A Proof of a determinant formula

1 Introduction

I will show the following formula.
Formula 1. Let n be a natural number and I_{n} be $n \times n$ identity matrix and x, y, u, v be $n \times 1$ matrices. Then

$$
\operatorname{det}\left(I_{n}+x y^{T}+u v^{T}\right)=\left(1+y^{T} x\right)\left(1+v^{T} u\right)-\left(x^{T} v\right)\left(y^{T} u\right)
$$

2 A proof

2.1 Case1: u or v is zero

We use the following lemma.
Lemma 1. Let n be a natural number and I_{n} be $n \times n$ identity matrix and x, y be $n \times 1$ matrices. Then

$$
\operatorname{det}\left(I_{n}+x y^{T}\right)=\left(1+y^{T} x\right)
$$

It is easy to show the above lemma by taking advantage of orthogonal matrix $Q=\left(x, w_{1}, \ldots, w_{n-1}\right)^{T}$ such that $Q x=e_{1}$ when $|x|=1$.

2.2 Case2: $x^{T} u=0$

We will show that Formula1 is true when $x^{T} u=0$. By Lemma1, we can assume $x \neq 0, u \neq 0$. Furthermore, we can assume $|x|=|u|=1$ by taking advantage of the equation $x y^{T}=\frac{x}{|x|}(|x| y)^{T}$ and $u v^{T}=\frac{u}{|u|}(|u| v)^{T}$. By GramSchmit orthogonalization process theorem, we can get a orthogonal maxrix $Q=$ $\left(x, u, w_{1}, \ldots, w_{n-2}\right)^{T}$ s.t. $Q x=e_{1}, Q u=e_{2}$. We define $y^{\prime}:=Q y$ and $v^{\prime}:=Q v$ and $A:=\left(\begin{array}{cc}1+y_{1}^{\prime} & y_{2}^{\prime} \\ v_{1}^{\prime} & 1+v_{2}^{\prime}\end{array}\right)$. Then we get

$$
\begin{aligned}
\operatorname{det}\left(I_{n}+x y^{T}+u v^{T}\right) & =\operatorname{det}\left(Q\left(I_{n}+x y^{T}+u v^{T}\right) Q^{T}\right) \\
& =\operatorname{det}\left(I_{n}+e_{1} y^{T}+e_{2} v^{T}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
A & . . \\
O_{(n-2), 2} & I_{n-2}
\end{array}\right) \\
& =\operatorname{det} A \\
& =\left(1+y_{1}^{\prime}\right)\left(1+v_{2}^{\prime}\right)-y_{2}^{\prime} v_{1}^{\prime}
\end{aligned}
$$

Furthermore, we get the following equation by definition of y^{\prime} and v^{\prime}. We get Formula1 by the above equation and the following equation.

$$
y_{1}^{\prime}=x^{T} y, y_{2}^{\prime}=u^{T} y, v_{1}^{\prime}=x^{T} v, v_{2}^{\prime}=u^{T} v
$$

2.3 Case3: general case

We will show that Formula1 is true in general. We can get a real number a s.t. $\bar{u}:=u-a x$ is orthogonal to x. We get

$$
x y^{T}+u v^{T}=x(y+a v)^{T}+\bar{u} v^{T}
$$

So, we can use the result of case 2 to get

$$
\begin{aligned}
\operatorname{det}\left(I_{n}+x y^{T}+u v^{T}\right) & =\operatorname{det}\left(I_{n}+x(y+a v)^{T}+\bar{u} v^{T}\right) \\
& =\left(1+(y+a v)^{T} x\right)\left(1+v^{T} \bar{u}\right)-x^{T} v(y+a v)^{T} \bar{u}
\end{aligned}
$$

We can easily get
$\left(1+(y+a v)^{T} x\right)\left(1+v^{T} \bar{u}\right)-x^{T} v(y+a v)^{T} \bar{u}=\left(1+y^{T} x\right)\left(1+v^{T} u\right)-\left(x^{T} v\right)\left(y^{T} u\right)$
Consequently, we get Formula1 is true in general.

