \ldots, N\}$ and fix arbitary $x \in \mathbb{R}^{N} . A_{i} x=\left(\sum_{i=1}^{m} A_{i}\right) A_{i} x=$ $\left(A_{i}\right)^{2} x+\left(\Sigma_{j \neq i} A_{j} A_{i} x\right.$. By (22), $A_{i} x=A_{i}{ }^{2} x$ and $A_{j} A_{i} x=0$.

By Proposition3.9 and Proposition2.1 and Proposition, the following theorem holds.

Proposition 3.10 (Cochran's theorem).
We take over (S1) and (A1) in Proposition3.9. And let
(S2) (Ω, \mathscr{F}, P) is a probability space.
(A1) $\boldsymbol{\epsilon} \sim N\left(0, E_{N}\right)$
(S3) $Q_{i}:=\boldsymbol{\epsilon}^{T} A_{i} \boldsymbol{\epsilon}(i=1,2, \ldots, m)$
then $Q_{i} \sim \chi^{2}\left(\operatorname{rank} A_{i}\right)(\forall i)$ and Q_{i} and Q_{j} are independent for all $(i, j) \in$ $\{(i, j) \mid i \neq j\}$

3.6 Testing

Throughout this subsection, we assume

$$
\begin{equation*}
\beta=\left(\beta_{0}, 0,0, \ldots, 0\right)^{T} \tag{23}
\end{equation*}
$$

and

$$
X=\left(\begin{array}{ccccc}
1 & x_{1,1} & x_{1,2} & \ldots & x_{1, L} \tag{24}\\
1 & x_{2,1} & x_{2,2} & \ldots & x_{2, L} \\
\ldots & \ldots & \ldots & \ldots & \\
1 & x_{N, 1} & x_{N, 2} & \ldots & x_{N, L}
\end{array}\right)
$$

Then

$$
\begin{equation*}
X \beta=\beta_{0} 1_{N, 1} \tag{25}
\end{equation*}
$$

So

$$
\begin{align*}
\hat{y} & =X\left(X^{T} X\right)^{-1} X^{T} y \\
& =X\left(X^{T} X\right)^{-1} X^{T}(X \beta+\epsilon) \\
& =\beta_{0} 1_{N, 1}+X\left(X^{T} X\right)^{-1} X^{T} \epsilon \tag{26}
\end{align*}
$$

And

$$
\begin{equation*}
\bar{y} 1_{N, 1}=\beta_{0} \frac{1}{N} 1_{N, 1}+1_{N, N} \epsilon \tag{27}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
R S S=\epsilon^{T}\left(X\left(X^{T} X\right)^{-1} X^{T}-\frac{1}{N} 1_{N, 1}\right) \epsilon \tag{28}
\end{equation*}
$$

Because $X\left(X^{T} X\right)^{-1} X^{T}$ is symmetric, $X\left(X^{T} X\right)^{-1} X^{T}$ and $\frac{1}{N} 1_{N, 1}$ are commutative.

And because $X\left(X^{T} X\right)^{-1} X^{T}$ is idempotent and symmetric, $\left(X\left(X^{T} X\right)^{-1} X^{T}-\right.$ $\left.\frac{1}{N} 1_{N, 1}\right)$ is idempotent and symmetric.

$$
\operatorname{rank}\left(X\left(X^{T} X\right)^{-1} X^{T}-\frac{1}{N} 1_{N, 1}\right)=\operatorname{tr}\left(X\left(X^{T} X\right)^{-1} X^{T}-\frac{1}{N} 1_{N, 1}\right)=L
$$

So by Proposition3.10, RSS and $E S S$ are independent and $R S S \sim \chi^{2}(L)$ and $E S S \sim \chi^{2}(N-L-1)$.

So,

$$
\begin{equation*}
\frac{\frac{R S S}{L}}{\frac{E S S}{N-L-1}} \sim F(L, N-L-1) \tag{29}
\end{equation*}
$$

4 Simple linear regression

Throughout this subsection, we set

$$
\begin{equation*}
T_{x}=\sum_{i=1}^{n} x_{i}, T_{y}=\sum_{i=1}^{n} y_{i}, T_{x, x}=\sum_{i=1}^{n} x_{i}^{2}, T_{x, y}=\sum_{i=1}^{n} x_{i} y_{i} \tag{30}
\end{equation*}
$$

4.1 Case1: there is intercept

Throughout this subsection, we assume

$$
X=\left(\begin{array}{cc}
1 & x_{1} \tag{31}\\
1 & x_{2} \\
\ldots & \ldots \\
1 & x_{n}
\end{array}\right)
$$

Then

$$
\begin{align*}
\hat{\beta} & =\binom{\hat{\alpha}}{\hat{\gamma}} \\
& =\left(X^{T} X\right)^{-1} X^{T} y \\
& =\left(\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right)\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\ldots & \ldots \\
1 & x_{n}
\end{array}\right)\right)^{-1} X^{T} y \\
& =\left(\begin{array}{cc}
n & T_{x} \\
T_{x} & T_{x, x}
\end{array}\right)^{-1} X^{T} y \\
& =\frac{1}{n T_{x, x}-T_{x}^{2}}\left(\begin{array}{cc}
T_{x, x} & -T_{x} \\
-T_{x} & n
\end{array}\right)\binom{T_{y}}{T_{x, y}} \tag{32}
\end{align*}
$$

So

$$
\begin{align*}
\hat{\gamma} & =\frac{n T_{x, y}-T_{x} T_{y}}{n T_{x, x}-T_{x}^{2}} \\
& =\frac{T_{x, y}-\frac{1}{n} T_{x} T_{y}}{T_{x, x}-\frac{1}{n} T_{x}^{2}} \\
& =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{33}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
\hat{\gamma}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{34}
\end{equation*}
$$

4.2 Case2: there is no intercept

Throughout this subsection, we assume

$$
\begin{equation*}
X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \tag{35}
\end{equation*}
$$

Then

$$
\begin{equation*}
\hat{\beta}=\frac{T_{x, y}}{T_{x, x}} \tag{36}
\end{equation*}
$$

5 Estimation about population mean

Throughout this section, we assume $X=1_{N}$ is one and we define μ by $\beta=\mu 1_{1}$. The followings hold.

$$
\begin{gather*}
X^{T} X=N \tag{37}\\
Y:=X\left(X^{T} X\right)^{-1} X^{T}=\frac{1}{N} 1_{N, N} \tag{38}\\
\hat{e}:=y-\bar{y} 1_{N} \tag{39}\\
\frac{|\hat{e}|^{2}}{\sigma^{2}} \sim \chi^{2}(N-1) \tag{40}\\
\frac{(\mu-\bar{y}) \sqrt{N(N-1)}}{|y-\bar{y}|} \sim t(N-1) \tag{41}
\end{gather*}
$$

6 Estimation about difference between two population means

Throughout this section, we assume

$$
X=\left(\begin{array}{cc}
1_{M} & 0 \tag{42}\\
0 & 1_{N}
\end{array}\right)
$$

and

$$
\begin{gather*}
\beta=\binom{\mu_{1} 1_{M}}{\mu_{2} 1_{N}} \tag{43}\\
\binom{y_{1}}{y_{2}}:=y \tag{44}\\
\binom{\epsilon_{1}}{\epsilon_{2}}:=\epsilon \tag{45}
\end{gather*}
$$

Then the followings hold.

$$
\begin{gather*}
X^{T} X=\left(\begin{array}{cc}
M & 0 \\
0 & N
\end{array}\right) \tag{46}\\
Y:=\left(\begin{array}{cc}
\frac{1}{M} 1_{M, M} & 0 \\
0 & \frac{1}{N} 1_{N, N}
\end{array}\right) \tag{47}\\
\mu_{1}=\left(\hat{y_{1}}\right)_{1}=\overline{y_{1}}+\overline{\epsilon_{1}} \tag{48}\\
\mu_{2}=\left(\hat{y_{2}}\right)_{1}=\overline{y_{2}}+\overline{\epsilon_{2}} \tag{49}
\end{gather*}
$$

So, by reproductive property of normal distribution,

$$
\begin{equation*}
\mu_{1}-\mu_{2}-\left(\overline{y_{1}}-\overline{y_{2}}\right) \sim N\left(0,\left(\frac{1}{M}+\frac{1}{N}\right) \sigma^{2}\right) \tag{50}
\end{equation*}
$$

And the following holds.

$$
\begin{equation*}
|\hat{e}|^{2}=\left|y_{1}-\mu_{1} 1_{M}\right|^{2}+\left|y_{2}-\mu_{2} 1_{N}\right|^{2} \tag{51}
\end{equation*}
$$

By Proposition3.3, $\left(\mu_{1}-\mu_{2}-\left(\overline{y_{1}}-\overline{y_{2}}\right)\right)$ and $\left|y_{1}-\mu_{1} 1_{M}\right|^{2}+\left|y_{2}-\mu_{2} 1_{N}\right|^{2}$ are independent.

Consequently, the following holds.

$$
\begin{equation*}
\frac{\left(\mu_{1}-\mu_{2}-\left(\overline{y_{1}}-\overline{y_{2}}\right)\right) \sqrt{M+N-2}}{\sqrt{\left(\left|y_{1}-\mu_{1} 1_{M}\right|^{2}+\left|y_{2}-\mu_{2} 1_{N}\right|^{2}\right)\left(\frac{1}{M}+\frac{1}{N}\right)}} \sim t(M+N-2) \tag{52}
\end{equation*}
$$

7 One way analysis of variance

Throughout this section we set

$$
\begin{gather*}
y:=\left(y_{1,1}, \ldots, y_{1, n_{1}}, y_{2,1}, \ldots, y_{2, n_{2}}, \ldots, y_{K, 1}, \ldots, y_{K, n_{K}}\right)^{T} \tag{53}\\
\beta:=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{K}\right)^{T} \tag{54}\\
\bar{y}_{i, \cdot}:=\frac{\sum_{j=1}^{n_{i}} y_{i, j}}{n_{i}}(i=1,2, \ldots, K) \tag{55}\\
X:=\left(\begin{array}{cccc}
1_{n_{1}} & O & O & O \\
1_{n_{2}} & 1_{n_{2}} & O & O \\
\ldots & \ldots & \ldots & \ldots \\
1_{n_{K}} & O & O & 1_{n_{K}}
\end{array}\right) \tag{56}
\end{gather*}
$$

Then

$$
Y:=X\left(X^{T} X\right)^{-1} X^{T}:=\left(\begin{array}{cccc}
\frac{1}{n_{1}} 1_{n_{1}, n_{1}} & O & O & O \tag{57}\\
O & \frac{1}{n_{2}} 1_{n_{2}, n_{2}} & O & O \\
\cdots & \ldots & \ldots & \cdots \\
O & O & O & \frac{1}{n_{K}} 1_{n_{K}, n_{K}}
\end{array}\right)
$$

In this subsection, hereafter, we assume there is a real number μ such that

$$
\begin{equation*}
\beta=\mu 1_{K} \tag{58}
\end{equation*}
$$

Then the followings holds.

$$
\begin{gather*}
T S S=\boldsymbol{\epsilon}^{T}\left(E_{N}-\frac{1}{N} 1_{N, N}\right) \boldsymbol{\epsilon} \tag{59}\\
E S S=\boldsymbol{\epsilon}^{T}\left(Y-\frac{1}{N} 1_{N, N}\right) \boldsymbol{\epsilon} \tag{60}\\
\operatorname{rank}\left(Y-\frac{1}{N} 1_{N, N}\right)=K-1 \tag{61}\\
R S S=\boldsymbol{\epsilon}^{T}\left(E_{N}-Y\right) \boldsymbol{\epsilon} \tag{62}\\
\operatorname{rank}\left(E_{N}-Y\right)=N-K \tag{63}
\end{gather*}
$$

So, by Cohchran's theorem, ESS and RSS are independent, and ESS ~ $\chi^{2}(K-1)$ and $R S S \sim \chi^{2}(N-K)$.

Consequently, the following theoem holds.
Theorem 7.1. Under the setting(56) and the assumption(58)

$$
\begin{equation*}
(E S S /(K-1)) /(R S S /(N-K)) \sim F(K-1, N-K) \tag{64}
\end{equation*}
$$

And the followings hold.

$$
\begin{align*}
\left(X^{T} X\right)^{-1} & =\left(\begin{array}{cccc}
\frac{1}{n_{1}} & 0 & \ldots & 0 \\
0 & \frac{1}{n_{2}} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & 0 & \frac{1}{n_{K}}
\end{array}\right) \tag{65}\\
\hat{\beta} & =\left(\bar{y}_{1,,}, \bar{y}_{2,,}, \ldots, \bar{y}_{K, .}\right)^{T} \tag{66}
\end{align*}
$$

So, by Proposition3.4, the following theoem holds.
Theorem 7.2. Under the setting(56)

$$
\begin{equation*}
\left(\bar{y}_{i, \cdot}-\mu_{i}\right) \sqrt{\frac{(N-K) n_{i}}{E S S}} \sim t(N-K) \tag{67}
\end{equation*}
$$

References

[1] Tadahisa Funaki, Probability Theory(in Japanese), ISBN-13 9784254116007.
[2] Akimichi Takemura, Modern Mathematical STATISTICS(in Japanese), ISBN-13 978-4780608601.
[3] Hideki Iwaki, Review of Statistics(in Japanese), lecture notes in kyoto sangyo university. http://www.cc.kyoto-su.ac.jp/ iwaki/Stat0.pdf

